Chapter 7 How Cells Release Chemical Energy

Similar documents
How Cells Release Chemical Energy. Chapter 8

How Did Energy-Releasing Pathways Evolve? (cont d.)

How Cells Release Chemical Energy. Chapter 7

How Cells Release Chemical Energy Cellular Respiration

Table of Contents. Section 1 Glycolysis and Fermentation. Section 2 Aerobic Respiration

Respiration. Respiration. How Cells Harvest Energy. Chapter 7

Cellular Metabolism 6/20/2015. Metabolism. Summary of Cellular Respiration. Consists of all the chemical reactions that take place in a cell!

Respiration. Respiration. Respiration. How Cells Harvest Energy. Chapter 7

Cellular Metabolism 9/24/2013. Metabolism. Cellular Metabolism. Consists of all the chemical reactions that take place in a cell!

Cellular Metabolism. Biology 105 Lecture 6 Chapter 3 (pages 56-61)

How Cells Harvest Energy. Chapter 7. Respiration

Harvesting energy: photosynthesis & cellular respiration


Cellular Metabolism. Biol 105 Lecture 6 Read Chapter 3 (pages 63 69)

3. Distinguish between aerobic and anaerobic in terms of cell respiration. Outline the general process of both.

2/4/17. Cellular Metabolism. Metabolism. Cellular Metabolism. Consists of all of the chemical reactions that take place in a cell.

How Cells Harvest Chemical Energy

Harvesting Energy: Glycolysis and Cellular Respiration

Chapter 9: Cellular Respiration

CHAPTER 7 10/16/2012. How cells release Chemical Energy

Energy Flow. Chapter 7. Cellular Respiration: Overview. Cellular Respiration. Cellular Respiration. Cellular Respiration occurs in three stages

Chapter 9. Cellular Respiration and Fermentation

Chapter Seven (Cellular Respiration)

Section B: The Process of Cellular Respiration

Chapter 7 Cellular Respiration and Fermentation*

Name Class Date. 1. Cellular respiration is the process by which the of "food"

Cellular Respiration. Unit 5: Plants, Photosynthesis, and Cellular Respiration

Cellular Respiration: Harvesting Chemical Energy

Cellular Respiration and Fermentation

How Cells Harvest Chemical Energy

Cellular Pathways That Harvest Chemical Energy. Cellular Pathways That Harvest Chemical Energy. Cellular Pathways In General

Cellular Respiration

Chapter 9 Cellular Respiration Overview: Life Is Work Living cells require energy from outside sources

CELLULAR RESPIRATION. Chapter 7

Cellular Respiration

Chapter 9 Cellular Respiration

Releasing Chemical Energy

Introduction. Living is work. To perform their many tasks, cells must bring in energy from outside sources.

Ch 9: Cellular Respiration

Chapter 9 Notes. Cellular Respiration and Fermentation

Cellular Respiration

Cell Respiration Ch 7. Both autotrophs and heterotrophs use cellular respiration to make CO2 and water from

4. Which step shows a split of one molecule into two smaller molecules? a. 2. d. 5

Respiration 30/04/2013. Dr.M.R.Vaezi K., Hakim Sabzevari University

Concept 9.1: Catabolic pathways yield energy by oxidizing organic fuels Several processes are central to cellular respiration and related pathways

Structure of the Mitochondrion. Cell Respiration. Cellular Respiration. Catabolic Pathways. Photosynthesis vs. Cell Respiration ATP 10/14/2014

Cellular Respiration: Harvesting Chemical Energy CHAPTER 9

Cell Respiration - 1

9.2 The Process of Cellular Respiration

Bell Work. b. is wrong because combining two glucose molecules requires energy, it does not release energy

1 Which pathway for aerobic cellular respiration is located in the cytoplasm of the cell?

Ch. 9 Cell Respiration. Title: Oct 15 3:24 PM (1 of 53)

Cellular Respiration Checkup Quiz. 1. Of the following products, which is produced by both anaerobic respiration and aerobic respiration in humans?

