Optimization of Functional MRI Techniques for Tumor and Normal Tissue Response to RT

Similar documents
Challenges on Assessment of Treatment Response for Physiologically Adaptive Radiation Therapy

Quantitative Imaging: Techniques, Applications and Challenges -- MR

Top Studies in Cancer Imaging and Radiation Therapy

MR Functional Imaging to Guide Radiotherapy: Challenges and Opportunities

8/10/2016. PET/CT Radiomics for Tumor. Anatomic Tumor Response Assessment in CT or MRI. Metabolic Tumor Response Assessment in FDG-PET

Disclosures. Diffusion and Perfusion Imaging in the Head and Neck. Learning objectives ???

Computer based delineation and follow-up multisite abdominal tumors in longitudinal CT studies

Citation Key for more information see:

Clinical Trials for Adult Brain Tumors - the Imaging Perspective

MRI Applications in Radiation Oncology:

Problems: TRUS Bx. Clinical questions in PCa. Objectives. Jelle Barentsz. Prostate MR Center of Excellence.

The Paul Evans Memorial Lecture Functional radiotherapy targeting using focused dose escalation. Roberto Alonzi Mount Vernon Cancer Centre

Ruolo dell imaging nella pianificazione del trattamento

MRI/MRS Biomarkers. Robert E. Lenkinski, Ph.D.

PET in Radiation Therapy. Outline. Tumor Segmentation in PET and in Multimodality Images for Radiation Therapy. 1. Tumor segmentation in PET

8/1/2017. Imaging and Molecular Biomarkers of Lung Cancer Prognosis. Disclosures. The Era of Precision Oncology

Current Clinical Practice. MR Imaging Evaluations. MRI Anatomic Review. Imaging to Address Clinical Challenges. Prostate MR

8/3/2016. Background. CT-Ventilation. Validation, Clinical Endpoints and Opportunities for CT Ventilation. 4DCT-Ventilation Imaging.

Perfusion MRI. Youngkyoo Jung, PhD Associate Professor Radiology, Biomedical Engineering, and Clinical & Translational Science Institute

8/10/2016. PET/CT for Tumor Response. Staging and restaging Early treatment response evaluation Guiding biopsy

Multiparametric imaging in oncology

Patterns of Brain Tumor Recurrence Predicted From DTI Tractography

Development of an Expert Consensus Target Delineation Atlas for Thymic Cancers: Initial Quantitative Analysis of an Expert Survey.

Related Symposia in AAPM 2007

Novel techniques for normal tissue toxicity modelling. Laura Cella Institute of Biostructures and Bioimaging National Research Council of Italy

Optimising Radiotherapy Using NTCP Models: 17 Years in Ann Arbor

Radiation treatment planning in lung cancer

Early Diagnosis of Alzheimer s Disease and MCI via Imaging and Pattern Analysis Methods. Christos Davatzikos, Ph.D.

SBRT and hypofractionated RT for HCC patients with varying degrees of hepatic impairment

Use of molecular and functional imaging for treatment planning The Good, The Bad and The Ugly

MRI-Based Biomarkers of Therapeutic Response in Triple-Negative Breast Cancer

Summary of findings from the previous meta-analyses of DTI studies in MDD patients. SDM (39) 221 Left superior longitudinal

11/10/2015. Prostate cancer in the U.S. Multi-parametric MRI of Prostate Diagnosis and Treatment Planning. NIH estimates for 2015.

Liver Perfusion Analysis New Frontiers in Dynamic Volume Imaging. Case Study Brochure Chang Gung Memorial Hospital.

