EFFECT OF DRUG RELEASE ON ALBENDAZOLE CHEWABLE TABLETS BY USING DIFFERENT FORMULATION TECHNIQUES

Similar documents
Formulation and Evaluation of Chewable Tablets of Mebendazole by Different Techniques

Formulation and In-vitro Evaluation of Chewable Tablets of Montelukast Sodium

Formulation and evaluation of immediate release salbutamol sulphate

INTERNATIONAL RESEARCH JOURNAL OF PHARMACY ISSN Research Article

PREPARATION AND EVALUATION OF STARCH - PEG 1500 CO-PROCESSED EXCIPIENT AS A NEW DIRECTLY COMPRESSIBLE VEHICLE IN TABLET FORMULATIONS

FORMULATION AND EVALUATION OF PIROXICAM AND CELECOXIB TABLETS EMPLOYING PROSOLVE BY DIRECT COMPRESSION METHOD

Formulation and development of orodispersible tablet of Memantine HCl by sublimation approach

STABILITY STUDIES OF FORMULATED CONTROLLED RELEASE ACECLOFENAC TABLETS

Asian Journal of Pharmacy and Life Science ISSN Vol. 2 (2), July-Sept,2012

Formulation Development, Evaluation and Comparative Study of Effects of Super Disintegrants in Cefixime Oral Disintegrating Tablets

Global College of Pharmacy, Kahnpur Khui, Tehsil Anandpur Sahib, Distt.- Ropar, Punjab, India

FABRICATION AND EVALUATION OF GLIMEPIRIDE CORDIA DICHOTOMA G.FORST FRUIT MUCILAGE SUSTAINED RELEASE MATRIX TABLETS

Formulation and Development of Sustained Release Tablets of Valsartan Sodium

STUDIES ON EFFECT OF BINDERS ON ETORICOXIB TABLET FORMULATIONS

IJRPC 2012, 2(3) Chowdary et al ISSN: INTERNATIONAL JOURNAL OF RESEARCH IN PHARMACY AND CHEMISTRY

Preparation and Evaluation of Silymarin Controlled Release Tablets Prepared Using Natural Gums

Formulation and Evaluation of Glicazide Mouth Dissolving Tablets

FORMULATION AND EVALUATION OF VALSARTAN TABLETS EMPLOYING CYCLODEXTRIN-POLOXAMER 407-PVP K30 INCLUSION COMPLEXES

Formulation and Evaluation

DEVELOPMENT OF NON SODIUM EFFERVESCENT TABLET OF PARACETAMOL USING ARGININE CARBONATE

DESIGN AND CHARACTERIZATION OF FLOATING TABLETS OF ANTI-DIABETIC DRUG

COMPARATIVE EFFECT OF DIFFERENT HIGH FUNCTIONALITY EXCIPIENTS ON VARIOUS CHARACTERISTICS OF VARDENAFIL HCL TABLETS (BCS II DRUG)

Research Journal of Pharmaceutical, Biological and Chemical Sciences

Formulation and evaluation of intraorally fast dissolving tablet of olmesartan medoxomil

International Journal of Medicine and Pharmaceutical Research

Available online Research Article

International Journal of Chemistry and Pharmaceutical Sciences

Int. Res J Pharm. App Sci., 2014; 4(1):47-51 ISSN:

Pelagia Research Library

A Comparative Evaluation of Cross Linked Starch Urea-A New Polymer and Other Known Polymers for Controlled Release of Diclofenac

Karnataka Department of Pharmaceutical Technology, H.K.E. Society s College of Pharmacy, Gulbarga, Karnataka ABSTRACT KEYWORDS:

Formulation and evaluation of oro-dispersible tablets of lafutidine

Journal of Chemical and Pharmaceutical Research, 2012, 4(6): Research Article. Studies on Carica Papaya Starch as a Pharmaceutical Excipient

