Respiratory Failure. Causes of Acute Respiratory Failure (ARF): a- Intrapulmonary:

Similar documents
Lecture Notes. Chapter 2: Introduction to Respiratory Failure

Information Often Given to the Nurse at the Time of Admission to the Postanesthesia Care Unit

Interpretation of Arterial Blood Gases. Prof. Dr. W. Vincken Head Respiratory Division Academisch Ziekenhuis Vrije Universiteit Brussel (AZ VUB)

INDICATIONS FOR RESPIRATORY ASSISTANCE A C U T E M E D I C I N E U N I T P - Y E A R M B B S 4

Acute respiratory failure

Oxygenation. Chapter 45. Re'eda Almashagba 1

Pulmonary Pathophysiology

Objectives. Health care significance of ARF 9/10/15 TREATMENT OF ACUTE RESPIRATORY FAILURE OF VARIABLE CAUSES: INVASIVE VS. NON- INVASIVE VENTILATION

Foundation in Critical Care Nursing. Airway / Respiratory / Workbook

1. When a patient fails to ventilate or oxygenate adequately, the problem is caused by pathophysiological factors such as hyperventilation.

ACUTE RESPIRATORY DISTRESS SYNDROME (ARDS) Rv

Introduction and Overview of Acute Respiratory Failure

INTRODUCTION The effect of CPAP works on lung mechanics to improve oxygenation (PaO 2

Competency Title: Continuous Positive Airway Pressure

Lecture Notes. Chapter 9: Smoke Inhalation Injury and Burns

Paramedic Rounds. Pre-Hospital Continuous Positive Airway Pressure (CPAP)

Physiological Causes of Abnormal ABG s

Prepared by : Bayan Kaddourah RN,MHM. GICU Clinical Instructor

Restrictive Pulmonary Diseases

NON INVASIVE LIFE SAVERS. Non Invasive Ventilation (NIV)

Basic mechanisms disturbing lung function and gas exchange

Respiratory Failure in the Pediatric Patient

Arterial Blood Gases. Dr Mark Young Mater Health Services

5. What is the cause of this patient s metabolic acidosis? LACTIC ACIDOSIS SECONDARY TO ANEMIC HYPOXIA (HIGH CO LEVEL)

What is the next best step?

Dr. Sinan Butrus F.I.C.M.S. Clinical Standards & Guidelines. Kurdistan Board For Medical Specialties

Lecture Notes. Chapter 3: Asthma

Function of the Respiratory System. Exchange CO2 (on expiration) for O2 (on inspiration)

Capnography Connections Guide

Respiratory Emergencies. Chapter 11

10/17/2016 OXYGEN DELIVERY: INDICATIONS AND USE OF EQUIPMENT COURSE OBJECTIVES COMMON CAUSES OF RESPIRATORY FAILURE

Respiratory Diseases and Disorders

Pulmonary Problems of the Neonate. Jon Palmer, VMD, DACVIM Chief, Neonatal Intensive Care Service New Bolton Center, University of Pennsylvania, USA

UNIT VI: ACID BASE IMBALANCE

ADVANCED ASSESSMENT Respiratory System

Indications for Respiratory Assistance. Sheba Medical Center, ICU Department Nick D Ardenne St George s University of London Tel Hashomer

Critical Care Monitoring. Assessing the Adequacy of Tissue Oxygenation. Tissue Oxygenation - Step 1. Tissue Oxygenation

Interpretation of Arterial Blood Gases (ABG)

Recent Advances in Respiratory Medicine

Wanchai Wongkornrat Cardiovascular Thoracic Surgery Siriraj Hospital Mahidol University

Respiratory Disease. Dr Amal Damrah consultant Neonatologist and Paediatrician

Capnography. Capnography. Oxygenation. Pulmonary Physiology 4/15/2018. non invasive monitor for ventilation. Edward C. Adlesic, DMD.