8/3/2016. Outline. Site Specific IGRT Considerations for Clinical Imaging Protocols. Krishni Wijesooriya, PhD University of Virginia

IMRT - the physician s eye-view. Cinzia Iotti Department of Radiation Oncology S.Maria Nuova Hospital Reggio Emilia

High-fidelity Imaging Response Detection in Multiple Sclerosis

Imaging and radiotherapy physics topics for project and master thesis

Quantitative Imaging for Treatment Response Assessment. Thanks to 8/2/2017. Predicting response to RT or chemo can be based on:

THE TRANSITION FROM 2D TO 3D AND TO IMRT - RATIONALE AND CRITICAL ELEMENTS

Repeatability and reproducibility of 18 F-NaF PET quantitative imaging biomarkers

The Smart Way to Check Treatment Plans and Charts. Anne W. Greener, Ph.D., FACR American Association Of Medical Dosimetrists June 15, 2016

Assessment of Adipose Tissue from Whole Body 3T MRI Scans

Functional aspects of anatomical imaging techniques

Strengthening the weakest link: improving tumour definition

PERFUSION MRI CONTRAST BASED TECHNIQUES

Impact of Contouring Variability on Dose- Volume Metrics used in Treatment Plan Optimization of Prostate IMRT

Report of ICRU Committee on Volume and Dose Specification for Prescribing, Reporting and Recording in Conformal and IMRT A Progress Report

Image Guided Stereotactic Radiotherapy of the Lung

Prostate MRI: Who needs it?

Knowledge Discovery and Predictive Modeling from Brain Tumor MRIs

8/1/2017. PROSTATEx-2 Overview. Disclosures. Joint Imaging-Therapy Scientific Symposium: PROSTATEx-2 Challenge

Marco Trovò CRO-Aviano

MRI Guided GYN Brachytherapy: Clinical Considerations

Volumetric Functional MRI Criteria for Assessing Tumor Response

Precision of pre-sirt predictive dosimetry

Advances in MRI for Radiation Therapy

8/2/2017. Imaging in Clinical Trials: An Overview. Outline. Introduction: Clinical Trials

Standardize and Optimize. Trials and Drug Development

FieldStrength. Multi-parametric 3.0T MRI provides excellent prostate imaging

Clinically focused workflow with unique ability to integrate fmri, DTI, fiber tracks and perfusion in a single, multi-layered 3D rendering

Automatic Definition of Planning Target Volume in Computer-Assisted Radiotherapy

From position verification and correction to adaptive RT Adaptive RT and dose accumulation

Medical Marijuana Use in Patients with History of SCCHN Treated with Radiotherapy

Imaging e tecnologia: cosa c è dietro l angolo?

Treating Multiple. Brain Metastases (BM)

Imaging of prostate cancer local recurrences : why and how?

Workshop on Biomedical Applications of High Energy Ion Beams

Liver Fat Quantification

PET-CT for radiotherapy planning in lung cancer: current recommendations and future directions

Role of DE-CT in Oncology

Handzettel 1. Multiparametric Functional Imaging in Radiation Therapy. Functional and Quantitative Imaging with MR

CaPTk: Cancer Imaging Phenomics Toolkit

TUMOR HYPOXIA BENCH TO BEDSIDE

1 Uniform hyperintense signal intensity (normal). 2 Linear (arrow), wedge-shaped, or diffuse mild hypointensity, usually indistinct margin.

Image Fusion, Contouring, and Margins in SRS

doi: /

Measuring cell density in prostate cancer imaging as an input for radiotherapy treatment planning

Defining Target Volumes and Organs at Risk: a common language

Translational Radiation Oncology, Physics & Supportive Care (TROP) Mark De Ridder, Wim Distelmans & Dirk Verellen

Radiation Therapy for Liver Malignancies

Challenges and Opportunities for In Vivo Imaging in Oncology

Adaptive planning in the context of adaptive radiotherapy

Prostate Cancer MRI. Accurate Diagnosis and Treatment. PSA to Prostate MRI. for patients and curious doctors

Essential Initial Activities and Clinical Outcomes

Case Conference: SBRT for spinal metastases D A N I E L S I M P S O N M D 3 / 2 7 / 1 2

White matter integrity of the cerebellar peduncles as a mediator of effects of prenatal alcohol exposure on eyeblink conditioning

Ultrasound study of Normal Tissue Response to Radiotherapy Treatment

An update on NTCP data

Effect of intravenous contrast medium administration on prostate diffusion-weighted imaging

Whole-tumor apparent diffusion coefficient measurements in nephroblastoma: Can it identify blastemal predominance? Abstract Purpose To explore the

Integrating Imaging Criteria Into Trial Endpoints

PET-MRI in Cardiac Imaging: Initial Experience

/13/$ IEEE

REVISITING ICRU VOLUME DEFINITIONS. Eduardo Rosenblatt Vienna, Austria

Johannes C. Athanasios Dimopoulos

PI-RADS classification: prognostic value for prostate cancer grading

ART for Cervical Cancer: Dosimetry and Technical Aspects

MORNING COFFEE

What Radiologists do?

