Endocrine System (Chapter 18) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College Eastern Campus

Similar documents
The Endocrine System. I. Overview of the Endocrine System. II. Three Families of Hormones. III. Hormone Receptors. IV. Classes of Hormone Receptor

BIOL 2458 A&P II CHAPTER 18 SI Both the system and the endocrine system affect all body cells.

The Endocrine System. Endocrine System. 1

Unit 9 - The Endocrine System 1

Chapter 16: Endocrine System 1

BIOLOGY - CLUTCH CH.45 - ENDOCRINE SYSTEM.

Endocrine System. Modified by M. Myers

The Endocrine System. The Endocrine System

Endocrine System. Endocrine vs. Exocrine. Bio 250 Human Anatomy & Physiology

Chapter 13 Endocrine System. Endocrine System. Endocrine System Functions

Chapter 13 Endocrine System. Endocrine System. Endocrine Glands. Comparison of Nervous System and Endocrine System

Endocrine System. Chapter 18. Introduction. How Hormones Work. How Hormones Work. The Hypothalamus & Endocrine Regulation

Endocrine System. Chemical Control

The Endocrine System Pearson Education, Inc.

Chapter 11 - Endocrine System

Endocrine Notes Mrs. Laux AP Biology I. Endocrine System consists of endocrine glands (ductless), cells, tissues secrete hormones

Endocrine System. Chapter 9

2) Storehouse for the hormones produced by the hypothalamus of the brain. 2)

9.2: The Major Endocrine Organs

BIO 210: Anatomy and Physiology Text: Fundamentals of Anatomy and Physiology 9ed. Chapter 18 The Endocrine System

Endocrine System Notes

Chapter 11. Endocrine System

Chapter 9 The Endocrine System and Hormone Activity

Human Anatomy, First Edition. Endocrine System. Chapter 20 Lecture Outline: Endocrine System. McKinley & O'Loughlin

Ch45: Endocrine System

Endocrine System. Always willing to lend a helping gland

2/28/18. Endocrine System. 1 Copyright 2016 by Elsevier Inc. All rights reserved. Introduction. Comparing Endocrine and Nervous System Functions

Endocrine secretion cells secrete substances into the extracellular fluid

Human Anatomy and Physiology - Problem Drill 16: The Endocrine System

The Endocrine System PART B

The Endocrine System PART B

Page 1. Chapter 37: Chemical Control of the Animal Body - The Endocrine System

Page 1. Chapter 37: Chemical Control of the Animal Body - The Endocrine System. Target Cells: Cells specialized to respond to hormones

Chapter 20. Endocrine System Chemical signals coordinate body functions Chemical signals coordinate body functions. !

Chapter 20 Endocrine System

ENDOCRINE SYSTEM CLASS NOTES

The Endocrine System PART A

Chapter 26. Hormones and the Endocrine System. Lecture by Edward J. Zalisko

The endocrine system -- a brief overview.

Major endocrine glands and their hormones

Endocrine System. Chapter 20. Endocrine Glands and Hormones. The Endocrine System. Endocrine glands

Anatomy and Physiology. The Endocrine System

Endocrine system. Coordination & regulation Glands Hormones

Chapter 8.2 The Endocrine System

Endocrine System Hormones

Ch45: Endocrine System

The Endocrine System PART A

Endocrine System Hormones (Ch. 45)

Chapter 12 Endocrine System (export).notebook. February 27, Mar 17 2:59 PM. Mar 17 3:09 PM. Mar 17 3:05 PM. Mar 17 3:03 PM.

