Abnormal Dimercaptosuccinic Acid Scan May Be Related to Persistence of Vesicoureteral Reflux in Children with Febrile Urinary Tract Infection

Similar documents
Prognostic Factors of Renal Scarring on Follow-up DMSA Scan in Children with Acute Pyelonephritis

Urinary tract infection in small children: the evolution of renal damage over time

Medical Management of childhood UTI and VUR. Dr Patrina HY Caldwell Paediatric Continence Education, CFA 15 th November 2013

Comparison of Renal Ultrasound and Voiding Cystourethrography in the Detection of Vesicoureteral Reflux. Sedigheh Ebrahimi

Cortical renal scan in febrile UTI: Established usefulness and future developments

Editorial. A Changing Scenario in Our Understanding of Vesicoureteral Reflux in Children

after urinary infections presenting before the age

Comparison of 99mTc-DMSA Renal Scan and Power Doppler Ultrasonography for the Detection of Acute Pyelonephritis and Vesicoureteral Reflux

Recurrent urinary tract infections in young children: Role of DMSA scan for detecting vesicoureteric reflux

Long-Term Clinical Follow up of Children with Primary Vesicoureteric Reflux. C.K. Abeysekara, B.M.C.D. Yasaratna and A.S.

PYELONEPHRITIS. Wendy Glaberson 11/8/13

Vesicoureteric reflux in children

ARTICLE. Disappearance of Vesicoureteral Reflux in Children

Predicting Factors of Breakthrough Infection in Children with Primary Vesicoureteral Reflux

Imaging in Urinary Tract Infectioin

UTI and VUR Practical points and management Kjell Tullus Consultant Paediatric Nephrologist

Why is the management of UTI so controversial? Kjell Tullus Consultant Paediatric Nephrologist

Technetium Tc 99m Dimercaptosuccinic Acid Renal Scintigraphy in Children With Acute Pyelonephritis Correlation With Other Imaging Tests

Recurrent Pediatric UTI Revisited 2013

Clinical and laboratory indices of severe renal lesions in children with febrile urinary tract infection

Secondary surgery for vesicoureteral reflux after failed endoscopic injection: Comparison to primary surgery

16.1 Risk of UTI recurrence in children

How to Predict the Development of Severe Renal Lesions in Children with febrile UTI?

The Role of Endoscopic Treatment in the Management of Grade V Primary Vesicoureteral Reflux

Role of Imaging Modalities in the Management of Urinary Tract Infection in Children

J Am Soc Nephrol 14: , 2003

Majid Vafaie*, Javad Zare-noghabi, Hadiseh Bahri. Department of Pediatrics, Faculty of Medicine, Ardabil University of Medical Science, Ardabil, Iran

10. Diagnostic imaging for UTI

Urinary tract infection (UTI) is a common problem. In

Audit of Micturating Cystourethrograms performed over 1 year in a Children's Hospital

VESICOURETERAL REFLUX SCREENING IN SIBLINGS OF PATIENTS WITH KNOWN REFLUX

Topic 1 - Management of vesicoureteral reflux in the child over one year of age

Giovanni Montini has documented that he has no relevant financial relationships to disclose or conflict of interest to resolve.

Vesicoureteral Reflux: The Difficulty of Consensus OR Why Can t We All Just get Along?

Urinary Tract Infections in Infants & Toddlers: An Evidence-based Approach. No disclosures. Importance of Topic 5/14/11. Biases

NATIONAL INSTITUTE FOR HEALTH AND CARE EXCELLENCE Centre for Clinical Practice Surveillance Programme

Outcome of Vesicoureteral Reflux in Infants: Impact of Prenatal Diagnosis

Renal scarring after acute pyelonephritis

Current Trends in Pediatric GU Imaging European Perspective

ARTICLE. Renal Function 16 to 26 Years After the First Urinary Tract Infection in Childhood

Vesicoureteral Reflux (VUR) in Children Where are we in 2014?