Transcription:

Optimization of Functional MRI Techniques for Tumor and Normal Tissue Response to RT Yue Cao, Ph.D. Departments of Radiation Oncology, Radiology and Biomedical Engineering University of Michigan 1 Acknowledgments Radiation Oncology James Balter, Ph.D. Edgar Ben-Josef, MD Avraham Eisbruch, MD Mary Feng, M.D. Felix Feng, MD Theodore S. Lawrence, MD, Ph.D Charlie Pan, MD Randall Ten Haken, Ph.D. Christina I. Tsien, MD Clinical Coordinators Alan AntonuK, BS Chris Chapman, B.S. Reza Farjam, M.S. Mohammad Nazemzadeh, Ph.D. Hesheng Wang, Ph.D. Peng Wang, Ph.D. Radiology Thomas L. Chenevert, Ph.D. Hero Hussain, M.D. Diana Gomez-Hassan, M.D., Ph.D. Suresh Mukherji, MD Pia Maly Sundgren, MD, Ph.D. Radiology staffs STATISTICS Tim Johnson, Ph.D. Dan Normolle, Ph.D. Matt Schipper, Ph.D. NIH grants 3 PO1 CA059827 (Ten Haken) RO1 NS064973 (Cao) RO1 CA132834 (Cao) 2 Biological Target Volume, Tx Predictor, Dose Panting and Sculpting Ling, IJROPB, 2000 Tx Assessment A tumor target volume could be defined and segmented as multiple biological target subvolumes, which are defined based upon multiple functional imaging stuidies, and each of which could be a prognostic or predictive indicator for radiation response. Dose sculpting and painting of multiple biological target subvolumes could lead better outcome. Dose painting & sculpting 3 1

Imaging Biomarker for Therapy Assessment Longitudinal study Repeated measures Reliability, reproducibility, robustness Sensitive indicator (biomarker) Sensitive to therapy-induced changes Prognostic or Predictive biomarker predict Tx response and outcome surrogate endpoint 4 Physiological MRI K trans DCE Diffusion Hepatic Perfusion CBV DTI 5 How to Establish a Imaging Biomarker for Therapy Assessment Reproducibility Separation of a true change from variation Sensitivity and specificity end points, problem-specific Utility therapy selection adaptive therapy for intensification or toxicity reduction 6 2

Reproducibility NCI RIDER project A set of articles describe importance, procedures and statistical analysis for test and re-test (Translational Oncology, 2, 2009) Test and retest data (NBIA database) What level of change in parameter should be observed to be confident that there has been a true change in the parameter in an individual patient? 7 How to determine repeatability from Test and Retest Data Within-subject SD w of a parameter Repeatability Coefficient of a parameter RC=2.77SD w RC defines 95% confidence interval A true change from a subject has to be u post -u pre >RC Barnharts et al, Translational Oncology, 2, 2009 8 Repeatability of Segmenting Cinglum Fiber Track Develop a method for segmenting cinglum, a fiber track connecting to hippocampus, for assessment of radiation-induced cognitive dysfunction Evaluate reproducibility of segmented volumes and DTI indices dice coefficient: overlapped volumes RC: uncertainty of parameters Nazemzadeh, et a WED-G-217A-4 AAPM 2012 9 3

Fractional Anisotropy Changes in Patients Received WBRT Posterior cinglum (W2-pre RT) uncertainty 95%CI Ture change RC -RC -RC Nazemzadeh, et al AAPM 2012 10 How to determine reproducibility of an image parameter 18% 1. Use correlation coefficient 22% 21% 21% 19% 2. Use pair t test 3. Use repeatability coefficient 4. Use visual inspection 5. Ask a radiolgist 11 Sensitivity and Specificity Endpoints Prognostic or Predictive indicator for tumor response to therapy Clinical outcomes, local control, survival, PFS Radiographic response Pathophysiology For normal tissue radiation toxicity Clinical outcome (symptom) Radiation dose Independently established measure 12 4

