Gick et al.: JASA Express Letters DOI: / Published Online 17 March 2008

Similar documents
Consonant Perception test

ACOUSTIC AND PERCEPTUAL PROPERTIES OF ENGLISH FRICATIVES

Language Speech. Speech is the preferred modality for language.

Tactile Communication of Speech

Auditory-Visual Speech Perception Laboratory

2/25/2013. Context Effect on Suprasegmental Cues. Supresegmental Cues. Pitch Contour Identification (PCI) Context Effect with Cochlear Implants

SPEECH PERCEPTION IN A 3-D WORLD

ELECTROPHYSIOLOGY OF UNIMODAL AND AUDIOVISUAL SPEECH PERCEPTION

Listening with Eye and Hand: Cross-modal Contributions to Speech Perception*

Speech Reading Training and Audio-Visual Integration in a Child with Autism Spectrum Disorder

Categorical Perception

FREQUENCY COMPRESSION AND FREQUENCY SHIFTING FOR THE HEARING IMPAIRED

Voice Pitch Control Using a Two-Dimensional Tactile Display

Auditory-Visual Integration of Sine-Wave Speech. A Senior Honors Thesis

ACOUSTIC ANALYSIS AND PERCEPTION OF CANTONESE VOWELS PRODUCED BY PROFOUNDLY HEARING IMPAIRED ADOLESCENTS

Does Wernicke's Aphasia necessitate pure word deafness? Or the other way around? Or can they be independent? Or is that completely uncertain yet?

USING CUED SPEECH WITH SPECIAL CHILDREN Pamela H. Beck, 2002

Prof. Greg Francis 7/7/08

easy read Your rights under THE accessible InformatioN STandard

Effects of speaker's and listener's environments on speech intelligibili annoyance. Author(s)Kubo, Rieko; Morikawa, Daisuke; Akag

THE ROLE OF VISUAL SPEECH CUES IN THE AUDITORY PERCEPTION OF SYNTHETIC STIMULI BY CHILDREN USING A COCHLEAR IMPLANT AND CHILDREN WITH NORMAL HEARING

Trading Directional Accuracy for Realism in a Virtual Auditory Display

A Senior Honors Thesis. Brandie Andrews

Speech Cue Weighting in Fricative Consonant Perception in Hearing Impaired Children

Aero-tactile integration in fricatives: Converting audio to air flow information for speech perception enhancement

DISCREPANT VISUAL SPEECH FACILITATES COVERT SELECTIVE LISTENING IN COCKTAIL PARTY CONDITIONS JASON A. WILLIAMS

Perception of American English can and can t by Japanese professional interpreters* 1

Audiovisual speech perception in children with autism spectrum disorders and typical controls

A PROPOSED MODEL OF SPEECH PERCEPTION SCORES IN CHILDREN WITH IMPAIRED HEARING

RESEARCH ON SPOKEN LANGUAGE PROCESSING Progress Report No. 22 (1998) Indiana University

easy read Your rights under THE accessible InformatioN STandard

Binaural Hearing. Why two ears? Definitions

Jitter, Shimmer, and Noise in Pathological Voice Quality Perception

Auditory and Auditory-Visual Lombard Speech Perception by Younger and Older Adults

MULTI-CHANNEL COMMUNICATION

INTRODUCTION J. Acoust. Soc. Am. 103 (2), February /98/103(2)/1080/5/$ Acoustical Society of America 1080

Temporal offset judgments for concurrent vowels by young, middle-aged, and older adults

TIPS FOR TEACHING A STUDENT WHO IS DEAF/HARD OF HEARING

Auditory Scene Analysis. Dr. Maria Chait, UCL Ear Institute

Grozdana Erjavec 1, Denis Legros 1. Department of Cognition, Language and Interaction, University of Paris VIII, France. Abstract. 1.

Date: April 19, 2017 Name of Product: Cisco Spark Board Contact for more information:

Integral Processing of Visual Place and Auditory Voicing Information During Phonetic Perception

Cued Speech: Not Just for the Deaf Anymore

Effects of Setting Thresholds for the MED- EL Cochlear Implant System in Children

The role of low frequency components in median plane localization

Demonstration of a Novel Speech-Coding Method for Single-Channel Cochlear Stimulation

Influence of acoustic complexity on spatial release from masking and lateralization

Running Head: FLUENT SPEECH VIA VISUAL CHORAL SPEECH

19.0 Sensory Communication

Intelligibility of clear speech at normal rates for older adults with hearing loss

Evaluating Language and Communication Skills

Study of perceptual balance for binaural dichotic presentation

HCS 7367 Speech Perception

Bimodal bilingualism: focus on hearing signers

Relationship Between Tone Perception and Production in Prelingually Deafened Children With Cochlear Implants

TOLERABLE DELAY FOR SPEECH PROCESSING: EFFECTS OF HEARING ABILITY AND ACCLIMATISATION

Factors in the Development of a Training Program for Use with Tactile Devices

group by pitch: similar frequencies tend to be grouped together - attributed to a common source.