Journal of Chemical and Pharmaceutical Research, 2017, 9(6): Research Article

FORMULATION AND EVALUATIONOF AMOXYCILLIN: THREE-LAYER GUAR GUM MATRIX TABLET

Design and development of fast Melting Tablets of Terbutaline Sulphate

FORMULATION AND EVALUATION OF ACECLOFENAC SODIUM BILAYER SUSTAINED RELEASE TABLETS

Design and In-vitro Evaluation of Silymarin Bilayer Tablets

372 J App Pharm Vol. 6; Issue 4: ; October, 2014 Moazzem et al, 2014

Scholars Research Library. Formulation Development of Pioglitazone Tablets Employing β Cyclodextrin- Poloxamer 407- PVP K30: A Factorial Study

Formulation and evaluation of oral dispersible tablets of aripiprazole

Research Journal of Pharmaceutical, Biological and Chemical Sciences

Formulation And Evaluation Of Flurbiprofen Matrix Tablets For Colon Targeting

PREPARATION AND INVITRO EVALUATION OF RABEPRAZOLE SODIUM DELAYED RELEASE ENTERIC COATED TABLETS

B. Jayakar et. al. FORMULATION AND EVALUATION OF ORODISPERSIBLE TABLET OF CELECOXIB R. Margret Chandira, Shyam Sharma, Debjit Bhowmik, B.

Optimization of valsartan tablet formulation by 2 3 factorial design

FORMULATION AND EVALUATION OF ETORICOXIB TABLETS EMPLOYING CYCLODEXTRIN- POLOXAMER PVPK30 INCLUSION COMPLEXES

Formulation Development and Evaluation of Antidiabetic Polyherbal Tablet

Formulation Development of Aceclofenac Tablets Employing Starch Phosphate -A New Modified Starch

Asian Journal of Biochemical and Pharmaceutical Research

FORMULATION AND IN VITRO EVALUATION OF FAMOTIDINE FLOATING TABLETS BY LIPID SOLID DISPERSION SPRAY DRYING TECHNIQUE

Available online through ISSN

Research Paper The Effect of Different Superdisintegrants and their Concentrations on the Dissolution of Topiramate Immediate Release Tablets

INTERNATIONAL JOURNAL OF PHARMACEUTICAL AND CHEMICAL SCIENCES

Maisammaguda, Dulapally, Secundrabad.

Formulation Development of Nimesulide Tablets by Wet Granulation and Direct Compression Methods Employing Starch Citrate

Studies on Curcuma angustifolia Starch as a Pharmaceutical Excipient

Formulation Development of Etoricoxib Tablets by Wet Granulation and Direct Compression Methods Employing Starch Phosphate

Formulation and evaluation of sublingual tablets of lisinopril

OPTIMIZATION OF CONTROLLED RELEASE GASTRORETENTIVE BUOYANT TABLET WITH XANTHAN GUM AND POLYOX WSR 1105

Formulation and Evaluation of Gastroretentive Dosage form of Ciprofloxacin Hydrochloride.

Sivakasi , Tamil Nadu, India. ABSTRACT KEYWORDS:

International Journal of Pharmacy

International Journal of Pharmacology and Pharmaceutical Sciences 2016; Vol: 3, Issue: 3, 14-18

Int. Res J Pharm. App Sci., 2012; 2(6): ISSN:

FORMULATIO A D EVALUATIO OF ORO DISPERSIBLE TABLETS OF CLO AZEPAM BY DIRECT COMPRESSIO METHOD

Journal of Pharmaceutical and Scientific Innovation

FORMULATION AND EVALUATION OF FLOATING TABLETS OF NORFLOXACIN

FORMULATION AND EVALUATION OF DILTIAZEM HYDROCHLORIDE COLON TARGETED TABLETS

Fabrication and evaluation of Nimesulide Azadirachta indica fruit mucilage based sustained release matrix tablets

FORMULATION AND EVALUATION OF BISOPROLOL FUMARATE FAST DISSOLVING TABLET BY DIRECT COMPRESSION TECHNIQUES

Journal of Global Trends in Pharmaceutical Sciences Vol.2, Issue 4, pp , Oct -Dec 2011