Analysis of Uropathogens of Febrile Urinary Tract Infection in Infant and Relationship with Vesicoureteral Reflux

Topic 2: Management of infants less than one year of age with vesicoureteral reflux

Urinary tract infections, renal malformations and scarring

Medical Policy Title: Periureteral Bulking ARBenefits Approval: 10/26/201

E. coli Enterococcus. urinary tract infection UTI UTI UTI WBC/HPF CRP UTI UTI UTI. vesicoureteral reflux VUR

Management of Pediatric Urinary Tract Infections in Kuwait: Current Practices and Practicality of New Guidelines

Critical appraisal of the top-down approach for vesicoureteral reflux

Pediatric urinary tract infection. Dr. Nariman Fahmi Pediatrics/2013

Positional installation of contrast (PIC) and Redo-PIC cystography for diagnosis of occult vesicoureteral reflux

Can Procalcitonin Reduce Unnecessary Voiding Cystoureterography in Children with First Febrile Urinary Tract Infection?

UTI and VUR practical points and management

ijp.mums.ac.ir

IMAGING PROFILE OF CHILDREN BIRTH TO 12 YEARS PRESENTING WITH FIRST URINARY TRACT INFECTION (UTI) AT A TERTIARY CARE HOSPITAL

MINERVA MEDICA COPYRIGHT

Original article. Hye Won Park, M.D., Hyeil Jin, M.D., Su Jin Jeong, M.D., Jun Ho Lee, M.D. Introduction

When is the Best Time for Voiding Cystourethrogram in Urinary Tract Infection of Children?

Periureteral Bulking Agents as a Treatment of Vesicoureteral Reflux. Original Policy Date

Alejandro Hoberman, M.D., Martin Charron, M.D., Robert W. Hickey, M.D., Marc Baskin, M.D., Diana H. Kearney, R.N., and Ellen R. Wald, M.D.

Spectrum of Micturating Cystourethrogram Revisited: A Pictorial Assay

Evaluation of acute pyelonephritis with DMSA scans in children presenting after the age of 5 years

Vesicoureteral Reflux (VUR) New

The Role of Renal Ultrasound in Children With Febrile Urinary Tract Infection

Pyelonephritis, renal scarring, and reflux nephropathy: a pediatric urologist s perspective

Review Article Antibiotic Prophylaxis for Children with Primary Vesicoureteral Reflux: Where Do We Stand Today?

Technetium Tc 99m Dimercaptosuccinic Acid Renal Scintigraphy in Diagnosis of Urinary Tract Infections in Children with Negative Culture

Imaging studies in urinary tract infection in Libyan children

Surgical Intervention for Vesicoureteric Reflux Change Management

The Evolving Role of Antibiotic Prophylaxis for Vesicoureteral Reflux. Stephen Canon, MD Children s Urology

Which Factors Related to the Renal Cortical Defects in Infants Under 3 Months of Age with Urinary Tract Infections?

UWE Bristol. UTI in Children. Angie Green Visiting Lecturer March 2011

Summary of the AUA Guideline on Management of Primary Vesicoureteral Reflux in Children

Description. Section: Surgery Effective Date: April 15, Subsection: Surgery Original Policy Date: December 6, 2012 Subject:

Original Article The results of different diagnostic imaging studies used in children with urinary tract infection

Topic 5: Screening of the neonate/infant with prenatal hydronephrosis

Comparison of DMSA Scan 99 m and EC Scan 99 m in Diagnosis of Cortical Defect and Differential Renal Function

Indications and effectiveness of the open surgery in vesicoureteral reflux

Clinical Value of Persistent but Downgraded Vesicoureteral Reflux after Dextranomer/Hyaluronic Acid Injection in Children

Association of vesicoureteral reflux and renal scarring in urinary tract infections

Original Article ABSTRACT INTRODUCTION PATIENTS AND METHODS. Hussein Rabie Saleh Farghaly 1,2, Mohamed Hosny Mohamed Sayed 1

99mTc dimercaptosuccinic acid (DMSA) scan in patients with established radiological renal scarring

Ultrasonography and C-reactive protein can predict the outcomes of voiding cystography after the first urinary tract infection


The McMaster at night Pediatric Curriculum

URINARY TRACT INFECTION IN CHILDREN UNDERGOING DIAGNOSTIC VOIDING CYSTOURETHROGRAPHY

Unilateral multicystic dysplastic kidney in children

Nicolette Janzen, MD Texas Children's Hospital

5. Epidemiology of UTI and its complications in children

KS Sunny Tse 1, LS Wong 1, TW Fan 1, KY Kwok 1, W Chan 2, MWY Leung 3, NSY Chao 3, TK Tsang 1, HS Fung 1, KW Tang 1, SCH Chan 1

Salvage Dextranomer-Hyaluronic Acid Copolymer for Persistent Reflux After Ureteral Reimplantation: Early Success Rates

Long-Term Followup of Dextranomer/Hyaluronic Acid Injection for Vesicoureteral Reflux: Late Failure Warrants Continued Followup

Treatment of a 6-Year-Old Girl with Vesicoureteral Reflux

P. Brandstrom has documented that he has no relevant financial relationships to disclose or conflict of interest to resolve.

