Genetics and Heredity

Similar documents
Unit 7 Section 2 and 3

Unit 5: Genetics Guided Notes

Chapter 9. Patterns of Inheritance. Lectures by Chris C. Romero, updated by Edward J. Zalisko

Genetics & The Work of Mendel. AP Biology

Labrador Coat Color Similar to coat color in mice: Black lab is BxEx Yellow lab is xxee Chocolate lab is bbex Probable pathway:

Patterns of Inheritance

Biology Unit 7 Genetics 7:1 Genetics

UNIT 6 GENETICS 12/30/16

Genetics & The Work of Mendel

Genetics & The Work of Mendel

Gregor Mendel. What is Genetics? the study of heredity

Patterns of Heredity - Genetics - Sections: 10.2, 11.1, 11.2, & 11.3

Mendel. The pea plant was ideal to work with and Mendel s results were so accurate because: 1) Many. Purple versus flowers, yellow versus seeds, etc.

8.1 Genes Are Particulate and Are Inherited According to Mendel s Laws 8.2 Alleles and Genes Interact to Produce Phenotypes 8.3 Genes Are Carried on

Chapter 10 Notes Patterns of Inheritance, Part 1

.the science that studies how genes are transmitted from one generation to the next.

Gregor Mendel Father of Genetics

Genetics and Heredity Notes

Patterns of Heredity Genetics

11.1 The Work of Mendel

Patterns in Inheritance. Chapter 10

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 6 Patterns of Inheritance

Name Class Date. Review Guide. Genetics. The fundamental principles of genetics were first discovered by. What type of plant did he breed?.

Mendelian Genetics. Biology 3201 Unit 3

Genes and Inheritance (11-12)

Genetics. The study of heredity. Father of Genetics: Gregor Mendel (mid 1800 s) Developed set of laws that explain how heredity works

Genetics: CH9 Patterns of Inheritance

12 MENDEL, GENES, AND INHERITANCE

Genetics- The field of biology that studies how characteristics are passed from one generation to another.

General Biology 1004 Chapter 9 Lecture Handout, Summer 2005 Dr. Frisby

Semester 2- Unit 2: Inheritance

Ch 9 Assignment. 2. According to the blending theory of inheritance, a white rabbit crossed with a red rabbit would produce what kind of offspring?

Genes and Inheritance

Patterns of Inheritance. Game Plan. Gregor Mendel ( ) Overview of patterns of inheritance Determine how some genetic disorders are inherited

Introduction Chapter Experimental genetics began in an abbey garden. 9.2 Experimental genetics began in an abbey garden

HEREDITY. Heredity is the transmission of particular characteristics from parent to offspring.

Mendel and Heredity. Chapter 12

Biology. Chapter 13. Observing Patterns in Inherited Traits. Concepts and Applications 9e Starr Evers Starr. Cengage Learning 2015

Chapter 6 Heredity The Big Idea Heredity is the passing of the instructions for traits from one generation to the next.

Extra Review Practice Biology Test Genetics

GENETICS PREDICTING HEREDITY

Meiotic Mistakes and Abnormalities Learning Outcomes

Inheritance. What is inheritance? What are genetics? l The genetic characters transmitted from parent to offspring, taken collectively

The passing of traits from parents to offspring. The scientific study of the inheritance

Chapter 17 Genetics Crosses:

Genetics & Heredity 11/16/2017

Genetics and heredity. For a long time, general ideas of inheritance were known + =

Mendelian Genetics. KEY CONCEPT Mendel s research showed that traits are inherited as discrete units.

Chapter 13: Patterns of Inheritance

Laws of Inheritance. Bởi: OpenStaxCollege

Mendel explained how a dominant allele can mask the presence of a recessive allele.

Mendelian Genetics. You are who you are due to the interaction of HEREDITY and ENVIRONMENT. ENVIRONMENT: all outside forces that act on an organism.