Effect of superdisintegrants and their mode of incorporation on disintegration time and release profile of carbamazepine from immediate release tablet

Formulation Development and Evaluation of Atorvastatin Calcium Tablets using Co-Processed Excipients

Pavan K et al IJARPB: 2013, 3(2), ISSN: Available online on Research Article

Available Online through

FORMULATION AND EVALUATION OF CEFIXIME TRIHYDRATE ORAL DISINTEGRATING AGENTS

Venkateswara Rao et.al Indian Journal of Research in Pharmacy and Biotechnology ISSN: (Print) ISSN: (Online)

Volume: I: Issue-2: Aug-Oct ISSN NOVEL APPROACH IN FORMULATION AND EVALUATION OF MOUTH DISSOLVING TABLETS OF ONDANSETRON HYDROCHLORIDE

DESIGNING OF ORODISPERSIBLE TABLET OF DIETHYL CARBAMAZINE CITRATE FOR THE TREATMENT OF FILARIASIS

FORMULATION DEVELOPMENT AND EVALUATION OF COLON TARGETED DOSAGE FORM OF IBUPROFEN

INTERNATIONAL JOURNAL OF PHARMACY & LIFE SCIENCES

Available online through

Available Online through Research Article

FORMULATION AND EVALUATION OF GASTRORETENTIVE FLOATING TABLETS OF FAMOTIDINE

Virendra Singh et.al, IJPRR 2014; 3(11) 22

M.Vijaya Laxmi et al., Asian Journal of Pharmaceutical Technology & Innovation, 03 (10); 2015; Research Article

J.Ayyappan et al, /J. Pharm. Sci. & Res. Vol.2 (7), 2010,

EFFECT OF SUPERDISINTEGRANTS ON RELEASE OF DOMPERIDONE FROM FAST DISSOLVING TABLETS

Study of Disintegrant Property of Moringa Oleifera Gum and its Comparison with other Superdisintegrants

K. Ravi Shankar et al. /BioMedRx 2013,1(3), Available online through

Scholars Research Library

Journal of Chemical and Pharmaceutical Research

Formulation Development and Evaluation of Sustained Release Matrix Tablets of Guaiphenesin

Adimoolam Senthil et al. IRJP 2 (1)

Chemate and Chowdary, IJPSR, 2012; Vol. 3(7): ISSN:

Formulation and Evaluation of Mouth Dissolving Sublingual Tablets of Cimetidine to Treat Abdominal Cramps

Research Article. Formulation and Evaluation of Oral Dispersible Tablets of Zidovudine with different Superdisintegrants.

IJRPC 2014, 4(2), Vinod Kumar et al. ISSN: INTERNATIONAL JOURNAL OF RESEARCH IN PHARMACY AND CHEMISTRY

INTERNATIONAL JOURNAL OF PHARMACEUTICAL RESEARCH AND BIO-SCIENCE

Transcription:

IJPSR (2014), Vol. 5, Issue 10 (Research Article) Received on 19 March, 2014; received in revised form, 19 May, 2014; accepted, 09 July, 2014; published 01 October, 2014 EFFECT OF DRUG RELEASE ON ALBENDAZOLE CHEWABLE TABLETS BY USING DIFFERENT FORMULATION TECHNIQUES Kuchi Shishir Chandra Sharma 1, Y. Kranthi Kumar* 2 and Kondeti Ranjith Reddy 3 Department of Pharmaceutics 1, Department of Pharmaceutical Analysis 2, SSJ College of Pharmacy, V.N. Pally, Gandipet, Hyderabad - 500 075, Andhra Pradesh, India Department of Pharmaceutics, C.L. Baidmetha College of Pharmacy 3, Chennai, Tamil Nadu, India Keywords: Albendazole, Aqueous granulation, Non- aqueous granulation, direct compression Correspondence to Author: Y. Kranthi Kumar Research Scholar, SSJ College of Pharmacy, Vattinagulapally, Hyderabad-75, Andhra Pradesh, India E-mail: kk16052@gmail.com INTRODUCTION: Albendazole is a benzimidazole drug used for the treatment of a variety of parasitic worm infestations. It has low water solubility, limiting its oral absorption and resulting in a lower bioavailability 1. So we prepared the chewable albendazole tablets 2-7. QUICK RESPONSE CODE ABSTRACT: In this research study the effect drug release of albendazole chewable tablets has been determined. The drug release is calculated by using disintegration process which is directly related to with the hardness of tablets. The tablets are prepared by using three types of granulating methods are non-aqueous granulation, aqueous granulation and direct compression. The tablets are evaluated by calculating different parameters such as hardness, friability, disintegration, assay and in vitro dissolution studies. The % drug release was determined by using U V spectrophotometry. In the three techniques and the non-aqueous granulation was the better technique for the formulation of tablets, dissolution rate and % drug release other than aqueous granulation and direct compression method. So by this we can say the non- aqueous technique is gives immediate drug release by which the drug can be used at the time of emergency and gives relief to the patient and the chewable tablets can used for the children easily. The present study was to prepare the chewable albendazole tablets by granulating techniques i.e non aqueous granulation, aqueous granulation and direct compression methods and to compare the drug release profiles of the tablets with the marketed product. DOI: 10.13040/IJPSR.0975-8232.5(10).4543-47 Article can be accessed online on: www.ijpsr.com DOI link: http://dx.doi.org/10.13040/ijpsr.0975-8232.5(10).4543-47 Mainly, the chewable tablets are designed especially for children and such persons who may have difficulty in swallowing the tablets. These are intended to be chewed in the mouth prior to swallowing and are not intended to be swallowed intact and facilitate more rapid release and hence more rapid absorption of active ingredients and provide quick onset of action. Hence, we formulated the albendazole chewable tablets to improve the compliance in children and rapid action in dissolution of the drug. The formulation of the drug product can have a significant effect on the rate of disintegration and dissolution International Journal of Pharmaceutical Sciences and Research 4543