Nursing Care for Children with Genitourinary Dysfunction I

Long-Term Follow-Up of Women Hospitalized for Acute Pyelonephritis

weighing risks against benefits ALARA principle appropriate activities (radiopharmaceutical doses)

The relationship between urinary tract infection and calcium excretion in children

Protocol. Periureteral Bulking Agents as a Treatment of Vesicoureteral Reflux

Prescribing Guidelines for Urinary Tract Infections

Transcription:

www.kjurology.org http://dx.doi.org/10.111/kju.2012.3.10.71 Pediatric Urology Abnormal Dimercaptosuccinic Acid Scan May Be Related to Persistence of Vesicoureteral Reflux in Children with Febrile Urinary Tract Infection Hyun Chong Ki, Sun-Ouck Kim, Dong Hun Yoo, In Sang Hwang, Eu Chang Hwang, Kyung Jin Oh, Seung Il Jung, Taek Won Kang, Dongdeuk Kwon, Kwangsung Park, Soo Bang Ryu Department of Urology, Chonnam National University Medical School, Gwangju, Korea Purpose: This study assessed whether 99m technetium dimercaptosuccinic acid (DMSA) scintigraphy used for the assessment of renal sequelae after febrile urinary tract infection (UTI) has any prognostic value for outcome measurement of vesicoureteral reflux (VUR) by retrospectively evaluating the correlation between abnormal DMSA scintigraphy results and persistence of VUR in children with febrile UTI. Materials and Methods: The medical records of 12 children (7 boys, 8 girls) admitted with febrile UTI from January 200 to December 200 and who were followed up for more than 1 year were retrospectively reviewed. At the initial and follow-up visits, renal ultrasound and DMSA scans were performed within 7 days from the diagnosis and voiding cystourethrography (VCUG) was performed within 1 month in all case and follow-up evaluations. Results: The children s mean age was.8±3. years (range, 0.3 to 1 years). The mean follow-up was 28.2±.8 months. At the initial examination, VUR was more often associated with an abnormal DMSA scan result (83.3%) than with a normal DMSA scan result (1.7%, p=0.02). The frequency of VUR with an abnormal DMSA scan during acute UTI was significantly higher than the frequency of VUR with a normal DMSA scan (38.8% vs, 2.8%, respectively, p=0.00). Also, high-grade VUR was associated with an abnormal DMSA scan result (32.%) more often than with a normal DMSA scan result (0%, p=0.01). Children with an abnormal DMSA scan had a lower resolution rate of VUR (17.%) than did children with a normal DMSA scan (7.0%) at the follow-up VCUG (p=0.02). Conclusions: An abnormal result on a DMSA scan during febrile UTI is associated with high-grade and persistent VUR. DMSA scans performed during febrile UTI are useful in reflux resolution in childhood. Key Words: Technetium Tc 99m dimercaptosuccinic acid; Urinary tract infections; Vesico-ureteral reflux This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. Article History: received 1 January, 2012 accepted 9 August, 2012 Corresponding Author: Sun-Ouck Kim Department of Urology, Chonnam National University Hospital, Chonnam National University Hospital and Medical School, 2 Jebong-ro, Dong-gu, Gwangju 01-77, Korea TEL: +82-2-220-70 FAX: +82-2-227-13 E-mail: seinsena@hanmail.net INTRODUCTION Urinary tract infection (UTI) is one of the most common diseases in children [1], and vesicoureteral reflux (VUR) is estimated to occur in 2 to 0% of children with febrile UTI [2,3]. Approximately 30 to 0% of children with VUR have renal scarring at the time of diagnosis [3,]. Recurrent UTI related with renal scarring and VUR are risk factors for progressive renal damage, which may lead to severe sequelae such as hypertension and permanent renal failure [,]. A voiding cystourethrogram (VCUG) is used to evaluate VUR. However, VCUG is an invasive procedure and has Korean Journal of Urology C The Korean Urological Association, 2012 71