Harvesting energy: photosynthesis & cellular respiration part 1I

Consists of all of the chemical reactions that take place in a cell. Summary of Cellular Respiration. Electrons transferred. Cytoplasm Blood vessel

Cellular Respiration Harvesting Chemical Energy ATP

Chapter 9. Cellular Respiration: Harvesting Chemical Energy

Chapter 6 Cellular Respiration: Obtaining Energy from Food

3.7.1 Define cell respiration [Cell respiration is the controlled release of energy from organic compounds in cells to form ATP]

Cellular Respiration. Biochemistry Part II 4/28/2014 1

Biol 219 Lec 7 Fall 2016

KEY CONCEPT The overall process of cellular respiration converts sugar into ATP using oxygen.

Chapter 6 Cellular Respiration: Obtaining Energy from Food

Metabolism. Chapter 5. Catabolism Drives Anabolism 8/29/11. Complete Catabolism of Glucose

7 Cellular Respiration and Fermentation

Chapter 9: Cellular Respiration: Harvesting Chemical Energy

AP BIOLOGY Chapter 7 Cellular Respiration =

Cellular Respiration: Harvesting Chemical Energy

10/25/2010 CHAPTER 9 CELLULAR RESPIRATION. Life is Work. Types of cellular respiration. Catabolic pathways = oxidizing fuels

Complete breakdown of Glucose: + Light + 6 H 2 O = C 6 H 12 O 6 6 CO O 2. + Energy = 6 CO 2 C 6 H 12 O 6. What is Glucose Metabolism?

1st half of glycolysis (5 reactions) Glucose priming get glucose ready to split phosphorylate glucose rearrangement split destabilized glucose

Cellular Respiration. The process by which cells harvest the energy stored in food

Cellular Respiration: Obtaining Energy from Food

Chapter 9: Cellular Respiration

Cellular Respiration: Harvesting Chemical Energy

g) Cellular Respiration Higher Human Biology

Chemical Energy. Valencia College

Chapter 9: Cellular Respiration Overview: Life Is Work. Living cells. Require transfusions of energy from outside sources to perform their many tasks

Cellular Respiration. Cellular Respiration. C 6 H 12 O 6 + 6O > 6CO 2 + 6H energy. Heat + ATP. You need to know this!

III. 6. Test. Respiració cel lular

Cellular Respiration Harvesting Chemical Energy ATP

Cellular Respiration

Unit 2: Metabolic Processes

Cellular Respiration. Chapter 9

Lesson Overview. Cellular Respiration: An Overview. 9.2 process of cell respiration

RESPIRATION Worksheet

Cellular Respiration and Fermentation

Chapter 6 Cellular Respiration: Obtaining Energy from Food

Section 9 2 The Krebs Cycle and Electron Transport (pages )

Cellular Respiration

Lesson Overview. Cellular Respiration: An Overview. Lesson Overview. 9.1 Cellular Respiration: An Overview

Cellular Respiration: Obtaining Energy from Food

Higher Biology. Unit 2: Metabolism and Survival Topic 2: Respiration. Page 1 of 25

Objective: You will be able to construct an explanation for how each phase of respiration captures and stores free energy.

Chapter 6 : How Cells Harvest Energy (B) Dr. Chris Doumen 10/28/14 CITRIC ACID CYCLE. Acetyl CoA CoA CoA CO 2 NAD + FADH 2 NADH FAD + 3 H + ADP + ATP

3.7 CELLULAR RESPIRATION. How are these two images related?

Cellular Respiration. Objectives

What is Glycolysis? Breaking down glucose: glyco lysis (splitting sugar)

Cellular Respiration

Cellular Respiration Stage 2 & 3. Glycolysis is only the start. Cellular respiration. Oxidation of Pyruvate Krebs Cycle.

