Diabetic macular edema (DME) is the most common cause. Effect of Diabetic Macular Edema on Peripapillary Retinal Nerve Fiber Layer Thickness Profiles

Similar documents
Retinal Nerve Fiber Layer Measurements in Myopia Using Optical Coherence Tomography

EFFICACY OF INTRAVITREAL TRIAMCINOLONE ACETONIDE FOR THE TREATMENT OF DIABETIC MACULAR EDEMA

Clinical Study Choroidal Thickness in Eyes with Unilateral Ocular Ischemic Syndrome

Advances in OCT Murray Fingeret, OD

Comparison of Retinal Nerve Fiber Layer Thickness between Stratus and Spectralis OCT

Study of clinical significance of optical coherence tomography in diagnosis & management of diabetic macular edema

Translating data and measurements from stratus to cirrus OCT in glaucoma patients and healthy subjects

ROLE OF LASER PHOTOCOAGULATION VERSUS INTRAVITREAL TRIAMCINOLONE ACETONIDE IN ANGIOGRAPHIC MACULAR EDEMA IN DIABETES MELLITUS

A retrospective nonrandomized study was conducted at 3

Efficacy of intravitreal bevacizumab (Avastin TM ) for shortterm treatment of diabetic macular edema

Changes in Peripapillary Retinal Nerve Fiber Layer Thickness after Pattern Scanning Laser Photocoagulation in Patients with Diabetic Retinopathy

Longitudinal Changes of Retinal Thicknesses in Branch Retinal Artery Occlusion: Spectral-Domain Optical Coherence Tomography Study METHODS.

Retinal nerve fiber layer thickness in Indian eyes with optical coherence tomography

Optical coherence tomography (OCT) is a noninvasive,

OtticaFisiopatologica

Diagnosis and treatment of diabetic retinopathy. Blake Cooper MD Ophthalmologist Vitreoretinal Surgeon Retina Associates Kansas City

Evaluation of myopia on retinal nerve fiber layer thickness measured by Spectralis optical coherence tomography

OCT Assessment of the Vitreoretinal Relationship in CSME

Clinical and OCT features of different types and stages of diabetic optic neuropathy

Diagnostic Accuracy of OCT with a Normative Database to Detect Diffuse Retinal Nerve Fiber Layer Atrophy: Diffuse Atrophy Imaging Study METHODS

Research Article The Pattern of Retinal Nerve Fiber Layer and Macular Ganglion Cell-Inner Plexiform Layer Thickness Changes in Glaucoma

Reports. Macular Thickness as a Potential Biomarker of Mild Alzheimer s Disease

Evaluation of Changes of Macular Thickness in Diabetic Retinopathy after Cataract Surgery

Macular Ganglion Cell Complex Measurement Using Spectral Domain Optical Coherence Tomography in Glaucoma

Study of Retinal Nerve Fiber Layer Thickness Within Normal Hemivisual Field in Primary Open-Angle Glaucoma and Normal-Tension Glaucoma

A Formula to Predict Spectral Domain Optical Coherence Tomography (OCT) Retinal Nerve Fiber Layer Measurements Based on Time Domain OCT Measurements

COMPARISON OF INTRAVITREAL TRIAMCINOLONE INJECTION VS LASER PHOTOCOAGULATION IN ANGIOGRAPHIC MACULAR EDEMA IN DIABETIC RETINOPATHY

EXPERIMENTAL AND THERAPEUTIC MEDICINE 6: , 2013

Ganglion cell analysis by optical coherence tomography (OCT) Jonathan A. Micieli, MD Valérie Biousse, MD

Ethambutol (EMB), the first-line drug used to treat mycobacterium

Ganglion cell complex scan in the early prediction of glaucoma

International Journal of Scientific & Engineering Research, Volume 4, Issue 12, December ISSN

Clinical Trials in Diabetic Retinopathy. Harry W. Flynn Jr., M.D. Nidhi Relhan Batra, M.D.

To assess the glaucoma diagnostic ability of Fourier Domain Optical Coherence Tomography

Available online at Pelagia Research Library. Advances in Applied Science Research, 2013, 4(6):

Optical Coherence Tomography: Pearls for the Anterior Segment Surgeon Basic Science Michael Stewart, M.D.

Andrew J. Barkmeier, MD; Benjamin P. Nicholson, MA; Levent Akduman, MD

Kyungmin Lee, Heeyoung Chung, Youngsuk Park, Joonhong Sohn. HanGil Eye Hospital, Incheon, Korea

Evaluation of retinal nerve fiber layer thickness parameters in myopic population using scanning laser polarimetry (GDxVCC)

International Journal of Health Sciences and Research ISSN:

Clinical Outcomes After Intravitreal Bevacizumab Injection for Diabetic Macular Edema

Method for comparing visual field defects to local RNFL and RGC damage seen on frequency domain OCT in patients with glaucoma.