This includes the physiochemical properties of the active ingredients and excipients, as well as the procedures used in the production process. Two preparations that contain the same active ingredient in identical amounts do not always exert an identical therapeutic effect. An identical effect would occur only if the released quantity of the active ingredient was identical within an equivalent period of time. Tablet disintegration is one part in the complex process of the release of the active ingredient from the dosage form. MATERIALS AND METHODS Materials: Albendazole, Sodium starch glycolate, lactose, starch, Mannitol and all other ingredients were obtained from S D fine Chem. Ltd. Equipments used were Compression machine of Create company pvt ltd, veriner callipers of Edison, Roche friabilator, Disintegration apparatus and Dissolution apparatus of DBK instruments, Electronic balance of Citizen scales and UV spectrophotometer of ELICO SL 244. Methods: We employed three methods for the preparation of granules and the amounts of all ingredients required for the tablets are shown in Table 1. Non aqueous Granulation: All the ingredients were separately weighed and sifted using mesh no. 40. Albendazole, Lactose monohydrate, Starch and Sodium Starch Glycolate was mixed in a poly bag for ten minutes. For the preparation of binder dispersion, isopropyl alcohol was taken in a beaker, stirred with glass rod to disperse starch until no lumps were observed. Then the above dry mixture was granulated with binder solution and dried in the tray drier at the temperature of 40-500C until the moisture reduce down to NMT-2%. The dried granules were passed through mesh no. 30, Mannitol (Perlitol200) through mesh no. 30. Sodium Saccharine, Carmofine color and pineapple flavor were passed through mesh no. 100. All these were finally added to the dried granules and blended for ten minutes. The above blend was lubricated with Magnesium stearate, Talc, Aerosil for two minutes. Aqueous Granulation: All the ingredients were separately weighed and sifted using mesh no. 40. Albendazole, Lactose monohydrate, Starch and Sodium starch glycolate were mixed in poly bag for ten minutes. For the Preparation of binder dispersion purified water was taken in a beaker, stirred with glass rod to disperse starch until no lumps were observed. Then the above dry mixture was granulated with binder solution and dried in the tray drier at the temperature of 40-500ºC until the moisture reduces down to NMT-2%. The dried granules were passed through mesh no. 30. Then Mannitol (pearlitol200) was passed through mesh no. 30, Sodium saccharine, Carmofine and pineapple flavor were passed through mesh no. 100. All these were then added to the dried granules and blended for ten minutes. Finally the above blend was lubricated with Magnesium stearate, Talc, Aerosil for two minutes. Direct Compression: All the ingredients were separately weighed and sifted using mesh no. 40. Albendazole, Lactose monohydrate, Starch and Sodium starch glycolate Mannitol (pearlitol200) were passed through mesh no. 30. Sodium saccharine, Carmofine color and pineapple flavor were passed through 100 mesh and required quantities were blended for ten minutes in poly bag. Finally the above blend was lubricated with Magnesium stearate, Talc and Aerosil for two minutes. Finally, the preparation of tablets using the above three methods with the suitable ingredients by weigh of each tablet of 785mg and the powder blend was evaluated for flow properties such as bulk density, tapped density, compressibility index, Hausner s ratio, angle of repose and results are presented in Table 2. Evaluation of Granules 8-9 : 1. Bulk Density 10 : An accurately weighed quantity of powder, which was previously passed through sieve # 40 [USP] was carefully poured in to graduated cylinder. Then after pouring the powder into the graduated cylinder the powder bed was made uniform without disturbing. Then the volume was measured directly from the graduation marks on the cylinder as ml. The volume measured was International Journal of Pharmaceutical Sciences and Research 4544

called as the bulk volume and the bulk density is calculated by following formula; Bulk density =Weight of powder/bulk volume TABLE 1: COMPOSITION OF ALBENDAZOLE TABLETS FORMULATION S. No. INGREDIENTS NAQ AQ DC 1 Albendazole 410 mg 410 mg 410 mg 2 Lactose 120 mg 120 mg 120 mg 3 Starch 60 mg 43 mg 86 mg 4 Sodium starch glycolate 49 mg 49 mg 49 mg 5 Starch 25 mg 41.2 mg - 6 Isopropyl alcohol q.s - - 7 Mannitol 100 mg 100 mg 100 mg 8 Sodium saccharide 10 mg 10 mg 10 mg 9 Magnesium stearate 6 mg 6 mg 6 mg 10 Talc 6 mg 6 mg 6 mg 11 Purified Water - q.s - Total 785 mg 785 mg 785 mg AQ=Aqueous granulation; NAQ=non aqueous granulation; DC=direct compression 2. Tapped Density 10 : The same measuring cylinder which was used for the bulk volume was set into tap density apparatus. The tap density apparatus was set to 300 taps drop per min and operated for 500 taps. Volume was noted as (V a ) and again tapped for 750 times and volume was noted as (V b ). If the difference between V a and V b not greater than 2% then V b is considered as final tapped volume. The tapped density is calculated by the following formula. Tapped density = Weight of powder /Tapped volume 3. Carr s index and Hausner s Ratio 10 : The volume of a known quantity of the granules from each batch was obtained before and after tapping. The volume before tapping was used to determine the bulk density while the volume after tapping was employed to determine the tap density mathematically. Furthermore, Hausner s quotient and Carr s compressibility index used to determine the flow and compressibility properties of granules were obtained from the equations: Carr s index = (Tapped density Bulk density / Tapped density) X 100 Hausner s Ratio = Tapped density / Bulk density 4. Angle of Repose 11-12 : The angle of repose of powder was determined by the funnel method. The accurately weighed powder was taken in a funnel. The height of funnel (h) was adjusted in such way that the tip of the funnel just touches the apex of the heap of the powder. The powder was allowed to flow through the funnel freely on to the surface. Evaluation of Tablets: The mechanical strength of the formulated and prepared tablets of albendazole were evaluated the parameters such as hardness, weight variation, thickness, friability and disintegration time. 1. Tablet Hardness 13 : Hardness is the crushing strength of tablet which determines the ease of handling and rigors of the transportation. For each formulation, 3 tablets were used for the study. The hardness of the tablet was determined and expressed in kg/cm 2. 2. Thickness 14 : The thickness of the tablets was measured using manual Vernier Calliper and expressed in mm. 3. Friability 15 : It is a measure of mechanical strength of tablets. The friability of the tablet was determined using Roche Friabilator. It is expressed in percentage (%). 10 tablets were initially weighed (W 0 ) and transferred into the friabilator. International Journal of Pharmaceutical Sciences and Research 4545