8/2/2012 Imaging-driven ResponseInduced Subvolume of a Tumor ØHypothesis Heterogeneous therapy response of a tumor could be primarily due to biological heterogeneity in the tumor The most aggressive or resistant sub-volume in a tumor could predominantly determine therapy response or outcome of a tumor ØAim Develop a methodology to delineate physiological imaging driven subvolume of a tumor Predictive for treatment response Highly reproducible Potential candidate to be a boost target 13 How to identify sub-volumes Ø Ø Ø Generate a feature space of tumors defined by a joint histogram of physiological imaging parameters from training tumors Joint histogram (feature space) Classify the distribution of tumor features (joint histogram) using fuzzy c-means to determine globally-defined probability membership functions of the classes Create the subvolumes (metric and map) of each individual tumor using the probability membership functions and physiological images of the tumor Clustering analysis to determine PMF of classes Subvolumes of each tumor (metric and map) Test for Tx response 14 Brain metastases Pre-RT T1 rcbv 0.15 Ktrans 0.15 Responsive Stable probability membership function Create a single metric, a subvolume of a tumor with high CBV, Ktrans, or both, for assessment of response 0 Phigh(rCBV) Phigh(K trans) 0 Phigh,high(rCBV,K trans) Farjam, et al AAMP 2012 WE-C-BRA-5 Week 2 Pre-RT 1 0 15 5

8/2/2012 Does the tumor subvolume with high CBV predict response? Ø End point Post-RT radiographic response DGTVpost=GTV1mpost GTVpreRT Non-responsive: DGTVpost decreases <25 % Ø Early prediction for non-responsive tumors A change in the subvolume with high CBV, high Ktrans, or both at the end of WBRT Receiver operating characteristics (ROC) 16 Sensitivity and Specificity Prediction for non-responsive tumors AUC 0.86 +. 0.80+. 0.70+. 0.66+. 0.61+. Farjam, et al AAMP 2012 WE-C-BRA-5 17 Poorly Perfused Sub-Volumes in Advanced HN Cancers Local Failure BV Local Control Poorly perfused Subvolume The large sub-volumes of the tumors with low BV (blue color) pre-tx and during the early course of CRT (2 weeks) are significantly associated with18lf. Wang, et al Med Phys 2012 6

Prediction of Local Failure Wang, et al Med Phys 2012 19 Association with Pattern Failure Poorly-perfused Subvolume pre RT FDG 3 mon post RT 20 Subvolumes of a Tumor A physiological imaging defined response-induced subvolume of a tumor could be a candidate for intensified therapy target Our approach can be applied to other physiological/metabolic imaging parameters Our method does not depend upon the voxel level accuracy of registration of a pair of images acquired over a period of therapy Our method produces the metrics robust to image noise and other random factors 21 7

How to determine sensitivity and specificity of a parameter 18% 21% 21% 21% 20% 1. Use a clinical end point & ROC analysis 2. Recruit 500 patients 3. Repeat the same study 4. Ask a radiation oncologist 5. Increase signal-to noise ratio of the image 22 Normal Tissue Function Radiation-induced tissue toxicity is a complex, dynamic and progressive process Individual sensitivity to radiation limits the utility of dose-based NTCP models Determination of specific risks versus benefits of treatment should be an integral part of clinical decision making for each patient 23 How to assess normal tissue/organ function Assess normal tissue/organ function Dynamic changes in organ function from pre to during and to post RT Spatially resolved volumetric distribution of function Individual sensitivity to dose and pre-rt dysfunction Early measures predict organ functional risks of radiation Re-optimization of individual patients treatment plans and early intervention for tissue/organ protection 24 8