Jong Chul Han, Da Ye Choi, and Changwon Kee. 1. Introduction

Ji Soo Shin, Young Hoon Lee. Department of Ophthalmology, Konyang University College of Medicine, Daejeon, Korea

New Normative Database of Inner Macular Layer Thickness Measured by Spectralis OCT Used as Reference Standard for Glaucoma Detection

ZEISS AngioPlex OCT Angiography. Clinical Case Reports

Persistent Macular Thickening After Ranibizumab Treatment for Diabetic Macular Edema With Vision Impairment

OPTOMETRY RESEARCH PAPER

Scanning Laser Polarimetry and Optical Coherence Tomography for Detection of Retinal Nerve Fiber Layer Defects

Diabetic Retinopatathy

Intravitreal versus Posterior Subtenon Injection of Triamcinolone Acetonide for Diabetic Macular Edema

Progressive glaucomatous optic disc atrophy is characterized

Research Article Repeatability of Perimacular Ganglion Cell Complex Analysis with Spectral-Domain Optical Coherence Tomography

Position of retinal blood vessels correlates with retinal nerve fibre layer thickness profiles as measured with GDx VCC and ECC

Relationship between the GDx VCC and Stratus OCT in Primary Open Angle Glaucoma

Differences between Non-arteritic Anterior Ischemic Optic Neuropathy and Open Angle Glaucoma with Altitudinal Visual Field Defect

Measurement of Choroidal Thickness in Normal Eyes Using 3D OCT-1000 Spectral Domain Optical Coherence Tomography

Noel de Jesus Atienza, MD, MSc and Joseph Anthony Tumbocon, MD

Patterns of Subsequent Progression of Localized Retinal Nerve Fiber Layer Defects on Red-free Fundus Photographs in Normal-tension Glaucoma

Optical Coherence Tomograpic Features in Idiopathic Retinitis, Vasculitis, Aneurysms and Neuroretinitis (IRVAN)

Parafoveal Scanning Laser Polarimetry for Early Glaucoma Detection

New Concepts in Glaucoma Ben Gaddie, OD Moderator Murray Fingeret, OD Louis Pasquale, MD

Correspondence should be addressed to Verena Prokosch;

CLINICAL SCIENCES. Comparison of Glaucoma Diagnostic Capabilities of Cirrus HD and Stratus Optical Coherence Tomography

Diabetic Retinopathy Clinical Research Network

Comparative evaluation of time domain and spectral domain optical coherence tomography in retinal nerve fiber layer thickness measurements

CLINICAL SCIENCES. Repeatability and Reproducibility of Fast Macular Thickness Mapping With Stratus Optical Coherence Tomography

Clinical Features of Pregnancy-associated Retinal and Choroidal Diseases Causing Acute Visual Disturbance

Facts About Diabetic Eye Disease

Assessment of Retinal Nerve Fiber Layer Changes by Cirrus High-definition Optical Coherence Tomography in Myopia

Title: OCT Analysis Workshop: Interpretation of OCT printouts

MATERIALS AND METHODS

Optical coherence tomography in diabetic macular edema: patterns and related risk factors

Eyes on Diabetics: How to Avoid Blindness in Diabetic Patient

R&M Solutions

Measurement of Subfoveal Choroidal Thickness Using Spectral Domain Optical Coherence Tomography

Diabetes mellitus: A risk factor affecting visual outcome in branch retinal vein occlusion

University Hospital Basel. Optical Coherence Tomography Emerging Role in the Assessment of MS PD Dr. Konstantin Gugleta

Myopia is a major cause of visual impairment in many

CHAPTER 13 CLINICAL CASES INTRODUCTION

PART 1: GENERAL RETINAL ANATOMY

History/principles of the OCT What does the normal retinal OCT look like Vitreal disorders Retinal/RPE disorders Choroidal disorders


Thickness Changes in the Fovea and Peripapillary Retinal Nerve Fiber Layer Depend on the Degree of Myopia

INTRODUCTION. Trans Am Ophthalmol Soc 2010;108:62-76

OCT in the Diagnosis and Follow-up of Glaucoma

Non-arteritic anterior ischemic optic neuropathy (NAION) with segmental optic disc edema. Jonathan A. Micieli, MD Valérie Biousse, MD

Subclinical Diabetic Macular Edema Study

Cirrus TM HD-OCT. Details defi ne your decisions

Seiji T. Takagi, Yoshiyuki Kita, Asuka Takeyama, and Goji Tomita. 1. Introduction. 2. Subjects and Methods

53 year old woman attends your practice for routine exam. She has no past medical history or family history of note.

Dexamethasone Intravitreal Implant Rescue Treatment for Bevacizumab Refractory Macular Edema Secondary to Branch Retinal Vein Occlusion

Elevated intraocular pressure (IOP) is a major risk factor for

Reproducibility of Retinal Nerve Fiber Layer Thickness Measurements Using Spectral Domain Optical Coherence Tomography

Clinical Study Evaluation of Peripapillary Nerve Fiber Layer after Dexamethasone Implantation (Ozurdex) in Branch Retinal Vein Occlusions

Relationship Between Structure

Diabesity A Public Health Crisis: AOA Evidence Based Translation to Care Series

Fundus Fluorescein Angiography in Diabetic Retinopathy: Correlation of Angiographic Findings to the Clinical Maculopathy Abstract: Purpose:

RETINAL NERVE FIBER LAYER


Transcription:

Retina Effect of Diabetic Macular Edema on Peripapillary Retinal Nerve Fiber Layer Thickness Profiles Duck Jin Hwang, 1,2 Eun Ji Lee, 1 Sang Yoon Lee, 3 Kyu Hyung Park, 1 and Se Joon Woo 1 1 Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea 2 HanGil Eye Hospital, Incheon, Korea 3 Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea Correspondence: Se Joon Woo, Department of Ophthalmology, Seoul National University Bundang Hospital, #300, Gumi-dong, Bundang-gu, Seongnam, Gyeonggi-do 463-707, Korea; sejoon1@snu.ac.kr. Submitted: December 16, 2013 Accepted: April 30, 2014 Citation: Hwang DJ, Lee EJ, Lee SY, Park KH, Woo SJ. Effect of diabetic macular edema on peripapillary retinal nerve fiber layer thickness profiles. Invest Ophthalmol Vis Sci. 2014;55:4213 4219. DOI:10.1167/ iovs.13-13776 PURPOSE. To investigate both the effect of diabetic macular edema (DME) on measured peripapillary retinal nerve fiber layer (RNFL) thickness and the effect of intravitreal bevacizumab injection on RNFL thickness using spectral-domain optical coherence tomography (SD-OCT) in patients with diabetic retinopathy. METHODS. We compared the SD-OCT RNFL thickness profiles between eyes with and without DME (DME [n ¼ 42]; without DME [n ¼ 53]) and conducted an interventional study for evaluating the effect of DME on RNFL thickness. Six sectorial and the global RNFL (grnfl) thicknesses were compared between the two groups. To evaluate the intraindividual effect of DME on RNFL thickness, 1-month follow-up OCT data of 42 eyes that received an intravitreal bevacizumab injection were compared with preinjection data. RESULTS. The six sectorial and grnfl thicknesses were greater in the DME group than the non- DME group (P < 0.05). The grnfl thickness significantly correlated with the central foveal thickness (CFT) (R ¼ 0.470, P < 0.001) and total macular volume (R ¼ 0.786, P < 0.001). The 42 eyes that received intravitreal bevacizumab injections showed significant decreases of the CFT (P < 0.001) and grnfl thickness (P < 0.001) after injection. Additionally, the changes in macular thickness and RNFL thickness were significantly correlated (R ¼ 0.576, P < 0.001). CONCLUSIONS. The RNFL thickness was generally increased in patients with DME, and the increment correlated with the degree of macular edema. While long-lasting DME resulted in RNFL thickening in all sectors, short-term DME resolution mainly influenced the temporal and nasal RNFL thicknesses. Cautious interpretation is recommended for evaluation of glaucoma using RNFL thickness in diabetic patients, especially patients with DME. Keywords: diabetic macular edema, glaucoma, retinal nerve fiber layer thickness Diabetic macular edema (DME) is the most common cause of visual impairment and legal blindness in patients with diabetes mellitus (DM). 1 The pathogenesis of DME is rather complex and is still not fully understood. It occurs mainly because of disruption of the blood retinal barrier, which leads to increased fluid accumulation within the intraretinal layers of the macula. 2 Glaucoma is a progressive optic neuropathy characterized by progressive loss of retinal ganglion cells (RGC) and the retinal nerve fiber layer (RNFL) with or without associated visual field loss. 3 Because glaucomatous optic nerve damage is largely irreversible, early detection of the disease and its progression is crucial in glaucoma management. It has been shown that quantitative RNFL thickness measurement using optical coherence tomography (OCT) is a valuable tool for the early diagnosis of glaucoma 4,5 as well as for monitoring glaucoma progression. 6,7 With the advent of spectral-domain (SD)-OCT, which facilitates the segmentation of the retina and quantification of RNFL thickness with better resolution, it has been recently demonstrated that the sensitivity and specificity for diagnosis and progression detection can be significantly improved. 8,9 According to a few previous studies, 10,11 DME may affect other parts of the eye in addition to the macula. Funatsu et al. 10 reported that the vitreous vascular endothelial growth factor (VEGF) level was higher in subjects with DME compared to that in control subjects. Further, we previously reported that temporary macular edema after panretinal photocoagulation accompanied a transient increase in peripapillary RNFL thickness, 11 providing indirect evidence that DME may have an effect on RNFL thickness profiles. However, to the best of our knowledge, no prior study has addressed the possible effects of DME on the RNFL thickness assessment. Such information is clinically important because individuals with diabetes are at a higher risk of having glaucoma than people without diabetes: The rate of glaucoma was 7.8% in people with diabetes compared to 3.9% in nondiabetic individuals in a population-based study. 12 Therefore, the aim of this study was to compare the peripapillary RNFL thickness in diabetic patients with DME to that in patients without DME and to investigate whether the fluctuation in DME with intravitreal drug injections changes the peripapillary RNFL thickness parameters. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc. www.iovs.org j ISSN: 1552-5783 4213