Endocrine System Hormones. AP Biology

Receptors Functions and Signal Transduction L1- L2

Chapter 16 - Endocrine system

human anatomy & physiology sampler questions

The Endocrine System

The Endocrine System 7/6/2015. Outline. Function of the Endocrine System

HIHIM 409. Endocrine system. Differences between systems. Hormone effects. Similarities. Interrelationship between nervous and endocrine system

Hormones and the Endocrine System Chapter 45. Intercellular communication. Paracrine and Autocrine Signaling. Signaling by local regulators 11/26/2017

Chemical Regulation. Chapter 26. Testosterone and Male Aggression: Is There a Link? THE NATURE OF CHEMICAL REGULATION

Endocrine system. Coordination & regulation Glands Hormones

CHAPTER 12. Quick Check and Active Learning Answer Keys QUICK CHECK

The Endocrine System PART B

Endocrine System. Chapter 24. Copyright 2012, 2007, 2003, 1999 by Saunders, an imprint of Elsevier Inc. All rights reserved.

Chapter 18: Endocrine Glands

Testosterone and other male hormones seem to be related to aggressive behavior in some species

Hypothalamic Control of Posterior Pituitary

Endocrine System. Part 2

Chapter 18, Part 2! Chapter 18, Part 2 Endocrine system! The Endocrine System!

3. The function of that hormone. In other words, what change does that hormone facilitate.

The Endocrine System

Adrenal Glands. Adrenal Glands. Adrenal Glands. Adrenal Glands. Adrenal Glands 4/12/2016. Controlled by both nerves and hormones.

Know at the level covered in these notes! SECTION 18-3! The bilobed pituitary gland is an endocrine organ that releases nine peptide hormones!

Chapter 26 Hormones and the

Receptors Functions and Signal Transduction L1- L2

GENERAL CHARACTERISTICS OF THE ENDOCRINE SYSTEM FIGURE 17.1

Endocrine Control. Chapter 35

BIOH111. o Cell Module o Tissue Module o Integumentary system o Skeletal system o Muscle system o Nervous system o Endocrine system

The Endocrine System - Chapter 11

The Endocrine System Dr. Gary Mumaugh

CHEMICAL COORDINATION & INTEGRATION

The Endocrine System. PowerPoint Lecture Presentations prepared by Jason LaPres. Lone Star College North Harris

/30/17 Ch 8: Muscular System 1. Table of Contents # Date Title Page # 03/13/17 Ch 10: Somatic and Special Senses 53

Ch 8: Endocrine Physiology

Chapter 16: The Endocrine System

CATEGORY Endocrine System Review. Provide labels for the following diagram CHAPTER 13 BLM

Chapter 9. The Endocrine System. Lecture Presentation by Patty Bostwick-Taylor Florence-Darlington Technical College

BIO 116 Practice Assignment 1 The Endocrine System and Blood This is not a required assignment but it is recommended.

THE ENDOCRINE SYSTEM: AN OVERVIEW

Chapter 17 The Endocrine System

Human Biology Chapter 11: The Endocrine System *

Hormones and the Endocrine System

Endocrine System Worksheet

The Endocrine System/Hormones

54a A&P: Endocrine System

Chapter 13 worksheet

4/23/2018. Endocrine System: Overview. Endocrine System: Overview

Homeostasis Through Chemistry. The Endocrine System Topic 6.6

Endocrine System. Human Physiology Unit 3

Art labeling Activity: Figure 16.1

Endocrine System. A system that consists of glands that transmit chemical messengers throughout the body.

ENDOCRINE SYSTEM. Endocrine

Transcription:

Endocrine System (Chapter 18) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College Eastern Campus Primary Sources for figures and content: Marieb, E. N. Human Anatomy & Physiology 6th ed. San Francisco: Pearson Benjamin Cummings, 2004. Martini, F. H. Fundamentals of Anatomy & Physiology 6th ed. San Francisco: Pearson Benjamin Cummings, 2004. Amy Warenda Czura, Ph.D. 1 SCCC BIO132 Chapter 18 Lecture Slides