Transcription:

Chapter 7 How Cells Release Chemical Energy

7.1 Mighty Mitochondria More than forty disorders related to defective mitochondria are known (such as Friedreich s ataxia); many of those afflicted die young

A Mitochondrion

Two Main Metabolic Pathways Aerobic metabolic pathways (using oxygen) are used by most eukaryotic cells Anaerobic metabolic pathways (which occur in the absence of oxygen) are used by prokaryotes and protists in anaerobic habitats

Aerobic Respiration In modern eukaryotic cells, most of the aerobic respiration pathway takes place inside mitochondria Like chloroplasts, mitochondria have an internal folded membrane system that allows them to make ATP efficiently Electron transfer chains in this membrane set up hydrogen ion gradients that power ATP synthesis At the end of these chains, electrons are transferred to oxygen molecules

INTERACTION: Structure of a mitochondrion To play movie you must be in Slide Show Mode PC Users: Please wait for content to load, then click to play Mac Users: CLICK HERE

7.2 Overview of Carbohydrate Breakdown Pathways Photoautotrophs make ATP during photosynthesis and use it to synthesize glucose and other carbohydrates Most organisms, including photoautotrophs, make ATP by breaking down glucose and other organic compounds

energy Photosynthesis CO 2 glucose H 2 O O 2 Aerobic Respiration energy Figure 7-2 p118

Overview of Aerobic Respiration Three stages Glycolysis Acetyl-CoA formation and Krebs cycle Electron transfer phosphorylation (ATP formation) C 6 H 12 O 6 (glucose) + O 2 (oxygen) CO 2 (carbon dioxide) + H 2 O (water) Coenzymes NADH and FADH 2 carry electrons and hydrogen

Aerobic Respiration 2 ATP glucose Glycolysis 4 ATP (2 net) In the Cytoplasm 2 NADH 2 pyruvate Krebs Cycle 6 CO 2 2 ATP 8 NADH, 2 FADH 2 In the Mitochondrion oxygen Electron Transfer Phosphorylation H 2 O 32 ATP Figure 7-3 p119

ANIMATED FIGURE: Overview of aerobic respiration To play movie you must be in Slide Show Mode PC Users: Please wait for content to load, then click to play Mac Users: CLICK HERE

Aerobic Respiration vs. Anaerobic Fermentation Aerobic respiration and fermentation both begin with glycolysis, which converts one molecule of glucose into two molecules of pyruvate After glycolysis, the two pathways diverge Fermentation is completed in the cytoplasm, yielding 2 ATP per glucose molecule Aerobic respiration is completed in mitochondria, yielding 36 ATP per glucose molecule

Glycolysis Carbohydrate breakdown pathways start in the cytoplasm, with glycolysis. Fermentation concludes in cytoplasm. In eukaryotes, aerobic respiration concludes inside mitochondria. Figure 7-4 p119

ANIMATED FIGURE: Where pathways start and finish To play movie you must be in Slide Show Mode PC Users: Please wait for content to load, then click to play Mac Users: CLICK HERE

Take-Home Message: How do cells access the chemical energy in carbohydrates? Most cells convert the chemical energy of carbohydrates to chemical energy of ATP by aerobic respiration or fermentation Aerobic respiration and fermentation pathways start in cytoplasm, with glycolysis Fermentation is anaerobic and ends in the cytoplasm Aerobic respiration requires oxygen. In eukaryotes, it ends in mitochondria

3D ANIMATION: Cellular Respiration

7.3 Glycolysis Glucose Breakdown Starts The reactions of glycolysis convert one molecule of glucose to two molecules of pyruvate for a net yield of two ATP An energy investment of ATP is required to start glycolysis

Glycolysis Two ATP are used to split glucose and form 2 PGAL, each with one phosphate group Enzymes convert 2 PGAL to 2 PGA, forming 2 NADH Four ATP are formed by substrate-level phosphorylation (net 2 ATP) Glycolysis ends with the formation of two three-carbon pyruvate molecules

ANIMATED FIGURE: Glycolysis To play movie you must be in Slide Show Mode PC Users: Please wait for content to load, then click to play Mac Users: CLICK HERE