Abnormal DMSA Scan May Be Related to Persistence of VUR in Children with Febrile UTI 717 many side-effects, such as pain, irradiation, and UTI. The dimercaptosuccinic acid (DMSA) renal scan is a noninvasive test that allows for cortical imaging; this approach is currently recommended for evaluation of first-time febrile UTI because of its high sensitivity for detection of renal parenchymal injury [7]. However, it is not clearly known whether DMSA scintigraphy performed during febrile UTI has any prognostic value for outcome assessment in these children. Camacho et al. [8] advocated that children with an abnormal DMSA scan result have a higher frequency of VUR than do children with a normal DMSA scan result (8% vs. 12%) and that children with normal DMSA scan results during acute UTI have a low risk of renal damage. In the present study, we evaluated the usefulness of DMSA scans performed during febrile UTI for prediction of the severity and persistency of VUR that may lead to progressive renal damage. MATERIALS AND METHODS A total of 12 consecutive children (7 boys and 8 girls; mean age,.7±2. years) who presented with an episode of acute febrile UTI from January 200 to December 200 and who were followed up for more than 1 year were included in this retrospective study. DMSA and renal ultrasound scans were performed during the first 7 days of the acute episode, and VCUG was done 1 month after the acute phase of disease to determine the presence of VUR [9]. Children with detected VUR underwent a follow-up VCUG study within 1 year after the first episode of acute UTI. VUR was graded according to the recommendations of the International Reflex Study [10] and then categorized as low grade (grade I to III) or high grade (grade IV to V). Children with bilateral reflux, voiding difficulty caused by neurogenic bladder, dysfunctional elimination syndrome, or duplicated kidney were excluded from this study. Appropriate antimicrobial prophylaxis was continued in children with a high grade of VUR and a recurrent UTI episode. For patients with breakthrough UTI and aggravated VUR, endoscopic subureteral injection of Deflux (dextranomer hyaluronic acid copolymer) was considered. This study was approved by the institutional review board in Chonnam National University Hospital. DMSA scintigraphy was performed by using a standard protocol applied by the calculated dose of DMSA according to the body surface area performed within 7 days of diagnosis [11]. Four hours later, posterior, anterior, and each oblique view were obtained. DMSA scintigraphy was interpreted according to the recommendations of the European Association of Nuclear Medicine Pediatric Task Group [12]. A focal reduction or absence of uptake in more than one area of the kidney was considered abnormal. Relative function of the kidney of less than % was also classified as abnormal. SPSS ver. 7. (SPSS Inc., Chicago, IL, USA) was used for statistical analyses. Chi-square test was used to compare frequencies. Values of p<0.0 were deemed to be statistically significant. RESULTS The characteristics of the patients are listed in Table 1. VUR was found in 7 children (33.1%) with febrile UTI, of whom the majority had low-grade VUR (7.% vs. 27.1%). There were no significant differences in basal characteristics according to gender or in VUR incidence between boys and girls (p=0.2) (Table 1). At the initial examination, abnormal DMSA scintigraphy results were found in the majority (72.%) of children with febrile UTI. The frequency of VUR with an abnormal DMSA scan result during the acute febrile UTI episode was significantly higher than that of VUR with a normal DMSA scan result (38.8% vs. 2.8%, p=0.00). In all children with a normal renal scan result, the reflux grade was low-grade; high-grade VUR was not found in this group (Table 2). None of the 13 patients with high-grade VUR had a normal DMSA scan result. At the follow-up evaluation, the rate of VUR resolution in children with an abnormal DMSA scan result during the acute febrile UTI episode (7/0) was significantly lower TABLE 1. Vesicoureteral reflux (VUR) grade according to sex in children with urinary tract infection TABLE 2. Vesicoureteral reflux (VUR) grade according to renal status at DMSA Age (yr) No VUR VUR Low-grade VUR Grade I Grade II Grade III High-grade VUR Grade IV Grade V Boys (0.1%, n=7).3±3.1 37 (.9) 20 (3.1) 1 (80.0) (20.0) 2 2 Girls (9.9%, n=8) 7.0±1.7 8 (8.2) 27 (31.8) 20 (7.0) 9 7 (2.9) 3 No VUR (.2%, n=9) VUR (33.8%, n=8) Low-grade VUR Grade I Grade II Grade III High-grade VUR Grade IV Grade V Normal renal scan (27.%, n=39) 31 (79.) 8 (20.) 8 (100) 3 1 0 (0) 0 0 Abnormal renal scan (72.%, n=103) 3 (1.2) 0 (38.8) 27 (7.) 9 13 13 (32.) 8 Values are presented as mean±sd or number (%). Values are presented as number (%).