Intercellular Communication 1. Direct communication: occurs between two cells of the same type through gap junctions via ions or small solutes 2. Paracrine communication: uses chemical messengers to transfer signals between cells in a single tissue (messenger = cytokines or local hormones) 3. Endocrine communication: uses hormones to coordinate cellular activities in distant portions of the body (hormones = chemical messengers released from one tissue and transported in blood to reach target cells in other tissues) gradual, coordinated but not immediate 4. Synaptic communication: involves neurons releasing neurotransmitter at a synapse close to target, immediate but short lived Amy Warenda Czura, Ph.D. 2 SCCC BIO132 Chapter 18 Lecture Slides

The Endocrine System -consists of glands and glandular tissue involved in paracrine and endocrine communication -endocrine cells produce secretions released into extracellular fluid enters blood body-wide distribution to find target -endocrine cells located in: (on handout) Amy Warenda Czura, Ph.D. 3 SCCC BIO132 Chapter 18 Lecture Slides

Hormones Structure 1. Amino Acid Derivatives -structurally similar to or based on amino acids -e.g. catecholamines (epinephrine, norepinephrine, dopamine), thyroid hormones, melatonin Amy Warenda Czura, Ph.D. 4 SCCC BIO132 Chapter 18 Lecture Slides

2. Peptide Hormones -chains of amino acids A. Peptides - <200 amino acids -e.g. ADH, oxytocin, GH B. Glycoproteins - >200 amino acids with carbohydrate side chain -e.g. TSH 3. Lipid Derivatives A. Steroid Hormones -structurally similar to/based on cholesterol -e.g. Androgens, Estrogens, Calcitriol Amy Warenda Czura, Ph.D. 5 SCCC BIO132 Chapter 18 Lecture Slides

B. Eicosanoids -derived from arachidonic acid -not circulating: autocrine or paracrine only -e.g. Leukotrienes: from leukocytes, coordinate inflammation Prostaglandins: from Mast cells, coordinate local activities (smooth muscle contraction, clotting, etc.) Mechanism of Action -hormones circulate in blood: contact all cells -only cause effects in cells with receptor for hormone: called target cells -receptors present on a cell determines the cell s hormonal sensitivity Amy Warenda Czura, Ph.D. 6 SCCC BIO132 Chapter 18 Lecture Slides

Hormone stimulus effects in target cells: 1. Alter plasma membrane permeability or transmembrane potential by opening / closing ion channels 2. Stimulate synthesis of: structural proteins, receptors, regulatory enzymes within cell 3. activate or deactivate enzymes 4. induce secretory activity 5. stimulate mitosis Hormone Receptors -located on plasma membrane or inside target 1. Cell membrane hormone receptors -catecholamines, peptide hormones, glycoprotein hormones, eicosanoids -bind receptors on cell surface -indirectly trigger events inside cell via second messengers (camp, Ca ++ ) -2nd messenger acts as activator, inhibitor, or cofactor for intracellular enzymes (enzymes catalyze reactions for cell changes) Amy Warenda Czura, Ph.D. 7 SCCC BIO132 Chapter 18 Lecture Slides

-receptor linked to 2nd messenger by G protein (regulatory enzyme complex) (Handout:) 2nd messenger mechanism results in amplification of hormone signal: one hormone molecule binds one receptor but can result in millions of final products Amy Warenda Czura, Ph.D. 8 SCCC BIO132 Chapter 18 Lecture Slides

2. Intracellular hormone receptors -steroid hormones, thyroid hormones -result in direct gene activation by hormone -hormone diffuses across membrane, binds receptors in cytoplasm or nucleus -hormone + receptor bind DNA transcription translation = protein production (metabolic enzymes, structural proteins, secretions) Amy Warenda Czura, Ph.D. 9 SCCC BIO132 Chapter 18 Lecture Slides

Target cell activation depends on: 1. Blood level of hormone 2. Relative number of receptors 3. Affinity of bond between hormone and receptor -if hormone levels are excessively high for too long cells can reduce receptor number or affinity and become non-responsive to a hormone Distribution and duration of hormones -circulating hormones either free or bound to carrier/transport proteins -free hormones last seconds to minutes: rapidly broken down by liver, kidney, or plasma enzymes in blood -bound hormones last hours to days in blood -effect at target cell can take seconds to days depending on mechanism and final effect, but hormone once bound to receptor is broken down quickly Amy Warenda Czura, Ph.D. 10 SCCC BIO132 Chapter 18 Lecture Slides