GENETIC VARIATION AND PATTERNS OF INHERITANCE. SOURCES OF GENETIC VARIATION How siblings / families can be so different

Pre-AP Biology Unit 7 Genetics Review Outline

Welcome Back! 2/6/18. A. GGSS B. ggss C. ggss D. GgSs E. Ggss. 1. A species of mice can have gray or black fur

Human Genetics (Learning Objectives)

For a long time, people have observed that offspring look like their parents.

Name Hour. Section 11-1 The Work of Gregor Mendel (pages )

Mendelian Genetics and Beyond Chapter 4 Study Prompts

Genetics, Mendel and Units of Heredity

Objectives. ! Describe the contributions of Gregor Mendel to the science of genetics. ! Explain the Law of Segregation.

UNIT III (Notes) : Genetics : Mendelian. (MHR Biology p ) Traits are distinguishing characteristics that make a unique individual.

The Discovery of Chromosomes and Sex-Linked Traits

Fundamentals of Genetics

Genetics. by their offspring. The study of the inheritance of traits is called.

UNIT 1-History of life on earth! Big picture biodiversity-major lineages, Prokaryotes, Eukaryotes-Evolution of Meiosis

Mendel and Heredity. Chapter 12

Patterns of Inheritance. { Unit 3

Introduction to Genetics

The Experiments of Gregor Mendel

You are who you are because of a combination of HEREDITY and ENVIRONMENT. ENVIRONMENT: all outside forces that act on an organism.

draw and interpret pedigree charts from data on human single allele and multiple allele inheritance patterns; e.g., hemophilia, blood types

Ch 10 Genetics Mendelian and Post-Medelian Teacher Version.notebook. October 20, * Trait- a character/gene. self-pollination or crosspollination

Name Period. Keystone Vocabulary: genetics fertilization trait hybrid gene allele Principle of dominance segregation gamete probability

IB BIO I Genetics Test Madden

Genetics. the of an organism. The traits of that organism can then be passed on to, on

Genetics: field of biology that studies heredity, or the passing of traits from parents to offspring Trait: an inherited characteristic, such as eye

Class *GENETIC NOTES & WORKSHEETS

Question 2: Which one of the following is the phenotypic monohybrid ratio in F2 generation? (a) 3:1 (b) 1:2:1 (c) 2:2 (d) 1:3 Solution 2: (a) 3 : 1

The laws of Heredity. Allele: is the copy (or a version) of the gene that control the same characteristics.

MENDELIAN GENETICS. Law of Dominance: Law of Segregation: GAMETE FORMATION Parents and Possible Gametes: Gregory Mendel:

Mendel rigorously followed various traits in the pea plants he bred. He analyzed

Introduction to Genetics

Section 11 1 The Work of Gregor Mendel (pages )

Genetics PPT Part 1 Biology-Mrs. Flannery

Chapter 9. Patterns of Inheritance. Lecture by Mary C. Colavito

The Modern Genetics View

Mendel s Law of Heredity. Page 254

P = parents F = filial

Genetics: Mendel and Beyond

MENDELIAN GENETICS. Punnet Squares and Pea Plants

Chapter 11. Introduction to Genetics

Mendelian Genetics: Patterns of Inheritance

Unit 3. Intro. Genetics The branch of biology that deals with variation (differences) and inheritance. Genetics. Sep 6 5:24 PM.

HEREDITY = The passing of traits from parents to offspring. Transmitted by means of information stored in molecules of DNA.

Genetics. Genetics. True or False. Genetics Vocabulary. Chapter 5. Objectives. Heredity

Biology Sec+on 9.2. Gene+c Crosses

Section Objectives: Pedigrees illustrate inheritance. Pedigrees illustrate inheritance

Essential Questions. Basic Patterns of Human Inheritance. Copyright McGraw-Hill Education

Patterns of Inheritance

Transcription:

Genetics and Heredity

History Genetics is the study of genes. Inheritance is how traits, or characteristics, are passed on from generation to generation. Chromosomes are made up of genes, which are made up of DNA. Genetic material (genes,chromosomes, DNA) is found inside the nucleus of a cell. Gregor Mendel is considered The Father of Genetics"

Gregor Mendel Austrian Monk. Experimented with pea plants. Used pea plants because: They were available They reproduced quickly They showed obvious differences in the traits Understood that there was something that carried traits from one generation to the next- FACTOR.