718 Ki et al TABLE 3. Vesicoureteral reflux (VUR) persistence according to renal status at DMSA VUR persistence VUR resolution VUR with normal renal scan (n=8) 2 (2.0) (7.0) Values are presented as number (%). VUR with abnormal renal scan (n=0) 33 (82.) 7 (17.) than the rate in children with a normal DMSA scan result (/8; 17.% vs. 7.0%, respectively, p<0.0) (Table 3). Most of the children with VUR with an abnormal DMSA scan result at the initial visit had persistent VUR (33/0, or 82.%) at the follow-up evaluation. DISCUSSION In the present study, VUR was found in 33.8% of children with febrile UTI, and abnormal DMSA scintigraphy results were found in 72.% of children with febrile UTI. The purpose of this study was to assess the usefulness of DMSA study performed during acute febrile UTI in identifying children at risk of VUR or of resolution of VUR. In the present study, VUR had a high rate of association with abnormal DMSA scan results compared with normal DMSA scan results. Furthermore, the frequency of VUR with an abnormal DMSA scan result during acute UTI was significantly higher than that of VUR with a normal DMSA scan result. The present findings are consistent with the view that the DMSA scan obtained in children with febrile UTI is useful in the formulation of a proper management plan for those children in the clinical setting. Those with abnormal DMSA results and renal scarring are more likely to display VUR and are at increased risk of persistent VUR. This information is useful in counseling children and parents about the natural course of VUR and in prediction of VUR resolution during the follow-up period. VCUG is an unpleasant and invasive procedure that involves radiation exposure and introduces the risk of catheter-induced UTI [9]. These risks can dissuade clinicians from routinely performing VCUG in children after their first febrile UTI. Instead of VCUG, DMSA scans can be used to predict VUR. DMSA scintigraphy has high sensitivity for detection of renal abnormalities and is considered the gold standard for diagnosis of renal damage [13]. In the present study, 103 of 12 children (72.%) presented with abnormal findings on the DMSA scintigraphy performed during the acute period of UTI. Preda et al. [9] reported that DMSA abnormalities are found in 1% of children with febrile UTI when DMSA is performed early in the course of UTI. The relatively higher incidence of abnormal DMSA studies found in our study may be attributed to our including recurrent UTI in our data. VUR is one of the most frequent risk factors for the development of renal damage. In the present study, VUR was found in 33.8% of the children with acute febrile UTI, whereas other studies have reported an incidence of VUR of 2 to 2% of children with febrile UTI [1,1]. An abnormality in a DMSA scan could occur in the absence of VUR, and in the present study, as many as 3 of 103 children with an abnormal DMSA scan result showed no reflux. This finding suggests that more than reflux itself is involved in the pathogenesis of parenchymal defects and renal scarring; additional factors could include bacterial virulence factors or host immunity [1]. In an earlier retrospective study, Temiz et al. [17] showed that a strategy to perform VCUG only in patients with abnormalities on the DMSA scan to identify patients with high-grade VUR would have reduced the number of VCUG procedures by half. A recent study by Tseng et al. [18] retrospectively analyzed the medical records of 12 children with VUR and reported that all the children with grades III to V VUR (21 patients) had an abnormal DMSA scan result. Those authors further stated that if VCUG had been performed only in children with an abnormal scan result, 1 of 12 (29%) investigations could have been omitted. In the present study, the incidence of VUR with a normal DMSA scan result was very low (8/39, or 20.%), and the degree of VUR in those children was low-grade (grade I, n=; grade II, n=3; grade III, n=1) and clinically insignificant. These results support the concept of not performing VCUG routinely in children with UTI. Many studies have reported a spontaneous VUR resolution rate of 3 to 8% during follow-up, with the rate differing according to the grade of VUR [19,20]. A recent study reported that low-grade VUR (grades I to III) diagnosed after UTI resolves significantly more rapidly than does high-grade VUR (grades IV to V) [21]. Camacho et al. [8] evaluated the prognostic value of DMSA renal scans performed during febrile UTI and reported that the frequency of VUR was higher by as much as 8% when the DMSA scan result was abnormal than the frequency of VUR when the DMSA scan result was normal in children (12%). Another study reported that the rates of 2-year reflux resolution in abnormal and normal renal scan groups were 13% and 3%, respectively [22]. In our study, all the subjects with high-grade reflux showed an abnormal renal scan, and the VUR of those children did not show spontaneous resolution on follow-up evaluation. The rate of VUR resolution differed depending on the DMSA scan result during the acute UTI. At the follow-up evaluation, the rate of VUR resolution in children with an abnormal DMSA scan result during the acute febrile UTI was significantly lower than in children with a normal DMSA scan result. Most of the children with VUR with an abnormal DMSA scan result at the initial visit were found to have persistent VUR at the follow-up evaluation. We suggest that in children with an abnormal result on a DMSA renal scan during acute febrile UTI, most of the reflux does not resolve after follow-up evaluation, in contrast with the case in children with a normal result on a DMSA renal scan, in whom reflux tends to resolve. Furthermore, in the present study, in children with a normal renal scan, most of the reflux was low-grade,