Interaction of Hormones at Target Cells -target cells have receptors for multiple hormones -effects of one hormone can be different depending on presence or absence of other hormones Hormone Interactions: 1. Antagonistic = hormones oppose each other 2. Synergistic = hormones have additive effects 3. Permissive = one hormone is needed for the other to cause its effects Control of Endocrine Activity -synthesis and release of most hormones regulated by negative feedback: stimulus hormone release effects at target Amy Warenda Czura, Ph.D. 11 SCCC BIO132 Chapter 18 Lecture Slides

3 major stimuli for hormone release: 1. Humoral stimuli ion and nutrient levels in blood trigger release (e.g. PTH released when blood Ca ++ low) 2. Neural stimuli (autonomic nervous system) nerve fibers directly stimulate release (e.g. sympathetic adrenal medulla = epinephrine release) 3. Hormonal stimuli hormones stimulate the release of other hormones (e.g. releasing hormones of hypothalamus cause release of hormones from anterior pituitary) -hormone release turned on by stimuli and off by negative feedback but can be modified by nervous system Amy Warenda Czura, Ph.D. 12 SCCC BIO132 Chapter 18 Lecture Slides

Endocrine Organs 1. Hypothalamus -located at base of 3rd ventricle -master regulatory organ -integrates nervous and endocrine systems Three mechanisms of control: 1. Secrete regulatory hormones to control secretion from anterior pituitary (hormones from anterior pituitary control other endocrine organs) 2. Act as endocrine organ (produce ADH and oxytocin) 3. Has autonomic centers for neural control of adrenal medulla (neuroendocrine reflex) Amy Warenda Czura, Ph.D. 13 SCCC BIO132 Chapter 18 Lecture Slides

2. Pituitary Gland (Hypophysis) -hangs inferior to hypothalamus via infundibulum -in sella turcica of sphenoid -anterior lobe secretes 7 hormones: function via camp 2nd messenger -posterior lobe secretes 2 hormones: function via camp 2nd messenger Amy Warenda Czura, Ph.D. 14 SCCC BIO132 Chapter 18 Lecture Slides

A. Anterior Lobe (Adenohypophysis) -glandular tissue -anterior pituitary hormones are all tropic hormones = turn on secretion or support function of other organs -secretion of the hormones controlled by releasing and inhibiting hormones from the hypothalamus Hormones of the Anterior Lobe (handout) Diseases of Growth Hormone: -Excess: (usually due to pituitary tumor) -before epiphyseal closure = gigantism -after = acromegaly: excessive growth of hands, feet, face, internal organs -Deficiency: pituitary dwarfism: failure to thrive Amy Warenda Czura, Ph.D. 15 SCCC BIO132 Chapter 18 Lecture Slides

B. Posterior Lobe (neurohypophysis) -neural tissue -contains axons of hypothalamus: release hormones to posterior lobe for storage Hormones released by Posterior Lobe (handout) Amy Warenda Czura, Ph.D. 16 SCCC BIO132 Chapter 18 Lecture Slides

3. Thyroid Gland -inferior to larynx -left and right lobes connected by isthmus -largest pure endocrine organ -tissue = 1. follicles: spheres of simple cuboidal epithelium 2. Parafollicular cells/ C cells between follicles -follicles filled with colloid: thyroglobulin -thyroglobulin protein constantly synthesized by follicle cells and exocytosed into follicle for storage -upon stimulation by TSH, thyroglobulin is processed into thyroid hormones (T3/T4) Amy Warenda Czura, Ph.D. 17 SCCC BIO132 Chapter 18 Lecture Slides