The friabilator was operated at 25 rpm for four mins. The tablets were weighed again (W). The percentage friability was then calculated by %F = {(W W 0 )/W 0 } 100 4. Disintegration 15 : The in vitro disintegration time was determined using disintegration test apparatus. A tablet was placed in each of the six tubes of the apparatus and one disc was added to each tube. The time in seconds taken for complete disintegration of the tablet with no palpable mass remaining in the apparatus was measured in seconds. The in vitro disintegration of the tablets was found to be within 15 mins. 5. Dissolution 16 : Dissolution of core tablets of albendazole formulation was studied using USP II dissolution rate test apparatus employing paddle stirrer. 900 ml of 0.1N HCL was used as dissolution medium. A 410mg tablet was used for the test. The stirrer was adjusted to rotate at 50 rpm and a temperature of 37±0.5ºC was maintained throughout the experiment. 10 ml of samples were withdrawn at various time intervals and analyzed by measuring the absorbance at 309.0 nm. The volume withdrawn at various intervals was immediately replaced with fresh quantity of dissolution medium. The above results are given in the Fig. 1. RESULTS AND DISCUSSION: Albendazole chewable tablets are prepared by using the three methods which are non-aqueous granulation, aqueous granulation and direct compression. The physical properties of formulated granules shows the parameters in their limits which are Hausner s ratio are in the range of 1.10 1.15 so the value indicates the fair flow. The physical properties of tablets are in the prescribed limits only the breaking strength of all experimental tablets ranged from 4-5 kg/cm 2, the other properties of tablets results are shown in the Table 3. TABLE 2: PHYSICAL PROPERTIES OF ALBENDAZOLE GRANULES OF DIFFERENT TECHNIQUES Test NAQ AQ DC Bulk density 0.35 g/ml 0.34 g/ml 0.33 g/ml Tapped density 0.40 g/ml 0.40 g/ml 0.38 g/ml Carr s index (%) 12 15 13 Hausner s ratio 1.108 1.1 1.15 Angle of Repose 21.80 20.0 21.0 TABLE 3: PHYSICAL PROPERTIES OF ALBENDAZOLE TABLETS OF DIFFERENT TECHNIQUES Parameters NAQ AQ DC Description White tablet White tablet White tablet Theoretical wt of tablet 785 mg 785 mg 785 mg Weight of 10 tablets 7.85 mg 7.85 mg 7.85 mg Weight variation (%) 1.23±0.23 2.04±0.4 1.82±0.5 Hardness (kg/cm 2 ) 5.0±0.5 4.5±0.5 4.0±0.5 Thickness( mm) 3.2±0.5 4.3±0.5 3.4±0.5 Disintegration Time 1min 5sec 2min 3sec 5min 2sec Friability (%) 0.60±0.03 2.04±0.4 1.82±0.5 International Journal of Pharmaceutical Sciences and Research 4546