Handling Common Problems & Pitfalls During. Oxygen desaturation in patients receiving mechanical ventilation ACUTE SEVERE RESPIRATORY FAILURE

NON-INVASIVE VENTILATION. Lijun Ding 23 Jan 2018

Hyaline membrane disease. By : Dr. Ch Sarishma Peadiatric Pg

I. Subject: Continuous Positive Airway Pressure CPAP by Continuous Flow Device

Capnography for Pediatric Procedural Sedation Learning Module Last revised: February 18, 2014

Trial protocol - NIVAS Study

1 Chapter 13 Respiratory Emergencies 2 Respiratory Distress Patients often complain about. Shortness of breath Symptom of many different Cause can be

Respiratory failure Dr. Kamaran

Mechanical Ventilation. Assessing the Adequacy of Tissue Oxygenation. Tissue Oxygenation - Step 1. Tissue Oxygenation

RESPIRATORY FAILURE. Michael Kelly, MD Division of Pediatric Critical Care Dept. of Pediatrics

Exam 1 Review. Cardiopulmonary Symptoms Physical Examination Clinical Laboratory Studies

/ABG. It covers acid-base disturbance, respiratory failure, and a small summary for some other derangements. Causes of disturbance

-Cardiogenic: shock state resulting from impairment or failure of myocardium

Approach to type 2 Respiratory Failure

Post-Anesthesia Care In the ICU

RESPIRATORY FAILURE. Dr Graeme McCauley KGH

Arterial Blood Gas Analysis

Causes and Consequences of Respiratory Centre Depression and Hypoventilation

Pulmonary Pearls. Medical Pearls. Case 1: Case 1 (cont.): Case 1: What is the Most Likely Diagnosis? Case 1 (cont.):

Chapter 11: Respiratory Emergencies

Unconscious exchange of air between lungs and the external environment Breathing

Hemodynamic Monitoring

PALS Pulseless Arrest Algorithm.

Chronic obstructive pulmonary disease

Respiratory Anesthetic Emergencies in Oral and Maxillofacial Surgery. By: Lillian Han

DAYTON CHILDREN S HOSPITAL CLINICAL PRACTICE GUIDELINES

a. Will not suppress respiratory drive in acute asthma

Julie Zimmerman, MSN, RN, CCRN Clinical Nurse Specialist

Acid Base Balance by: Susan Mberenga RN, BSN, MSN

RESPIRATORY COMPLICATIONS AFTER SCI

Chronic Obstructive Pulmonary Disease (COPD) Copyright 2014 by Mosby, an imprint of Elsevier Inc.

Mechanical ventilation in the emergency department

Practical Application of CPAP

Respiratory System 1. A function of the structure labelled X is to

COMMISSION ON ACCREDITATION FOR RESPIRATORY CARE TMC DETAILED CONTENT OUTLINE COMPARISON

Sample Case Study. The patient was a 77-year-old female who arrived to the emergency room on

Oxygen: Is there a problem? Tom Heaps Acute Physician

Acute Respiratory Distress Syndrome (ARDS) An Update

(To be filled by the treating physician)

Neuromuscular diseases (NMDs) include both hereditary and acquired diseases of the peripheral neuromuscular system. They are diseases of the

Chronic Obstructive Pulmonary Disease

a central pulse located at the apex of the heart Apical pulse Apical-radial pulse a complete absence of respirations Apnea

CPAP. Pre-Hospital Treatment Using The Respironics Whisperflow CPAP Device. Charlottesville Albemarle Rescue Squad - CPAP

Test Bank Pilbeam's Mechanical Ventilation Physiological and Clinical Applications 6th Edition Cairo

The Goal of the Respiratory Assessment. Two Parts of the Respiratory Assessment

Pediatric Patients. Neuromuscular Disease. Teera Kijmassuwan, MD Phetcharat Netmuy, B.N.S., MA Oranee Sanmaneechai, MD : Preceptor