Formation and release of thyroid hormones (handout) Receptors for thyroid hormones located in all cells except: adult brain, spleen, testes, uterus, thyroid 3 receptors in target cell: -cytoplasm: hold hormone in reserve -mitochondria: increase cellular respiration -nucleus: activate genes for enzymes involved in energy transformation and utilization Amy Warenda Czura, Ph.D. 18 SCCC BIO132 Chapter 18 Lecture Slides

Overall effect of thyroid hormones = increase metabolic rate and body heat production, and regulate tissue growth and development Hypothyroidism = lack of T3/T4 Myxedema (adults): lack of iodine, causes low body temp, muscle weakness, slow reflexes, cognitive dysfunction and goiter = swollen thyroid (produce thyroglobulin but fail to endocytose) Cretinism (infants): genetic defect, causes lack of skeletal and nervous system development Hyperthyroidism = excessive T3/T4, causes high metabolic rate, high heart rate, restlessness, fatigue Graves Disease = autoimmune disorder, produce antibodies that mimic TSH causing overproduction of thyroid hormones Amy Warenda Czura, Ph.D. 19 SCCC BIO132 Chapter 18 Lecture Slides

Parafollicular cells / C cells -in basement membrane of follicles -produce Calcitonin Calcitonin stimulates decrease in blood calcium levels: 1. Inhibits osteoclasts 2. Promotes Ca ++ loss at kidney -parafollicular cells respond directly to blood calcium levels, not controlled by hypothalamus -Ca 2+ 20% above normal = calcitonin release 4. Parathyroid Glands -four glands imbedded in posterior side of lobes of thyroid Amy Warenda Czura, Ph.D. 20 SCCC BIO132 Chapter 18 Lecture Slides

-Two cell types: 1. Oxyphils: few, function unknown 2. Chief Cells: majority, produce parathyroid hormone (PTH) Parathyroid Hormone (PTH) / Parathormone: -most important regulator of blood calcium -secreted when blood calcium low -acts to raise blood calcium levels by acting on various tissues: 1. Bone: stimulates osteoclasts and inhibits osteoblasts 2. Kidney: enhances reabsorption of Ca 2+ 3. Intestine: promotes conversion of Vitamin D to calcitriol in kidney to enhance Ca 2+ and PO 4 3- absorption in small intestine Amy Warenda Czura, Ph.D. 21 SCCC BIO132 Chapter 18 Lecture Slides

5. Adrenal Glands -2 glands, in renal fascia, superior to kidney -glandular adrenal cortex -medulla mostly nervous tissue -in general: adrenal hormones used to cope with stressors A. Adrenal Cortex -produces 24+ corticosteriods: in target alter gene transcription to affect metabolism 3 Layers: (on handout) Amy Warenda Czura, Ph.D. 22 SCCC BIO132 Chapter 18 Lecture Slides

Cushing s Syndrome = excessive corticosteriods ( ACTH from pituitary tumor), results in: hyperglycemia, muscle and bone mass, hypertension, edema, poor healing, chronic infections Addison s Disease = deficient in corticosteriods, results in: weight loss, hypoglycemia, Na + K + in plasma, dehydration, hypotension B. Adrenal Medulla (on handout) 6. Pancreas -inferior and posterior to stomach -mostly exocrine cells: pancreatic acini, secrete digestive enzymes -1% endocrine: pancreatic islets Amy Warenda Czura, Ph.D. 23 SCCC BIO132 Chapter 18 Lecture Slides

Pancreatic islets cell types: 1. Alpha cells glucagon: blood glucose 2. Beta cells insulin: blood glucose 3. Delta cells somatostatin: suppresses glucagon and insulin release, slows enzyme release into intestine 4. F cells pancreatic polypeptide: regulates production of pancreatic enzymes Insulin -secreted in response to high blood glucose or ANS: parasympathetic = insulin sympathetic = insulin -effects only on insulin dependent cells (have receptors) -brain, kidney, GI mucosa, and RBCs all insulin independent Amy Warenda Czura, Ph.D. 24 SCCC BIO132 Chapter 18 Lecture Slides