Effect of DME on RNFL Profiles IOVS j July 2014 j Vol. 55 j No. 7 j 4214 METHODS Subjects We included 95 eyes of 95 patients (42 patients with DME and 53 age- and diabetes duration matched patients with diabetic retinopathy without DME) in this case-control study. We retrospectively reviewed the charts of patients diagnosed with diabetic retinopathy at the Seoul National University Bundang Hospital from September 2012 to February 2013. Patients who met the following inclusion criteria were included consecutively: (1) age greater than 30 years and (2) diagnosed with clinical evidence of diabetic retinopathy with/without DME. Diabetic macular edema was defined as a central foveal thickness (CFT) 350 lm on OCT. The major exclusion criteria were as follows: (1) history of or clinical evidence of glaucoma; (2) presence of vitreous hemorrhage; (3) presence of another retinal disease except for diabetic retinopathy, that is, other conditions that can cause macular thickening such as retinal vein occlusion, epiretinal membrane, or vitreomacular traction or age-related macular degeneration; (4) previous treatment for DME with focal/grid laser or intravitreal injection within 6 months; (5) history of panretinal photocoagulation; (6) any intraocular surgery within 6 months or previous pars plana vitrectomy; and (7) severe cataracts or media opacity, which could have an influence on performing OCT. All 42 eyes with DME received an intravitreal bevacizumab injection for the treatment of DME. To evaluate the intraindividual effect of DME on RNFL thickness, 42 eyes that received intravitreal bevacizumab injections for DME were retrospectively included in the interventional cohort study. The macular thickness and volume profiles of the retina and choroid were measured at baseline (preinjection) and 1 month after a single bevacizumab injection. When both eyes were eligible for the study, the eye with more severe DME was selected. Optical Coherence Tomography Scanning Protocols An SD-OCT examination with macular thickness mapping and circumpapillary RNFL thickness measurements was performed by using Spectralis OCT (Heidelberg Engineering, Heidelberg, Germany). The circumpapillary RNFL thickness was measured in six sectors: temporal (T, 315 458), superior temporal (TS, 45 908), superior nasal (NS, 90 1358), nasal (N, 135 2258), inferior nasal (NI, 225 2708), and inferior temporal (TI, 270 3158), together with the papillomacular bundle (PMB, 338 8; Spectralis Nsite Axonal Analytics Software; Heidelberg Engineering) thickness. The global RNFL thickness was obtained by averaging the total 3608 RNFL thicknesses. The RNFL thickness parameters were compared between the DME group and the non-dme group. In addition, the relationship between RNFL profiles and macular thickness was evaluated. All eyes with DME underwent Spectralis OCT before and after a single intravitreal injection of bevacizumab. A central volume scan with a 25-scan pattern and macular thickness map protocols was performed. The macular thickness maps were divided into nine sectors according to the Early Treatment Diabetic Retinopathy Study (ETDRS) layout, namely, the 1,000- lm central ring and each of the four quadrants of an inner ring and an outer ring. Additionally, a volumetric assessment of the central retinal structures consisting of 25 single horizontal axial scans was performed (scanning area: 6 3 6 mm, centered at the fovea). The global RNFL thickness and the peripapillary RNFL thicknesses of the six sectors were compared between preand 1-month postinjection values. Intravitreal Injection Methods All injections were performed within 1 week after performance of the OCT examination. Under topical anesthesia with proparacaine (0.5%) eye drops, the bulbar conjunctiva and fornices were rinsed with 5% povidone-iodine, followed by application of a sterile drape and lid speculum. After applying a drop of 5% povidone-iodine, 1.25 mg (0.05 ml) bevacizumab was injected via the pars plana. The needle was removed carefully, and the injection site was compressed with a sterile cotton applicator to prevent reflux. Antibiotic eye drops were applied four times per day for 3 days after the injection. Ethics Statement The study was approved by the institutional review board of Seoul National University Bundang Hospital, and the study was carried out in accordance with the tenets of the Declaration of Helsinki. Statistical Analysis Statistical analyses were performed using a commercially available software package (IBM SPSS Statistics 18; SPSS, Inc., Chicago, IL, USA). In the comparative study, significant differences in the CFT and macular volume between the DME and non-dme groups were evaluated using the independent t-test and the Mann-Whitney test for parametric and nonparametric data, respectively. Additionally, the relationship between the RNFL thickness profiles and macular thickness was evaluated by Pearson s correlation analysis. In the interventional cohort study, significant differences between baseline and 1 month after intravitreal bevacizumab injection were evaluated using the paired t-test. Continuous variables are presented as the mean 6 standard deviation. Statistical significance was defined as P < 0.05. RESULTS The baseline characteristics of 95 patients with diabetic retinopathy are summarized in Table 1. The mean age was 55.8 6 11.5 years; the mean DM duration was 11.6 6 6.6 years; and the averaged hemoglobin A1c (HbA1c) level was 8.3 6 1.9%. The mean 6 standard deviation of the visual acuity, converted to the logarithm of the minimal angle of resolution (logmar), was 0.64 6 0.44 in the DME group and 0.10 6 0.12 in the non-dme group (P < 0.001). No statistically significant differences in age, sex, DM duration, history of hypertension, HbA1c, baseline IOP, or refractive errors were observed (all P > 0.05). The CFT was 73.4% thicker in the DME group (463.7 6 124.7 lm) than in the non-dme group (267.4 6 27.2 lm, P < 0.001). Significant differences in RNFL thickness profiles were found between the DME and non-dme groups (Table 1, Figs. 1, 2). The global RNFL thickness was 37.4% greater in the DME group (134.8 6 39.7 lm) compared to the non-dme group (98.1 6 12.2 lm, P < 0.001). Further, the RNFL thickness of all six sectors was greater in the DME group than in the non-dme group (P < 0.001). The difference in RNFL thickness was largest in the temporal sector (46.4 lm), followed by the nasal (40.9 lm), superior nasal (36.3 lm), inferior nasal (32.9 lm), superior temporal (32.12 lm), and inferior temporal (18.0 lm) sectors. The global RNFL thickness was significantly correlated with the CFT (R ¼ 0.470, P < 0.001) and total macular volume (R ¼ 0.786, P < 0.001) (Fig. 3). In 42 DME eyes that received a single intravitreal injection, significant decreases in the CFT (108.1 6 121.0 lm, P < 0.001) and RNFL thickness (15.1 6 22.6 lm, P < 0.001) were