Mendel cont In the mid-1800s, the rules underlying patterns of inheritance were uncovered in a series of experiments performed by an Austrian monk named Gregor Mendel.

Mendel's Plant Breeding Experiments Gregor Mendel was one of the first to apply an experimental approach to the question of inheritance. For seven years, Mendel bred pea plants and recorded inheritance patterns in the offspring. Particulate Hypothesis of Inheritance Parents pass on to their offspring separate and distinct factors (today called genes) that are responsible for inherited traits.

Mendelian Genetics Dominant traits- traits that are expressed. Recessive traits- traits that are covered up. Alleles- the different forms of a characteristic. Punnett Squares- show how crosses are made. Probability- the chances/ percentages that something will occur. Genotype- the types of genes (Alleles) present. Phenotype- what it looks like. Homozygous- two of the same alleles. Heterozygous- two different alleles.

Mendel was fortunate he chose the Garden Pea Mendel probably chose to work with peas because they are available in many varieties. The use of peas also gave Mendel strict control over which plants mated. Fortunately, the pea traits are distinct and were clearly contrasting.

To test the particulate hypothesis, Mendel crossed truebreeding plants that had two distinct and contrasting traits for example, purple or white flowers. What is meant by true breeding? Mendel cross-fertilized his plants by hand. Why is it important to control which plants would serve as the parents?

For each monohybrid cross, Mendel cross-fertilized true-breeding plants that were different in just one character in this case, flower color. He then allowed the hybrids (the F1 generation) to self-fertilize.

P generation (parental generation) Typical breeding experiment F1 generation (first filial generation, the word filial from the Latin word for "son") are the hybrid offspring. Allowing these F1 hybrids to self-pollinate produces: F2 generation (second filial generation). It is the analysis of this that lead to an understanding of genetic crosses.

Mendel studies seven characteristics in the garden pea

: Statistics indicated a pattern.

Chromosomes Homologous chromosome: one of a matching pair of chromosomes, one inherited from each parent. Sister chromatids are identical

What genetic principles account for the transmission of such traits from parents to offspring? The Blending Hypothesis of Inheritance In the early 1800 s the blending hypothesis was proposed. Genetic material contributed by the two parents mixes in a manner analogous to the way blue and yellow paints blend to make green. What would happen if this was the case?

Law of Dominance In the monohybrid cross (mating of two organisms that differ in only one character), one version disappeared. What happens when the F1 s are crossed?

The F1 crossed produced the F2 generation and the lost trait appeared with predictable ratios. This led to the formulation of the current model of inheritance.

Alleles: alternative versions of a gene. The gene for a particular inherited character resides at a specific locus (position) on homologous chromosome. For each character, an organism inherits two alleles, one from each parent

How do alleles differ? Dominant allele Recessive allele Recessive allele Recessive allele Dominant - a term applied to the trait (allele) that is expressed irregardless of the second allele. Recessive - a term applied to a trait that is only expressed when the second allele is the same (e.g. short plants are homozygous for the recessive allele).

Probability and Punnett Squares Punnett square: diagram showing the probabilities of the possible outcomes of a genetic cross

Punnett squares - probability diagram illustrating the possible offspring of a mating. Ss X Ss gametes

Probability & Genetics the number of times an event is expected to happen divided by the number of opportunities for event to happen

The Rules Of Probability

The Product Rule probability of two events occurring simultaneously is product of their probabilities

Multiplication Rule Roll 1 1/6 chance of 4 on any roll Roll 2 1/6 chance of 4 Two sequential rolls 1/6 x 1/6 = 1/36

The Sum Rule probability of either one of two mutually exclusive events is sum of their individual probabilities

Addition Rule P(3) = 1/6 P(4) = 1/6 P (3 or 4) = 1/6 + 1/6 = 2/6 = 1/3

Probability expressed as ratio (decimal or fraction)

Genetic Applications Multiplication rule Probability of getting each allele Probability of getting desired combination Addition rule Overall phenotypic ratio

Genotype versus phenotype. How does a genotype ratio differ from the phenotype ratio?