Abnormal DMSA Scan May Be Related to Persistence of VUR in Children with Febrile UTI 719 whereas none of the patients with high-grade VUR had a normal DMSA scan result. These results concur with previous reports that higher grades of reflux are associated with an increased incidence of an abnormal result on a DMSA renal scan [23,2] and a strong association between reflux grade and the incidence of renal scarring. However, Goldman et al. [2] reported that renal scarring was not related in children with pyelonephritis and low-grade reflux and that there was no correlation between parenchymal defects and recurrent UTI. There are several limitations to our study. Concerning the reversible defect of renal damage, it is important to consider the timing of DMSA renal scintigraphy. We made every effort to conduct the DMSA scintigraphy within the acute period of febrile UTI within 7 days of diagnosis. However, variations in this timing did occur in a small number of cases. VCUG was performed within 1 month after the diagnosis, but with small variation among the subjects. These variable factors between the subjects included in this study should be considered. We excluded children with bilateral VUR and could not evaluate the DMSA renal scan results according to the frequency of febrile UTI or differences in gender or age. Another limitation of our study is that we did not distinguish between first UTI and recurrent UTI. In our study, the mean age of the children with febrile UTI was relatively older than in other similar studies. Renal scars may have developed in older children after previously unrecognized UTIs, and these scars cannot be differentiated from acute photon defects on DMSA renal scintigraphy. To avoid such a limitation, the current study limited the age to younger than 1 year [2]. CONCLUSIONS Abnormal DMSA scan results during febrile UTI were associated with high-grade and persistent VUR. DMSA scanning performed during febrile UTI was useful as an indicator of reflux resolution in childhood. A DMSA scan should be considered when counseling families about the prognosis of febrile UTI with respect to VUR and renal damage. CONFLICTS OF INTEREST The authors have nothing to disclose. REFERENCES 1. Rushton HG. Urinary tract infections in children. Epidemiology, evaluation, and management. Pediatr Clin North Am 1997;: 1133-9. 2. Gleeson FV, Gordon I. Imaging in urinary tract infection. Arch Dis Child 1991;:1282-3. 3. Smellie JM, Ransley PG, Normand IC, Prescod N, Edwards D. Development of new renal scars: a collaborative study. Br Med J (Clin Res Ed) 198;290:197-0.. Bellinger MF, Duckett JW. Vesicoureteral reflux: a comparison of non-surgical and surgical management. Contrib Nephrol 198;39:81-93.. Merrick MV, Notghi A, Chalmers N, Wilkinson AG, Uttley WS. Long-term follow up to determine the prognostic value of imaging after urinary tract infections. Part 1: Reflux. Arch Dis Child 199;72:388-92.. Merrick MV, Notghi A, Chalmers N, Wilkinson AG, Uttley WS. Long-term follow up to determine the prognostic value of imaging after urinary tract infections. Part 2: Scarring. Arch Dis Child 199;72:393-. 7. Lee JH, Kim MK, Park SE. Is a routine voiding cystourethrogram necessary in children after the first febrile urinary tract infection? Acta Paediatr 2012;101:e10-9. 8. Camacho V, Estorch M, Fraga G, Mena E, Fuertes J, Hernandez MA, et al. DMSA study performed during febrile urinary tract infection: a predictor of patient outcome? Eur J Nucl Med Mol Imaging 200;31:82-. 