Outline. ABG Interpretation: A Respirologist s approach. Acid-Base Disturbances. What use is an ABG? Acid-Base Disturbances. Alveolar Ventilation

OXYGENATION AND ACID- BASE EVALUATION. Chapter 1

The Respiratory System

Phases of Respiration. Chapter 18: The Respiratory System. Structures of the Respiratory System. Structures of the Respiratory System

Noninvasive ventilation: Selection of patient, interfaces, initiation and weaning

RESPIRATORY EMERGENCIES. Michael Waters MD April 2004

Chapter 21. Flail Chest. Mosby items and derived items 2011, 2006 by Mosby, Inc., an affiliate of Elsevier Inc.

ALCO Regulations. Protocol pg. 47

Clinical Skills in Hospitals Project Respiratory 1

a. Describe the physiological consequences of intermittent positive pressure ventilation and positive end-expiratory pressure.

Pediatric Shock. Hypovolemia. Sepsis. Most common cause of pediatric shock Small blood volumes (80cc/kg)

Transcription:

Respiratory failure exists whenever the exchange of O 2 for CO 2 in the lungs cannot keep up with the rate of O 2 consumption & CO 2 production in the cells of the body. This results in a fall in arterial O 2 tension (hypoxemia) and a rise in arterial CO 2 tension (Hypercapnia). Respiratory failure is considered acute if the lungs are unable to maintain adequate oxygenation in a previously healthy person, with or without an impairment of carbon dioxide elimination and the lung usually returns to its normal original states, But in chronic respiratory failure the structure damage is irreversible. Causes of Acute (ARF): a- Intrapulmonary: - Lower airway and alveoli (COPD, Asthma, Pneumonia..) - Pulmonary Circulation: {Pulmonary Embolism} - Alveolar capillary membrane ( ARDS, inhalation of toxic gases, near drowning, drug overdose) b-extrapulmonary: - Brain (e.g. Drug overdose ), Spinal Cord(e.g. Guillain-Barré syndrome ), neuromuscular system(e.g. Myasthenia gravis), thorax(e.g. Massive obesity), pleura (e.g. Pleural effusion), upper airway. Obstruction(e.g. Sleep apnea ) Classification of acute respiratory failure: Based on the pattern of blood gas abnormality: 1- Type I Hypoxaemic respiratory failure, - In which the PaO 2 is less than 50 mmhg and the PaCO 2 is normal or low. - The major pathophysiologic mechanisms causing hypoxaemic respiratory failure usually is a combination of ventilation- perfusion (V/Q) Dr. Abdul-Monim Batiha- Assistant Professor Of Critical Care Nursing 1

mismatching and right to left shunting. - Type II Hypercapnic/ Hypoxaemic respiratory failure, - In which the PaCO 2 >45mmHg, accompanied by a lower than normal PaO 2. - Pathophysiology caused by alveolar hypoventilation. Pathophysiology: - Pathophysiology Hypoxemia is the result of impaired gas exchange and is the hallmark of acute respiratory failure. Hypercapnia may be present, depending on the underlying cause of the problem. The main causes of hypoxemia are alveolar hypoventilation, ventilation/perfusion (V/Q) mismatching, and intrapulmonary shunting.[7] Type I respiratory failure usually results from V/Q mismatching and intrapulmonary shunting, whereas type II respiratory failure usually results from alveolar hypoventilation, which may or may not be accompanied by V/Q mismatching and intrapulmonary shunting.[1] Alveolar Hypoventilation. Alveolar hypoventilation occurs when the amount of oxygen being brought into the alveoli is insufficient to meet the metabolic needs of the body.[6] This can be the result of increasing metabolic oxygen needs or decreasing ventilation.[5] Hypoxemia caused by alveolar hypoventilation is associated with hypercapnia and commonly results from extrapulmonary disorders. [1] Ventilation/Perfusion (V/Q) Mismatching. V/Q mismatching occurs when ventilation and blood flow are mismatched in various regions of the lung in excess of what is normal. Blood passes through alveoli that are underventilated for the given amount of perfusion, leaving these areas with a lower-than-normal amount of oxygen. V/Q mismatching is the most common cause of hypoxemia and is usually the result of alveoli that are partially collapsed or partially filled with fluid. Intrapulmonary Shunting. The extreme form of V/Q mismatching, intrapulmonary shunting, occurs when blood reaches the arterial system without participating in gas Dr. Abdul-Monim Batiha- Assistant Professor Of Critical Care Nursing 2