Effect of DME on RNFL Profiles IOVS j July 2014 j Vol. 55 j No. 7 j 4215 TABLE 1. Comparison of Patients With Diabetic Retinopathy With and Without DME in the Case-Control Study Total, N ¼ 95 Eyes DME Group, N ¼ 42 Eyes Non-DME Group, N ¼ 53 Eyes DME/Non-DME Ratio, % P Value Base characteristics Age, y 55.8 6 11.5 55.7 6 11.4 55.8 6 11.9 0.966* Female (%) 43 (45.3) 23 (54.8) 20 (37.7) 0.244 Male (%) 52 (54.7) 19 (45.2) 33 (62.3) DM duration, y 11.6 6 6.6 10.0 6 6.2 12.5 6 6.9 0.154* HTN, N (%) 37 (38.9) 18 (42.9) 19 (35.8) 0.778 HbA1c, % 8.3 6 1.9 8.4 6 1.8 8.2 6 2.0 0.449* IOP, mm Hg 12.1 6 3.2 11.9 6 3.6 12.5 6 3.0 0.124* SE, diopters 0.27 6 1.8 0.12 6 1.7 0.44 6 2.0 0.413* VA, logmar 0.32 6 0.40 0.64 6 0.44 0.10 6 0.12 <0.001* Macular thickness/volume Central foveal thickness, lm 349.4 6 127.7 463.7 6 124.7 267.4 6 27.2 173.4 <0.001* Total macular volume, mm 3 10.0 6 1.8 11.7 6 1.6 8.8 6 0.5 133.0 <0.001* RNFL thickness, lm Global 113.9 6 33.0 134.8 6 39.7 98.1 6 12.2 137.4 <0.001* PMB 95.5 6 53.8 106.5 6 57.6 60.0 6 15.0 177.5 0.027* Temporal 103.9 6 48.8 130.7 6 65.6 84.3 6 14.4 155.0 <0.001* Nasal 84.5 6 42.1 107.9 6 55.2 67.0 6 13.9 161.0 <0.001* Superotemporal 148.7 6 34.0 166.8 6 36.5 134.7 6 23.1 123.8 <0.001* Inferotemporal 154.2 6 39.1 164.0 6 53.2 146.0 6 21.3 112.3 0.037* Superonasal 114.8 6 45.4 135.4 6 60.2 99.1 6 20.2 136.6 0.001* Inferonasal 115.9 6 35.5 134.5 6 42.1 101.6 6 20.1 132.4 <0.001* DME/non-DME ratio (%) indicates the value of parameters of the DME group/value of the parameters of the non-dme group. The values represent means 6 standard deviation. HTN, hypertension; SE, spherical equivalent; VA, visual acuity. * P values calculated by the independent t-test and the Mann-Whitney test for parametric and nonparametric data. P values calculated by Pearson s v 2 test. Values in bold are statistically significant (P < 0.05). FIGURE 1. Peripapillary RNFL thickness profiles measured by Spectralis OCT were compared between the DME group and the non-dme group. The DME group had higher thickness profiles in global RNFL thickness and total RNFL sectors (P < 0.05). The pre- and postinjection RNFL parameters of the DME group were higher compared to those of the non-dme group in total sectors. The reduction in the RNFL thickness after intravitreal bevacizumab injection was significant in the temporal and nasal sectors and the papillomacular bundle (PMB) (P < 0.05).