A Model of Perceptual Change by Domain Integration

PERCEPTION OF UNATTENDED SPEECH. University of Sussex Falmer, Brighton, BN1 9QG, UK

Perceptual congruency of audio-visual speech affects ventriloquism with bilateral visual stimuli

Speech (Sound) Processing

PATTERN ELEMENT HEARING AIDS AND SPEECH ASSESSMENT AND TRAINING Adrian FOURCIN and Evelyn ABBERTON

RESEARCH ON SPOKEN LANGUAGE PROCESSING Progress Report No. 23 (1999) Indiana University

The role of periodicity in the perception of masked speech with simulated and real cochlear implants

Ambiguity in the recognition of phonetic vowels when using a bone conduction microphone

Hearing the Universal Language: Music and Cochlear Implants

Differential-Rate Sound Processing for Cochlear Implants

Diana DEUTSCH. University of California Department of Psychology La Jolla, CA 92093, San Diego, U.S.A.

PSYCHOMETRIC VALIDATION OF SPEECH PERCEPTION IN NOISE TEST MATERIAL IN ODIA (SPINTO)

Providing Effective Communication Access

Studying the time course of sensory substitution mechanisms (CSAIL, 2014)

Tactual Cued Speech as a Supplement to Speechreading

Auditory Scene Analysis

Product Model #:ASTRO Digital Spectra Consolette W7 Models (Local Control)

Production of Stop Consonants by Children with Cochlear Implants & Children with Normal Hearing. Danielle Revai University of Wisconsin - Madison

Topics in Linguistic Theory: Laboratory Phonology Spring 2007

Summary Table Voluntary Product Accessibility Template

Assessing Hearing and Speech Recognition

MODALITY, PERCEPTUAL ENCODING SPEED, AND TIME-COURSE OF PHONETIC INFORMATION

A visual concomitant of the Lombard reflex

Communication with low-cost hearing protectors: hear, see and believe

Detection of auditory (cross-spectral) and auditory visual (cross-modal) synchrony

Lindsay De Souza M.Cl.Sc AUD Candidate University of Western Ontario: School of Communication Sciences and Disorders

Binaural processing of complex stimuli

Effects of noise and filtering on the intelligibility of speech produced during simultaneous communication

Hearing Lectures. Acoustics of Speech and Hearing. Auditory Lighthouse. Facts about Timbre. Analysis of Complex Sounds

BINAURAL DICHOTIC PRESENTATION FOR MODERATE BILATERAL SENSORINEURAL HEARING-IMPAIRED

Perception of clear fricatives by normal-hearing and simulated hearing-impaired listeners

Voluntary Product Accessibility Template (VPAT)

Dutch Multimodal Corpus for Speech Recognition

Outline.! Neural representation of speech sounds. " Basic intro " Sounds and categories " How do we perceive sounds? " Is speech sounds special?

Effects of Presentation Level on Phoneme and Sentence Recognition in Quiet by Cochlear Implant Listeners

iclicker+ Student Remote Voluntary Product Accessibility Template (VPAT)

It is important to understand as to how do we hear sounds. There is air all around us. The air carries the sound waves but it is below 20Hz that our

I. Language and Communication Needs

4. Assisting People Who Are Hard of Hearing

Sound Texture Classification Using Statistics from an Auditory Model

PC BASED AUDIOMETER GENERATING AUDIOGRAM TO ASSESS ACOUSTIC THRESHOLD

Product Model #: Digital Portable Radio XTS 5000 (Std / Rugged / Secure / Type )

Transcription:

modality when that information is coupled with information via another modality (e.g., McGrath and Summerfield, 1985). It is unknown, however, whether there exist complex relationships across modalities, such that a particular modality will receive greater enhancement when coupled with specific other modalities, or whether such interactions may vary across perceivers. The present paper uses the Tadoma method to test interactions across two bimodal perception conditions for a single group of untrained perceivers. One condition involved audiotactile (AT) speech perception in noise by perceivers unable to see the speaker, and one involved visual-tactile (VT) speech perception by perceivers when the speech was masked by noise. 2. Method Twelve native speakers of North American English between the ages of 20 and 40 participated in the study five male, and seven female. All subjects had normal speaking and hearing skills, and no training in linguistics, speech sciences, or any method of tactile speech perception. Video and audio of all trials were recorded using a Sony DCR-TRV19 mini-dv camcorder. An experimenter (the third author, a female native speaker of English) read aloud from prepared lists of token utterances. All tokens on the list had the structure /acá/, where the intervocalic consonant in each token was one of the 14 English obstruents: /b, p, t, d, k, g, f, v,, ð, s, z, b, c/. Five repetitions of each disyllable were included, for a total of 70 tokens per trial. For each subject, a different randomized list was used for each trial. An audio-only pre-test was conducted prior to the main experiment to set subjectspecific noise levels. Half of the subjects participated in the AT condition first, and half participated in the VT condition first, allowing for control of whether prior experience in one condition could affect performance in the other. A separate control trial was used to test participants ability to perceive the relevant consonants based on audio-only or visual-only input (without tactile information). Thus, within AT and VT conditions, half of the subjects participated in the control trial first, while half participated in the test trial first. (1) Pre-trial. Each subject wore isolating headphones playing white noise with a frequency band from 0 to 11 025 Hz at a sampling rate of 22 050 Hz, and was instructed to close his or her eyes. The subject sat at arm s length from the experimenter, who read from a randomized list of / a Cá/ tokens prepared as described above. Simultaneously, a second experimenter adjusted the volume of the white noise in the headphones. Noise levels were set so that the subject could distinguish the correct segment with greater than chance frequency. During the pre-trial for the VT condition, each subject was instructed to raise a hand when he or she heard the experimenter speaking; noise levels were increased until the subject indicated (by a lowered hand) that the experimenter s voice was no longer audible at all. The final level was set slightly higher than this, and several additional utterances were used to confirm inaudibility. (2) AT trial (With Tactile condition). Subjects wore isolating headphones playing white noise partially obscuring the acoustic speech signal as described above, and were instructed to keep their eyes closed for the duration of the trial (confirmed after the experiment based on the video record of each session). Each subject was seated at arm s length from the experimenter, with his or her right hand placed on the experimenter s face as per the Tadoma method: (a) the subject s index finger was placed horizontally just above the experimenter s mandibular ridge, (b) the other three fingers were fanned out beginning just below the mandibular ridge, across the experimenter s throat, (c) the palm was held over the experimenter s jaw and chin, and (d) the thumb was placed lightly on the experimenter s lips. Subjects received no instructions concerning how or whether to interpret the information conveyed through the hand-face contact. Once the subject was in place, the experimenter read aloud from a list of 70 token utterances prepared as described above. Despite many hours of training to ensure constant productions, the experimenter occasionally misspoke (as confirmed in the video and audio record of the experiment), with the result being that not all consonants in the stimuli lists were presented to each subject exactly five times. Subjects were instructed to listen to the experimenter, and to repeat each disyllable aloud in full to the best of his or her ability. A second experimenter recorded the subject s responses. This experimenter s record was later checked against the video and audio J. Acoust. Soc. Am. 123 4, April 2008 Gick et al.: Tactile enhancement in untrained perceivers EL73

30 Overall Improvement (%) 25 20 15 10 5 0-5 AT Condition VT Fig. 1. Color online Overall percent improvement in correct segment identification due to tactile information in AT and VT conditions. Standard box plots show median, range and quartiles. record by consensus among three phonetically trained experimenters. The audio record was also used to confirm that the experimenter spoke at a consistent amplitude across conditions. (3) VT trial (With Tactile condition). Procedures were identical to the AT trial, except as follows: (a) the amplitude of the white noise was adjusted (as described above) to completely obscure the acoustic speech signal, (b) subjects kept their eyes open for the duration of the experiment, and (c) subjects were instructed to look at the primary experimenter throughout the trial. (4) Control trials (Without Tactile conditions). Procedures were identical to the AT and VT trials, respectively, except that subjects had no physical contact with the experimenter during the trial. 3. Results 3.1 Overall results Total percent improvement in consonant identification was compared across subjects and consonants for the Tactile conditions relative to the control conditions, i.e., auditory only or visual only, using paired t-tests (paired by subject). Results were highly significant, indicating a mean improvement of 9.96% (percentage points out of total possible correct, compared with a hypothesized difference of zero) for the AT condition [t 11 = 4.2100; p=0.0015] and 9.42% for the VT condition [t 11 = 4.0868; p=0.0018]. Total percentage improvement across VT and AT conditions was also compared using a paired t-test (paired by subject). Results indicate no difference between VT and AT conditions t 11 =0.1483;p=0.8848. Figure 1 plots improvements for all subjects with quartile box plots. No significant effects of order of trial presentation were found, allowing all subjects to be included in all across-subject analyses. 3.2 Subject-by-subject results Figure 2 shows percent accuracy results plotted by subject for AT and VT conditions. Although overall results were virtually identical across AT and VT conditions (Fig. 1), subject-specific results varied considerably. Figure 3 plots each subject s improvement in AT vs. VT conditions in a bivariate scatterplot. Linear regression indicates a significant negative correlation between improvement in AT vs. VT conditions (r 2 =0.4479;p=0.0243; Subject 7 s values lay outside of a 95% confidence ellipse, and were therefore omitted from this analysis). No significant correlation was found between baseline accuracy in a modality and improvement due to adding tactile information. EL74 J. Acoust. Soc. Am. 123 4, April 2008 Gick et al.: Tactile enhancement in untrained perceivers