exchange. The mixing of unoxygenated (shunted) blood and oxygenated blood lowers the average level of oxygen present in the blood. Intrapulmonary shunting occurs when blood passes through a portion of a lung that is not ventilated. This may be the result of (1) alveolar collapse secondary to atelectasis or (2) alveolar flooding with pus, blood, or fluid. [6] [7] If allowed to progress, hypoxemia can result in a deficit of oxygen at the cellular level. As the tissue demands for oxygen continue and the supply diminishes, an oxygen supply/demand imbalance occurs and tissue hypoxia develops. Decreased oxygen to the cells contributes to impaired tissue perfusion and the development of lactic acidosis and multiple organ dysfunction syndrome.[8] Clinical manifestations:- 1- Tachypnea (40b/min). 2- Shallow & labored breathing (dyspnea) 3- Retraction of the intercostal & suprasternal areas during inspiration. 4-Widening of alae nasi & contraction of the accessory muscles of respiration 5- Hypoxemia fails to respond to O 2 therapy in case of intrapulmonary shunting, but in hypoxemia due to low ventilation perfusion ration will. 6- Cerebral hypoxia (anxiety, confusion, irritability, lack of cooperation, drowziness, mental obtundation. 7- Hypoxia of the heart (Tachycardia, dysrythmias & hypotension. Parameter Hypoxaemia Hypercapnia Sensorium Respiration Skin Cardiovascular - Restlessnes - Confusion - Poor judgement - Coma - Dyspnea - Rapid shallow repiration - Circumoral cyanosis - Pale skin & nail beds - Slight hypertension & tachycardia or - Hypotension & - Headache - Altered LOC - Coma ------------------------------ - Flushed - Warm - Moist - Hypertension & tachycardia Dr. Abdul-Monim Batiha- Assistant Professor Of Critical Care Nursing 3

Diagnostic Tests: 1. Arterial Blood Gas Monitoring. 2. Chest X-ray. 3. Pulmonary Function Test. Laboratory investigations: 1. Blood gases 2. HCT, Hb, WBC. 3. Electrolytes Management of Acute : Assessment: 1- Baseline values for: - Vital signs: - Respiratory rate - Symmetry of air entry - Synchronization of chest movement with the ventilator - Blood pressure - Premature ventricular contractions, an increase (indication of hypoxemia) or decrease (vagal stimulation)in heart rate - Central venous pressure (CVP) - Temperature - Level of consciousness 2- Need for suction: bradycardia - Breath sounds - Ventilator humidifier and temperature - Hydration status - Dynamic ventilator pressures for sudden increases Dr. Abdul-Monim Batiha- Assistant Professor Of Critical Care Nursing 4

3- Hydration &nutritional status: - Monitor fluid & electrolyte balance - Daily weight - Intake & output - Caloric needs 4- Monitor patient for abdominal distension - Ph of NG aspirate, Hgb and Hct, - Bowel sounds - Check stool for occult blood 5- Ventilator parameters: - Settings - Alarms - Tubings 6- Artificial way: - Position - Fixation - Tape - Cuff - Tissue around tube Nursing diagnoses: 1- Airway clearance ineffective 2- Gas exchange impaired 3- Fluid volume, more than body requirements 3- Mucous membrane, alteration 4- Skin integrity impairment 5- Nutritional status altered 6- Communication, impaired 6- Anxiety 7- High risk for infection Dr. Abdul-Monim Batiha- Assistant Professor Of Critical Care Nursing 5