Effect of DME on RNFL Profiles IOVS j July 2014 j Vol. 55 j No. 7 j 4216 FIGURE 2. The non-dme group and DME group were compared as shown in Spectralis OCT RNFL profiles and macular thickness maps. (A) Case 1: 40-year-old man with proliferative diabetic retinopathy (PDR) without DME in whom the diabetes duration was 7 years and HbA1c was 11.3%. His RNFL thickness profile was normal. (B) Case 2: 68-year-old man with severe nonproliferative diabetic retinopathy with DME in whom the diabetes duration was 4 years and the HbA1c was 6.8%. The RNFL thicknesses of all sectors except for the superior nasal sector were thicker than the normal range. (C) The values before and after a single intravitreal bevacizumab injection were compared in the case 2 patient. The RNFL thicknesses of all six sectors and the macular thickness decreased 1 month after a single injection. observed 1 month after intravitreal bevacizumab injection. The mean CFT was 463.7 6 124.7 lm before injection and decreased to 355.6 6 107.5 lm at 1 month after injection (P < 0.001) (Table 2, Fig. 2). The total macular volume of all ETDRS subfields was decreased at 1 month after injection (10.6 6 1.8 mm 3 ) compared with that before injection (11.7 6 1.6 mm 3, P < 0.001). The global RNFL thicknesses at pre- and post injection were 134.8 6 39.7 lm and 119.7 6 28.9 lm, respectively (P < 0.001). The changes in the RNFL thicknesses of the temporal and nasal sectors were significant (Table 2, FIGURE 3. (A, B) Global RNFL thickness was significantly correlated with the central foveal thickness (CFT) and total macular volume. The total macular volume showed a stronger correlation with the global RNFL thickness (R ¼ 0.786, P < 0.001) than with the CFT (R ¼ 0.470, P < 0.001).

Effect of DME on RNFL Profiles IOVS j July 2014 j Vol. 55 j No. 7 j 4217 TABLE 2. Comparison Between Pre- and Postinjection Parameters for Central Foveal Thickness, Total Macular Volume, and RNFL Thickness Profiles in the Interventional Cohort Study Preinjection, N ¼ 42 Eyes Postinjection, N ¼ 42 Eyes Post-Pre ratio, % P Value* Macular thickness/volume Central foveal thickness, lm 463.7 6 124.7 355.6 6 107.5 76.7 <0.001 Total macular volume, mm 3 11.7 6 1.6 10.6 6 1.8 90.6 <0.001 RNFL thickness, lm Global 134.8 6 39.7 119.7 6 28.9 88.8 <0.001 PMB 106.5 6 57.6 89.3 6 28.7 83.8 0.038 Temporal 130.7 6 65.6 110.6 6 31.3 84.6 0.012 Nasal 107.9 6 55.2 87.9 6 27.8 81.5 0.003 Superior temporal 166.8 6 36.5 155.5 6 43.6 93.2 0.088 Inferior temporal 164.0 6 53.2 161.8 6 50.5 98.7 0.651 Superior nasal 135.4 6 60.2 124.0 6 44.7 91.6 0.173 Inferior nasal 134.5 6 42.1 126.8 6 35.8 94.3 0.058 Post-pre ratio (%) indicates postinjection value/preinjection value. * P values calculated using the paired t-test. Values in bold are statistically significant (P < 0.05). Fig. 1). A significant amount of reduction in the sectorial RNFL thickness was found in the temporal (23.4 6 50.0 lm, P ¼ 0.012) and nasal (23.1 6 42.3 lm, P ¼ 0.003) sectors, followed by the superior temporal (16.9 6 51.9 lm, P ¼ 0.088), superior nasal (15.9 6 56.6 lm, P ¼ 0.173), inferior nasal (12.4 6 37.7 lm, P ¼ 0.058), and inferior temporal (8.1 6 46.1 lm, P ¼ 0.651) sectors. The global RNFL thickness change after intravitreal bevacizumab injection was significantly correlated with the change in the mean CFT (R ¼ 0.576, P < 0.001) and total macular volume (R ¼ 0.634, P < 0.001) (Fig. 4). Significant differences in the RNFL thickness profiles were observed between the DME and non-dme groups even after a single intravitreal bevacizumab injection (Table 3, Fig. 1). DISCUSSION In the current study, we demonstrated a significant difference in the RNFL thickness profiles between the DME group and non-dme group. The RNFL thicknesses of all six sectors were greater in the DME group than in the non-dme group, and the average increase in thickness was 37.4%. Additionally, shortterm improvement of DME following a single intravitreal injection of bevacizumab significantly decreased temporal and nasal RNFL thicknesses. In summary, chronic DME had an effect on the overall RNFL thickness profiles and had an effect mainly on the temporal and nasal RNFL thicknesses and PMB thickness in the short term (1 month). It is well known that glaucomatous change is mainly associated with decrement in the superior temporal or inferior temporal RNFL thickness. 13 However, our results indicate that long-term sustained DME influences the increment of the superior or inferior RNFL thickness as well as the temporal or nasal RNFL thickness. Therefore, because the OCT RNFL thickness is greater in patients with DME, careful interpretation may be required when one is evaluating glaucomatous RNFL damage in those patients. The increment of RNFL thickness was significantly correlated with the severity of DME in the current study. The exact etiology for the change of RNFL thickness profiles in patients with DME remains unclear. Because the breakdown of the blood retinal barrier (BRB) is the final common pathway in the formation of DME, 14 it is possible that the breakdown of the inner BRB in RNFL causes RNFL edema, which then results in the increase of RNFL thickness. In addition, the reduction in RNFL thickness after intravitreal bevacizumab injection was largest in the temporal sector, which may be related to the change of macular tomography according to the resolution of macular edema. From our study results, we can hypothesize TABLE 3. Comparison Between the Parameters of the Non-DME Group and the Postinjection Parameters of the DME Group Non-DME Group, N ¼ 53 Eyes DME Group, Postinjection, N ¼ 42 Eyes DME/Non-DME Ratio, % P Value* Macular thickness/volume Central foveal thickness, lm 267.4 6 27.2 355.6 6 107.5 133.0 <0.001 Total macular volume, mm 3 8.8 6 0.5 10.6 6 1.8 120.5 <0.001 RNFL thickness, lm Global 98.1 6 12.2 119.7 6 28.9 122.0 <0.001 PMB 60.0 6 15.0 89.3 6 28.7 148.8 <0.001 Temporal 84.3 6 14.4 110.6 6 31.3 131.2 <0.001 Nasal 67.0 6 13.9 87.9 6 27.8 131.2 <0.001 Superior temporal 134.7 6 23.1 155.5 6 43.6 115.4 0.004 Inferior temporal 146.0 6 21.3 161.8 6 50.5 110.8 0.042 Superior nasal 99.1 6 20.2 124.0 6 44.7 125.1 <0.001 Inferior nasal 101.6 6 20.1 126.8 6 35.8 124.8 <0.001 DME/non-DME ratio (%) indicates the value of the postinjection parameters of the DME group/value of the parameters of the non-dme group. * P values calculated using the paired t-test. Values in bold are statistically significant (P < 0.05).