FIGURE 1: DISSOLUTION PROFILE OF ALBENDAZOLE TABLETS WITH DIFFERENT METHODS CONCLUSION: The present research study concludes that the non-aqueous granulation method shows the better dissolution rate compared to aqueous granulation method, direct compression method and also to the marketed drug. The in vitro drug release of the albendazole chewable tablets is immediate prepared by the non-aqueous granulation method, the granules and tablets were found satisfactory in terms of physical parameters, dissolution time as well as the drug release profiles from the tablets prepared from different granulation techniques. ACKNOWLEDGEMENT: The Authors are thankful and grateful to SSJ College of Pharmacy management for providing all the necessary facilities during this research work. REFERENCES: 1. Horton J, Fundamental Clinical Pharmacology; 2003, 17, 205-212. 2. Suryakant B, Jadhav, Dinesh M, Sakarkar, Datta R, Kaudewar, Der Pharmacia Sinica, 2011; 2 (6):23-31 3. Swati Jagdale, Mahesh Gattani, Dhaval Bhavsar, Bhanudas Kuchekar, Aniruddha Chabukswar.Int. J. Res. Pharm. Sci., 2010; 1(3): 282-289. 4. V. Anusha, S. Palanichamy, M. Sugumar, M. Rajesh*, N. Parasakthi, T. Godwin Raja Das, P. Ramasubramaniyan and A. Thanga Thirupathi, Formulation and characterization of albendazole chewable tablets, Der Pharmacia Sinica, 2012; 3 (2):211-216. 5. Kanaka Durgadevi N, Prameela Rani A, Radha Madhav B, Sai Mrudula B, Int. J. Pharm. Sci. and Bio Tech. 2010; 1 (1): 20-24. 6. Kathiresan K, Vijin P, Moorthi C, Manavalan R, Research Journal of Pharmaceutical, Biological and Chemical Sciences, 2010; 1 (4): 763-774. 7. Nayankumar C, Ratnakar, Bhupendra G, Prajapati, Der Pharmacia Sinica, 2011; 2 : 333-340. 8. Carr RL, Chem.Eng, 1965, 72:163-168. 9. Shah D, Shah Y, Rampradhan M, Drug Dev. Ind.Pharm, 1977; 23: 567-574. 10. Martin A., Micromeritics In: Physical pharmacy, Edn., (editors:baltimore MD) Lippincott Williams and Wilkins,2001: 423-454. 11. Lachman, L., Liberman, H. A. and Kanig, J. L. The Theory and Practice of Industrial Pharmacy. Third edition, Varghese Publishing House, Bombay, 1987: 293-342. 12. Cooper J, Gunn C., Powder flow and compaction.in: Carter SJ. Eds Tutorial pharmacy, CBS Publishers and Distributors, New Delhi, India, 1986: pp211-233. 13. Rippe E, Swarbrick J, Encyclopedia of Pharamaceutical Technology, Marcel Dekker Inc. Newyork; 1990: 3,149-166 14. Aulton ME, Wells TI, Pharmaceutics, The Science of Dosage Form Design Churchill Livingstone, Vingstone, London, 1988: 168. 15. Rudnic E, Schwartz JB, Oral Solid Dosage forms In: Remington s Pharmaceutical Sciences, 18th edition, Mack publishing Company. Easton, Pennsylvania, USA, 1990: 1633-1665. 16. United States pharmacopoeia (USP 29-NF 24), The Official Compendia of Standards Twin Brook Parkway, Rockvillle. Asian Edition; 60-62, 2006: 2007: 2675, 2505. How to cite this article: Sharma KSC, Kumar YK and Reddy KR: Effect of drug release on albendazole chewable tablets by using different formulation techniques. Int J Pharm Sci Res 2014; 5(10): 4543-47.doi: 10.13040/IJPSR.0975-8232.5(10).4543-47 All 2014 are reserved by International Journal of Pharmaceutical Sciences and Research. This Journal licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. This article can be downloaded to ANDROID OS based mobile. Scan QR Code using Code/Bar Scanner from your mobile. (Scanners are available on Google Playstore) International Journal of Pharmaceutical Sciences and Research 4547