MRI Perfusion Imaging to Assess Liver Function Patients with high risks or poor liver function HCC with or without cirrhosis Large tumor Previous treatments, TACE, surgery, RT, RFA General paradigm DCE MRI scans: pre, during (~50%), 1 month after RT 25 Individual Perfusion Response Spatial perfusion changes are related to regional doses Cao, et al. IJROBP, in press Pre RT 1 mon Post RT 26 Evaluation of Perfusion with Overall Liver Function Indocyanine green: Independent measure of overall liver function r = 0.7 p <0.001 27 9

Dose-Dependent Spatial Perfusion Changes * 28 Early Prediction of Post-RT Perfusion Change Linear mixed effects model to account for individual random effects log( F ) = + a + γ F + βd + b d + e idj α i 0 itj j i j ij Post-RT Perfusion for Subject i in region j received dose d Pre- or during-rt Dose in region j Perfusion for Subject i in region j Model 1: independent variable: pre-rt perfusion, total dose, predictor: total dose (p<.0007) Model 2: independent variable: pre-rt perfusion, during-rt perfusion, total dose predictor: pre-rt perfusion (p<.03), 29 during RT perfusion (p<0.0001) Liver Perfusion Imaging Evaluation of hepatic perfusion imaging using an independent liver function measure Perfusion imaging could be used to select expendable segments or regions to direct high doses Individual patients who show high risk for injury during RT could be selected for lower doses to prevent from liver injury 30 10

Localization and Detection of Prostate Cancer Using MRI DCE, DW, T2W and MRS DCE MRI is superior to diffusion, T2W, and MRS. Combining DCE, diffusion, T2W or MRS seem to result in marginal improvement A lower rate of localization of cancer is in transition zone than in peripheral zone. T2W MRI k ep K trans 31 Localization of Prostate Cancer Using DCE MRI Overall, sensitivity:74-93%, specificity: 79-96% Visual inspection and scored by radiologists Depend upon the experience of reading radiologists, imaging acquisition protocol, and the derived parameters from DCE MRI as well as image processing approaches Tell nothing about the impacts of tumor size and tumor density 32 Pathological Validation for Prostate Cancer Delineation Compare DCE MRI and MRS with histological specimens (Schmuecking et al, 2009) DCE MRI parameters are not able to detect the lesions with a size less than 3 mm and/or containing less than 30% of tumor cells MRS is failed to detect the lesion with a size less than 8 mm and/or containing 50% of cancer cells. DCE MRI defined volumes underestimates the histological volumes, especially in cases with a diffuse tumor growth with low cancer cell density DCE MRI for localization of prostate cancer is equally good as Cho PET/CT 33 11

Cancer Detection by DCE MRI Missed lesion: size < 3 mm and containing < 30% of cancer cells (Schmuecking 2009) 34 Cancer Detection by DCE MRI Prostate cancer with a lesion size of 9x3.7 mm and a cancer cell density of >30% was detected by DCE-MRI (orange lesion); but MRS shows a normal spectrum with a low choline peak (Schmuecking 2009) 35 Summary Reproducibility Uncertainty of the methods as a whole Sensitivity and specificity A parameter for a problem of interest Automated algorithms for supporting decision making standardizations imaging protocols, pharmacokinetic models, quantitative metrics for a particular problem QC/QA of imaging acquisition and parameter extraction 36 12

Pathological Validation for prostate GTV definition Prostate GTV delineated by combination of diffusion and DCE MRI by a radiation oncologist compared lesions (22) defined on prostatectomy specimens by a pathologist (Groenendaal 2010) five dominate cancers with the volume greater than 1 cc, and four other smaller ones with a minimum volume of 0.56 cc are able to be detected on MRI The GTVs of the five dominant cancers delineated on the MRI cover 44-76% and have 62-174% of the pathologically determined tumor volumes 37 Biological Target Volume, Tx Predictor, Dose Panting and Sculpting Ling, IJROPB, 2000 General Hypothesis: A tumor target volume could be defined and segmented as multiple biological target subvolumes, which is defined based upon multiple functional imaging, and each of which could have a prognostic factor or predictor for radiation response. Dose sculpt and paint of multiple biological target subvolumes could lead better outcome. 38 13