Effect of DME on RNFL Profiles IOVS j July 2014 j Vol. 55 j No. 7 j 4218 FIGURE 4. The change in central foveal thickness (A) and total macular volume (B) correlated significantly with the change in the RNFL thickness after a single intravitreal bevacizumab injection (R ¼ 0.576, P < 0.001; R ¼ 0.634, P < 0.001, respectively). that acute DME first results in temporal RNFL edema/ thickening, followed by or coincident with the increment of nasal RNFL thickness; in contrast, the RNFL edema diffuses into all peripapillary sectors in subacute or chronic DME, causing a generalized increase in RNFL thickness. It is possible that no changes of RNFL thickness actually occurred in DME and that this finding can be explained by factors such as scanning error, diurnal fluctuation in RNFL due to the effect of diabetes, or the repeatability or reproducibility of OCT. Therefore, we examined each of the OCT scans in an attempt to identify a specific RNFL layer that showed notable errors of automatic segmentation in measuring thickness in patients with DME. However, this was not found for any participants, and no segmentation errors were observed. To the best of our knowledge, the present study is the first clinical study to report the effect of DME on peripapillary RNFL thickness. We evaluated peripapillary RNFL thickness profiles to provide insights into the interpretation of RNFL parameters for the diagnosis of glaucoma and for the detection of its progression. Somfai et al. 15 reported that the RNFL layer showed no change in eyes with DME using the retinal layer segmentation method. However, these authors did not evaluate peripapillary RNFL thickness. Although several studies, 12,16 18 including a meta-analysis, 18 have shown an association between DM and glaucoma, and a clinic-based report 19 suggested that patients with diabetic retinopathy are more likely to have a thinner RNFL, no report has demonstrated the impact of DME on RNFL profiles for evaluating glaucoma. This issue should be taken into account when one is assessing the RNFL in patients with DME because many patients with diabetic retinopathy have DME, which can occur at any stage of nonproliferative and proliferative diabetic retinopathy, and because many patients with diabetes or diabetic retinopathy also may have glaucoma. 12 Although a definitive causal relationship between RNFL thickness and macular thickness has not been confirmed in diabetic retinopathy, we observed that the RNFL thickness tended to increase with an increase in DME in the current study. When a normal parameter in RNFL thickness is detected in a diabetic glaucoma patient or a diabetic patient with DME, the effect of DME on RNFL thickness profiles should be considered before progression of glaucomatous damage is precluded in these patients. We are aware that our study has several limitations. First, because this was a retrospective study enrolling patients visiting a single hospital, a selection bias inherent to retrospective studies may have been present. Second, the glaucoma evaluation is performed by combining various structural and functional tests, especially the visual field test; it does not rely solely on the RNFL thickness measurement. Thus, the absence of visual field test results is a study limitation with respect to the interpretation of the RNFL thickness data. Third, we evaluated the RNFL thickness parameters of patients who received intravitreal bevacizumab injections and correlated this result to the short-term effect of DME on RNFL thickness. From this result, we can obtain knowledge regarding the RNFL thickness change after the resolution of DME, but not after the development of DME. Thus, extrapolation of the RNFL thickness change during acute development of DME is a potential bias and must be confirmed in a prospective cohort study. Fourth, we did not take into account other factors that affect the peripapillary RNFL, such as a larger neuroretinal rim, shorter axial length, thicker subfoveal choroid, larger optic disc, and flatter anterior cornea. 20 Finally, although we showed that DME alters the RNFL thickness profile, we cannot be certain that the altered profiles are clinically significant. A quantitative analysis on the errors in glaucoma evaluation should be further elucidated in future clinical studies. In conclusion, RNFL thickness was generally increased in diabetic patients with DME, indicating that DME could mask the decrease in RNFL thickness, and this increment in RNFL thickness was significantly correlated with the severity of DME. Moreover, short-term DME changes mainly influenced the temporal and nasal RNFL thickness profiles. Although further studies will be required to confirm the clinical implications, we suggest that caution be used in interpretation of RNFL thickness parameters in diabetic patients with DME. Acknowledgments Supported by a grant (2012R1A2A2A02012821) funded by the National Research Foundation in Korea. The authors alone are responsible for the content and writing of the paper. Disclosure: D.J. Hwang, None; E.J. Lee, None; S.Y. Lee, None; K.H. Park, None; S.J. Woo, None