VT Condition AT Condition Accuracy (%) 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% With tactile Without tactile 1 2 3 4 5 6 7 8 9 10 11 12 Subject Accuracy (%) 50% 40% 30% 20% 10% With tactile Without tactile 0% 1 2 3 4 5 6 7 8 9 10 11 12 Subject Fig. 2. Subject-by-subject improvement in correct segment identification in AT left graph and VT right graph conditions. The top line in each graph shows accuracy in With Tactile condition and the bottom line shows accuracy in Without Tactile condition. The gray region between the lines represents the improvement due to addition of tactile information. 4. Discussion Across-subject results for the AT vs. VT conditions suggest that manual tactile information does enhance speech perception by about 10% in untrained perceivers. However, subject-specific results indicate that individual subjects vary substantially in how much improvement is gained from adding tactile information to each of the other perceptual modalities tested. Specifically, subjects who gain more from adding tactile information to the auditory modality tend to gain less from adding tactile information to the visual modality, and vice-versa. This supports the contention that modal additivity may differ for different cross-modal pairings across subjects. 5. Conclusion The findings of this study support the notion that manual tactile information relevant to recovering speech gestures enhances speech perception in normal perceivers untrained in methods of tactile speech perception even for combinations of modalities where specific prior experience is unlikely (e.g., visual + tactile). Further, this enhancement occurs regardless of the other active modality auditory or visual. However, the finding that subjects who gain more from tactile input coupled with an auditory baseline gain less from tactile input coupled with a visual baseline suggests that there is substantial individual variation in terms of which modality is favored for speech perception and how cross-modal information is combined. AT % Improvement 30 25 20 15 10 5 0-5 -5 0 5 10 15 20 VT % Improvement Fig. 3. Color online Relationship between percent improvement in correct segment identification due to adding tactile information. Linear fit shown indicates a significant negative correlation. J. Acoust. Soc. Am. 123 4, April 2008 Gick et al.: Tactile enhancement in untrained perceivers EL75

Acknowledgments The authors thank Yoko Ikegami and Doug Whalen, and acknowledge support from an NSERC Discovery Grant to B.G. and NIH Grant No. DC-02717 to Haskins Laboratories. References and links Alcorn,S.(1932). The Tadoma method, Volta Rev. 34, 195 198. Blamey, P. J., Cowan, R. S. C., Alcantara, J. I., Whitford, L. A., and Clark, G. M. (1989). Speech perception using combinations of auditory, visual, and tactile information, J. Rehabil. Res. Dev. 26(1), 15 24. Chomsky, C. (1986). Analytic study of the Tadoma method: Language abilities of three deaf-blind subjects, J. Speech Hear. Res. 29, 332 347. Fowler, C., and Dekle, D. (1991). Listening with eye and hand: Crossmodal contributions to speech perception, J. Exp. Psychol. Hum. Percept. Perform. 17, 816 828. McGurk, H., and MacDonald, J. (1976). Hearing lips and seeing voices, Nature (London) 264, 746 748. McGrath, M., and Summerfield, Q. (1985). Intermodal timing relations and audio-visual speech recognition by normal hearing adults, J. Acoust. Soc. Am. 77, 676 685. Norton, S. J., Schultz, M. C., Reed, C. M., Braida, L. D., Durlach, N. I., Rabinowitz, W. M., and Chomsky, C. (1977). Analytic study of the Tadoma method: Background and preliminary results, J. Speech Hear. Res. 20, 574 595. Reed, C. M., Rubin, S. I., Braida, L. D., and Durlach, N. I. (1978). Analytic study of the Tadoma method: Discrimination ability of untrained observers, J. Speech Hear. Res. 21, 625 637. Reed, C. M., Doherty, M. J., Braida, L. D., and Durlach, N. I. (1982). Analytic study of the Tadoma method: Further experiments with inexperienced observers, J. Speech Hear. Res. 25, 216 223. Reed, C. M., Durlach, N. I., Braida, L. D., and Schultz, M. C. (1989). Analytic study of the Tadoma method: Effects of hand position on segmental speech perception, J. Speech Hear. Res. 32, 921 929. Sparks, D. W., Kuhl, P. K., Edmonds, A. E., and Gray, G. P. (1978). Investigating the MESA (Multipoint Electrotactile Speech Aid): The transmission of segmental features of speech, J. Acoust. Soc. Am. 63(1), 246 257. EL76 J. Acoust. Soc. Am. 123 4, April 2008 Gick et al.: Tactile enhancement in untrained perceivers