9. Preda I, Jodal U, Sixt R, Stokland E, Hansson S. Normal dimercaptosuccinic acid scintigraphy makes voiding cystourethrography unnecessary after urinary tract infection. J Pediatr 2007;11:81-, 8.e1. 10. Lebowitz RL, Olbing H, Parkkulainen KV, Smellie JM, Tamminen-Möbius TE. International system of radiographic grading of vesicoureteric reflux. International Reflux Study in Children. Pediatr Radiol 198;1:10-9. 11. Gordon I, Piepsz A, Sixt R; Auspices of Paediatric Committee of European Association of Nuclear Medicine. Guidelines for standard and diuretic renogram in children. Eur J Nucl Med Mol Imaging 2011;38:117-88. 12. Piepsz A, Hahn K, Roca I, Ciofetta G, Toth G, Gordon I, et al. A radiopharmaceuticals schedule for imaging in paediatrics. Paediatric Task Group European Association Nuclear Medicine. Eur J Nucl Med 1990;17:127-9. 13. Majd M, Nussbaum Blask AR, Markle BM, Shalaby-Rana E, Pohl HG, Park JS, et al. Acute pyelonephritis: comparison of diagnosis with 99mTc-DMSA, SPECT, spiral CT, MR imaging, and power Doppler US in an experimental pig model. Radiology 2001;218: 101-8. 1. Jakobsson B, Nolstedt L, Svensson L, Soderlundh S, Berg U. 99mTechnetium-dimercaptosuccinic acid scan in the diagnosis of acute pyelonephritis in children: relation to clinical and radiological findings. Pediatr Nephrol 1992;:328-3. 1. Ditchfield MR, de Campo JF, Nolan TM, Cook DJ, Grimwood K, Powell HR, et al. Risk factors in the development of early renal cortical defects in children with urinary tract infection. AJR Am J Roentgenol 199;12:1393-7. 1. Lomberg H, Hanson LA, Jacobsson B, Jodal U, Leffler H, Eden CS. Correlation of P blood group, vesicoureteral reflux, and bacterial attachment in patients with recurrent pyelonephritis. N Engl J Med 1983;308:1189-92. 17. Temiz Y, Tarcan T, Onol FF, Alpay H, Simşek F. The efficacy of Tc99m dimercaptosuccinic acid (Tc-DMSA) scintigraphy and ultrasonography in detecting renal scars in children with primary vesicoureteral reflux (VUR). Int Urol Nephrol 200;38:19-2. 18. Tseng MH, Lin WJ, Lo WT, Wang SR, Chu ML, Wang CC. Does a normal DMSA obviate the performance of voiding cystourethrography in evaluation of young children after their first urinary tract infection? J Pediatr 2007;10:9-9. 19. Sillen U. Vesicoureteral reflux in infants. Pediatr Nephrol 1999;13:3-1. 20. Wennerstrom M, Hansson S, Jodal U, Stokland E. Disappearance of vesicoureteral reflux in children. Arch Pediatr Adolesc Med 1998;12:879-83. 21. Schwab CW Jr, Wu HY, Selman H, Smith GH, Snyder HM 3rd,

720 Ki et al Canning DA. Spontaneous resolution of vesicoureteral reflux: a 1-year perspective. J Urol 2002;18:29-9. 22. Nepple KG, Knudson MJ, Austin JC, Cooper CS. Abnormal renal scans and decreased early resolution of low grade vesicoureteral reflux. J Urol 2008;180( Suppl):13-7. 23. Merguerian PA, Jamal MA, Agarwal SK, McLorie GA, Bagli DJ, Shuckett B, et al. Utility of SPECT DMSA renal scanning in the evaluation of children with primary vesicoureteral reflux. Urology 1999;3:102-8. 2. Stokland E, Hellstrom M, Jacobsson B, Jodal U, Sixt R. Renal damage one year after first urinary tract infection: role of dimercaptosuccinic acid scintigraphy. J Pediatr 199;129:81-20. 2. Goldman M, Bistritzer T, Horne T, Zoareft I, Aladjem M. The etiology of renal scars in infants with pyelonephritis and vesicoureteral reflux. Pediatr Nephrol 2000;1:38-8. 2. Lee YJ, Lee JH, Park YS. Risk factors for renal scar formation in infants with first episode of acute pyelonephritis: a prospective clinical study. J Urol 2012;187:1032-.