Effects: (on handout) Diabetes mellitus = too much glucose in blood (hyperglycemia) Type I = failure to produce insulin Type II = insulin resistance, sometimes insulin deficiency Cells do not utilize glucose, ketone bodies produced, too many = ketoacidosis Amy Warenda Czura, Ph.D. 25 SCCC BIO132 Chapter 18 Lecture Slides

Glucagon -secreted in response to low blood glucose or sympathetic stimulation Effects: (on handout) 7. Pineal Gland -posterior of third ventricle -pinealocytes: synthesize melatonin from serotonin -secretion on diurnal cycle: high at night, low during daylight Amy Warenda Czura, Ph.D. 26 SCCC BIO132 Chapter 18 Lecture Slides

Melatonin functions: -play role in timing of sexual maturation -antioxidant (free radical protection) -sets circadian rhythms 8. Gastrointestinal Tract -enteroendocrine cells in GI mucosa secrete many hormones: coordinate digestive activity -mostly paracrine communication -cholecystokinin -enterocrinin -gastric inhibitory peptide -gastrin -secretin -vasoactive intestinal peptide Amy Warenda Czura, Ph.D. 27 SCCC BIO132 Chapter 18 Lecture Slides

9. Kidney -various endocrine cells, three products: 1. Calcitriol (steroid hormone) -released in response to PTH -Calcitriol effects: -stimulate Ca 2+, PO 4 3- absorption in GI -stimulate osteoclast activity -stimulate Ca 2+ retention in kidney -suppress PTH production 2. Erythropoietin (peptide hormone) -released in response to low O 2 in kidney -stimulates erythrocyte production Amy Warenda Czura, Ph.D. 28 SCCC BIO132 Chapter 18 Lecture Slides

3. Renin (enzyme) -released in response to sympathetic stimulation or decline in renal blood flow -converts angiotensin in blood into Angiotensin II (hormone) -Angiotensin II effects: -stimulate secretion of aldosterone (adrenal) -stimulate secretion of ADH (pituitary) -stimulate thirst -elevate BP (both aldosterone and ADH restrict Na + and H 2 O loss at kidney) 10. Heart -some cells of atrial walls secrete Atrial Natriuretic Peptides in response to stretch -ANP promotes Na + and water loss at kidney, inhibits release of renin, ADH, and aldosterone to reduce BP and volume Amy Warenda Czura, Ph.D. 29 SCCC BIO132 Chapter 18 Lecture Slides

11. Thymus -located deep to sternum -cells produce thymosins -promote development and maturation of T lymphocytes and the immune response 12. Gonads A. Testes (male) -Interstitial cells produce androgens in response to LH Testosterone (most common) -produces male secondary sex characteristics -promotes sperm production -maintains secretory glands Amy Warenda Czura, Ph.D. 30 SCCC BIO132 Chapter 18 Lecture Slides

B. Ovaries (female) -Follicle cells produce estrogens in response to LH and FSH Estradiol (most important) -produce female secondary sex characteristics -support maturation of oocytes -stimulate growth of uterine lining -Surge in LH causes ovulation, follicle reorganizes to form corpus luteum: produces estrogens and progestins Progesterone (most important) -prepares uterus for embryo growth -accelerates movement of oocyte/embryo to uterus -enlargement of mammary glands Amy Warenda Czura, Ph.D. 31 SCCC BIO132 Chapter 18 Lecture Slides

13. Adipose -secretes leptin in response to absorption of glucose and lipids -triggers satiation in appetite center of hypothalamus -permissive effect on gonadotropins -also secretes resistin -reduces insulin sensitivity Age Related Changes -very little change in most hormone levels -adverse effects due to changes in target tissues: prevent reception or response to hormone -gonads decrease in size and hormone production Amy Warenda Czura, Ph.D. 32 SCCC BIO132 Chapter 18 Lecture Slides