Testcross A testcross is designed to reveal whether an organism that displays the dominant phenotype is homozygous or heterozygous.

The offspring of a testcross can reveal the genotype of a parent. TESTCROSS: GENOTYPES B_ bb Two possibilities for the black dog: BB or Bb GAMETES B B b b Bb b Bb bb Figure 9.6 OFFSPRING All black 1 black : 1 chocolate

Law of Independent Assortment During gamete formation, genes for different traits separate independently into gametes Why? random alignment of homologues at Meiosis I A sperm or egg carries only one allele of each pair

HYPOTHESIS: DEPENDENT ASSORTMENT HYPOTHESIS: INDEPENDENT ASSORTMENT RRYY P GENERATION rryy RRYY rryy Gametes RY ry Gametes RY ry F 1 GENERATION RrYy RrYy Eggs 1 / 2 RY 1 / 2 RY Sperm Eggs 1 / 4 RY 1 / 4 RY 1 / 2 ry 1 / 2 ry 1 / 4 ry RRYY 1 / 4 ry 1 / 4 Ry RrYY RrYY 1 / 4 Ry F 2 GENERATION 1 / 4 ry RRYy rryy RrYy 1 / 4 ry Figure 9.5A Actual results contradict hypothesis RrYy ACTUAL RESULTS SUPPORT HYPOTHESIS RrYy RrYy rryy RRyy rryy Rryy rryy Rryy RrYy 9 / 16 3 / 16 3 / 16 1 / 16 Yellow round Green round Yellow wrinkled Green wrinkled

Independent assortment of two genes in the Labrador retriever Blind Blind PHENOTYPES GENOTYPES Black coat, normal vision B_N_ Black coat, blind (PRA) B_nn Chocolate coat, normal vision bbn_ Chocolate coat, blind (PRA) bbnn MATING OF HETEROZYOTES (black, normal vision) PHENOTYPIC RATIO OF OFFSPRING 9 black coat, normal vision BbNn 3 black coat, blind (PRA) BbNn 3 chocolate coat, normal vision 1 chocolate coat, blind (PRA) Figure 9.5B

Chromosome behavior accounts for Mendel s principles Figure 9.17

A B a b A B a b A b a B Tetrad Crossing over Gametes Genes on the same chromosome tend to be inherited together = linked genes Crossing over produces gametes with recombinant chromosomes

Geneticists use crossover data to map genes Crossing over is more likely to occur between genes that are farther apart Recombination frequencies Chromosome g c l 17% 9% 9.5% Figure 9.20B

Variation in Patterns of Inheritance Intermediate Inheritance (blending): inheritance in which heterozygotes have a phenotype intermediate between the phenotypes of the two homozygotes

Incomplete Dominance

Codominance Two alleles affect the phenotype in separate and distinguishable ways. Neither allele can mask the other and both are expressed in the offspring and not in an intermediate form. Example: red flowers that are crossed with white flowers that yield red and white flowers.

Monohybrid Cross

female YY YY YY YY male yy yy yy yy P generation Y Y y y Y Y y y Y y Y Yy y Yy Yy Yy possible outcomes in fertilization Yy Yy Yy Yy

How Does it Work?

Dihybrid Cross

Step 1: Make a Key. G= yellow g = green W = round w = wrinkled

Step 2: Give the genotypes of the parents... Homozygous round green X wrinkled homozygous yellow plant P1 = WWgg X wwgg

Step 3: Determine the Gametes... WWgg X wwgg WWgg = Wg, Wg, Wg, Wg wwgg = wg, wg, wg, wg HINT: Foil to get the gametes

Step 4: Fill in the Punnett square... Wg Wg Wg Wg wg WwGg WwGg WwGg WwGg wg WwGg WwGg WwGg WwGg wg WwGg WwGg WwGg WwGg wg WwGg WwGg WwGg WwGg