Management in Management Principle Therapeutic Intervention Establishment and Use oropharyngeal or nasopharyngeal tubes for maintenance of an upper airway obstruction during transient loss of adequate airway consciousness. Tracheal intubation may be necessary to prevent aspiration, maintain airway patency, and provide effective suctioning. Strictly adhere to adequate tracheobronchial toilet (i.e., deep breathing, coughing, tracheobronchial suctioning) Oxygenation Increase the inspired oxygen (FIO2) concentration by administration of oxygen via a Venturi mask or nasal cannula. Improve cardiac output, correct anemia, and reduce metabolic rates (fever) to improve tissue oxygenation. Consider continuous positive airway pressure or expiratory positive airway pressure via a nasal or facial mask for alert and cooperative patients. Mechanical ventilatory support may be needed in more severe cases with refractory and progressive hypoxemia. Correction of acid base disturbance Restoration of fluid and electrolyte balance Correct ph disturbances: In acute hypercapnia with acidosis, improve alveolar ventilation by providing mechanical ventilatory support, establishing and maintaining an adequate airway, treating bronchospasm, and controlling heart failure, fever, and sepsis. Consider bicarbonate administration in acute respiratory acidosis or metabolic acidosis. Prevent excessive intravenous fluid administration and, conversely, poor fluid intake. Monitor fluid intake and output closely. Perform daily body weight measurement. Prevent and treat promptly hypokalemia and hypophosphatemia Optimization of cardiac Maintain adequate cardiac output. Dr. Abdul-Monim Batiha- Assistant Professor Of Critical Care Nursing 6

function Identification and treatment of underlying correctable conditions and precipitating causes Prevention and early detection of potential complications Consider use of pulmonary artery catheter for accurate hemodynamic monitoring. Prevent or treat respiratory tract infections (viral, bacterial, or fungal). Prevent potential airway obstruction by maintenance of proper tracheobronchial hygiene, recognize increased tracheobronchial secretions, changes in their characteristics, or difficulty in their elimination due to various factors. Identify and treat congestive heart failure appropriately. Recognize and treat bronchospasm with bronchodilators and corticosteroids. Assess for organic or metabolic disorder affecting the central nervous system or neuromuscular function. Assess tolerance to sedative, hypnotic, and narcotic drugs in patients with chronic ventilatory insufficiency. In case of a narcotic drug overdose, a proper antidote may be administered. Avoid indiscriminate use of oxygen; it may potentiate carbon dioxide retention or result in carbon dioxide narcosis. Remove air or fluid in the pleural cavity. Prevent and treat abdominal distension by insertion of a nasogastric tube. For trauma and surgical patients, assess limitation of the thoracic wall movement, ineffective cough, immobility, and lack of deep breathing. Control fever and other causes of increased metabolism. Assess diaphragmatic fatigue; if present, mechanical ventilatory support is indicated to rest these muscles and restore their contractility. Promptly identify and adequately treat hypophosphatemia, hypokalemia, and hypocalcemia. Most of these complications occur in mechanically ventilated patients Dr. Abdul-Monim Batiha- Assistant Professor Of Critical Care Nursing 7

Nutritional support Periodic assessment of the course, progress, and response to therapy Determination of a need for mechanical ventilatory support Enteral alimentation is preferred over parenteral feeding because bowel wall integrity is maintained. Recommend high-lipid formulas over high carbohydrates to limit carbon dioxide production. Perform frequent arterial blood gas measurements. Monitor arterial oxygen saturation by pulse oximetry. Continuously assess the patient s respiratory status and need for ventilator support. Dr. Abdul-Monim Batiha- Assistant Professor Of Critical Care Nursing 8