Effect of DME on RNFL Profiles IOVS j July 2014 j Vol. 55 j No. 7 j 4219 References 1. Fong DS, Ferris FL III, Davis MD, Chew EY. Causes of severe visual loss in the early treatment diabetic retinopathy study: ETDRS report no. 24. Early Treatment Diabetic Retinopathy Study Research Group. Am J Ophthalmol. 1999;127:137 141. 2. Antcliff RJ, Marshall J. The pathogenesis of edema in diabetic maculopathy. Semin Ophthalmol. 1999;14:223 232. 3. Huang D, Swanson EA, Lin CP, et al. Optical coherence tomography. Science. 1991;254:1178 1181. 4. Jeoung JW, Park KH, Kim TW, Khwarg SI, Kim DM. Diagnostic ability of optical coherence tomography with a normative database to detect localized retinal nerve fiber layer defects. Ophthalmology. 2005;112:2157 2163. 5. Chang RT, Knight OJ, Feuer WJ, Budenz DL. Sensitivity and specificity of time-domain versus spectral-domain optical coherence tomography in diagnosing early to moderate glaucoma. Ophthalmology. 2009;116:2294 2299. 6. Lee EJ, Kim TW, Park KH, Seong M, Kim H, Kim DM. Ability of Stratus OCT to detect progressive retinal nerve fiber layer atrophy in glaucoma. Invest Ophthalmol Vis Sci. 2009;50:662 668. 7. Lee EJ, Kim TW, Weinreb RN, Park KH, Kim SH, Kim DM. Trend-based analysis of retinal nerve fiber layer thickness measured by optical coherence tomography in eyes with localized nerve fiber layer defects. Invest Ophthalmol Vis Sci. 2011;52:1138 1144. 8. Leung CK, Yu M, Weinreb RN, Lai G, Xu G, Lam DS. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: patterns of retinal nerve fiber layer progression. Ophthalmology. 2012;119:1858 1866. 9. Wessel JM, Horn FK, Tornow RP, et al. Longitudinal analysis of progression in glaucoma using spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2013;54:3613 3620. 10. Funatsu H, Yamashita H, Ikeda T, Mimura T, Eguchi S, Hori S. Vitreous levels of interleukin-6 and vascular endothelial growth factor are related to diabetic macular edema. Ophthalmology. 2003;110:1690 1696. 11. Kim J, Woo SJ, Ahn J, Park KH, Chung H, Park KH. Long-term temporal changes of peripapillary retinal nerve fiber layer thickness before and after panretinal photocoagulation in severe diabetic retinopathy. Retina. 2012;32:2052 2060. 12. Klein BE, Klein R, Jensen SC. Open-angle glaucoma and olderonset diabetes. The Beaver Dam Eye Study. Ophthalmology. 1994;101:1173 1177. 13. Na JH, Sung KR, Baek S, et al. Detection of glaucoma progression by assessment of segmented macular thickness data obtained using spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2012;53:3817 3826. 14. Singh A, Stewart JM. Pathophysiology of diabetic macular edema. Int Ophthalmol Clin. 2009;49:1 11. 15. Somfai GM, Tatrai E, Ferencz M, Puliafito CA, Debuc DC. Retinal layer thickness changes in eyes with preserved visual acuity and diffuse diabetic macular edema on optical coherence tomography. Ophthalmic Surg Lasers Imaging. 2010;41:593 597. 16. Mitchell P, Smith W, Chey T, Healey PR. Open-angle glaucoma and diabetes: the Blue Mountains eye study, Australia. Ophthalmology. 1997;104:712 718. 17. Tielsch JM, Katz J, Quigley HA, Javitt JC, Sommer A. Diabetes, intraocular pressure, and primary open-angle glaucoma in the Baltimore Eye Survey. Ophthalmology. 1995;102:48 53. 18. Bonovas S, Peponis V, Filioussi K. Diabetes mellitus as a risk factor for primary open-angle glaucoma: a meta-analysis. Diabet Med. 2004;21:609 614. 19. Takahashi H, Goto T, Shoji T, Tanito M, Park M, Chihara E. Diabetes-associated retinal nerve fiber damage evaluated with scanning laser polarimetry. Am J Ophthalmol. 2006;142:88 94. 20. Wang YX, Pan Z, Zhao L, You QS, Xu L, Jonas JB. Retinal nerve fiber layer thickness. The Beijing Eye Study 2011. PLoS ONE. 2013;8:e66763.