Most genes have multiple phenotypic effects. The ability of a gene to affect an organism in many ways is called pleiotropy. Pleiotropy

Epistasis occurs when a gene at one locus alters or influences the expression of a gene at a second loci. In this example, C is for color and the dominate allele must be present for pigment (color) to be expressed. Epistasis

The Importance of the Environment The environmental influences the expression of the genotype so the phenotype is altered. Hydrangea flowers of the same genetic variety range in color from blueviolet to pink, depending on the acidity of the soil. Multifactorial; many factors, both genetic and environmental, collectively influence phenotype in examples such as skin tanning

Chromosome Theory of Inheritance Improved microscopy techniques, understand cell processes and genetic studies converged during the late 1800 s and early 1900 s. It was discovered that Mendelian inheritance has its physical basis in the behavior of chromosomes during sexual life cycles. Walter S. Sutton Theodor Boveri Hugo de Vries

Pedigree analysis reveals Mendelian patterns in human inheritance In these family trees, squares symbolize males and circles represent females. A horizontal line connecting a male and female (--) indicates a mating, with offspring listed below in their order of birth, from left to right. Shaded symbols stand for individuals with the trait being traced.

Disorders Inherited as Recessive Traits Over a thousand human genetic disorders are known to have Mendelian inheritance patterns. Each of these disorders is inherited as a dominant or recessive trait controlled by a single gene. Most human genetic disorders are recessive. A particular form of deafness is inherited as a recessive trait.

Many human disorders follow Mendelian patterns of inheritance Cystic fibrosis, which strikes one out of every 2,500 whites of European descent but is much rarer in other groups. One out of 25 whites (4% ) is a carrier. The normal allele for this gene codes for a membrane protein that functions in chloride ion transport between certain cells and the extracellular fluid. These chloride channels are defective or absent. The result is an abnormally high concentration of extracellular chloride, which causes the mucus that coats certain cells to become thicker and stickier than normal.

Tay-Sachs disease is caused by a dysfunctional enzyme that fails to break down brain lipids of a certain class. Is proportionately high incidence of Tay- Sachs disease among Ashkenazic Jews, Jewish people whose ancestors lived in central Europe Sickle-cell disease, which affects one out of 400 African Americans. Sickle-cell disease is caused by the substitution of a single amino acid in the hemoglobin protein of red blood cells

Dominantly Inherited Disorders Achondroplasia, a form of dwarfism with an incidence of one case among every 10,000 people. Heterozygous individuals have the dwarf phenotype. Huntington s disease, a degenerative disease of the nervous system, is caused by a lethal dominant allele that has no obvious phenotypic effect until the individual is about 35 to 45 years old.

Sex-Linked Disorders in Humans Duchenne muscular dystrophy, affects about one out of every 3,500 males born in the United States. People with Duchenne muscular dystrophy rarely live past their early 20s. The disease is characterized by a progressive weakening of the muscles and loss of coordination. Researchers have traced the disorder to the absence of a key muscle protein called dystrophin and have tracked the gene for this protein to a specific locus on the X chromosome. Posture changes during progression of Duchenne muscular dystrophy.

Hemophilia is a sex-linked recessive trait defined by the absence of one or more of the proteins required for blood clotting.

Color Blindness In Humans: An X-Linked Trait Numbers That You Should See If You Are In One Of The Following Four Categories: [Some Letter Choices Show No Visible Numbers] Sex-Linked Traits: 1. Normal Color Vision: A: 29, B: 45, C: --, D: 26 2. Red-Green Color-Blind: A: 70, B: --, C: 5, D: -- 3. Red Color-blind: A: 70, B: --, C: 5, D: 6 4. Green Color-Blind: A: 70, B: --, C: 5, D: 2

Pattern Baldness In Humans: A Sex Influenced Trait Baldness is an autosomal trait and is apparently influenced by sex hormones after people reach 30 years of age or older. In men the gene is dominant, while in women it is recessive. A man needs only one allele (B) for the baldness trait to be expressed, while a bald woman must be homozygous for the trait (BB). What are the probabilities for the children for a bald man and woman with no history of baldness in the family?