ATP-Requiring Steps 1 An enzyme (hexokinase) transfers a phosphate group from ATP to glucose, forming glucose-6-phosphate. 2 A phosphate group from a second ATP is transferred to the glucose-6phosphate. The resulting molecule is unstable, and it splits into two three carbon molecules. The molecules are interconvertible, so we will call them both PGAL (phosphoglyceraldehyde). Two ATP have now been invested in the reactions. ATP-Generating Steps 3 Enzymes attach a phosphate to the two PGAL, and transfer two electrons and a hydrogen ion from each PGAL to NAD +. Two PGA (phosphoglycerate) and two NADH are the result. 4 Enzymes transfer a phosphate group from each PGA to ADP. Thus, two ATP have formed by substrate-level phosphorylation. The original energy investment of two ATP has now been recovered. 5 Enzymes transfer a phosphate group from each of two intermediates to ADP. Two more ATP have formed by substrate-level phosphorylation. Two molecules of pyruvate form at this last reaction step. Stepped Art 6 Summing up, glycolysis yields two NADH, two ATP (net), and two pyruvate for each glucose molecule. Depending on the type of cell and environmental conditions, the pyruvate may enter the second stage of aerobic respiration or it may be used in other ways, such as in fermentation. Figure 7-5 p121

Take-Home Message: What is glycolysis? Glycolysis is the first stage of carbohydrate breakdown in both aerobic respiration and fermentation The reactions of glycolysis occur in the cytoplasm Glycolysis converts one molecule of glucose to two molecules of pyruvate, with a net energy yield of two ATP; two NADH also form

3D ANIMATION: Cellular Respiration

ANIMATION: Energy inputs and release in glycolosis To play movie you must be in Slide Show Mode PC Users: Please wait for content to load, then click to play Mac Users: CLICK HERE

7.4 Second Stage of Aerobic Respiration The second stage of aerobic respiration completes the breakdown of glucose that began in glycolysis Occurs in mitochondria Includes two sets of reactions: acetyl CoA formation and the Krebs cycle (each occurs twice in the breakdown of one glucose molecule)

Acetyl CoA Formation In the inner compartment of the mitochondrion, enzymes split pyruvate, forming acetyl CoA and CO 2 (which diffuses out of the cell) NADH is formed

The Krebs Cycle Krebs cycle A sequence of enzyme-mediated reactions that break down 1 acetyl CoA into 2 CO 2 Oxaloacetate is used and regenerated 3 NADH and 1 FADH 2 are formed 1 ATP is formed

Second Stage of Aerobic Respiration cytoplasm outer membrane inner membrane matrix The breakdown of 2 pyruvate to 6 CO 2 yields 2 ATP and 10 reduced coenzymes (8 NADH, 2 FADH 2 ). The coenzymes will carry their cargo of electrons and hydrogen ions to the third stage of aerobic respiration.

ANIMATED FIGURE: The Krebs Cycle - details To play movie you must be in Slide Show Mode PC Users: Please wait for content to load, then click to play Mac Users: CLICK HERE

Acetyl CoA Formation and the Krebs Cycle 1 An enzyme splits a pyruvate coenzyme A NAD + molecule into a two-carbon acetyl group and CO 2. Coenzyme A binds the acetyl group (forming acetyl CoA). NAD+ combines with released hydrogen ions and electrons, forming NADH. 2 The Krebs cycle starts as one carbon atom is transferred from acetyl CoA tooxaloacetate. Citrate forms, and coenzyme A is regenerated. 3 A carbon atom is removed from an intermediate and leaves the cell as CO 2. NAD + combines with released hydrogen ions and electrons, forming NADH. 4 A carbon atom is removed from another intermediate and leaves the cell as CO 2, and another NADH forms. Pyruvate s three carbon atoms have now exited the cell, in CO 2. Krebs Cycle 8 The final steps of the Krebs cycle regenerate oxaloacetate. 7 NAD + combines with hydrogen ions and electrons, forming NADH. 6 The coenzyme FAD combines with hydrogen ions and electrons, forming FADH 2. 5 One ATP forms by substrate-level phosphorylation. Stepped Art Figure 7-7 p123

Take-Home Message: What happens during the second stage of aerobic respiration? The second stage of aerobic respiration, acetyl CoA formation and the Krebs cycle, occurs in the inner compartment (matrix) of mitochondria The pyruvate that formed in glycolysis is converted to acetyl CoA and CO 2 ; the acetyl CoA enters the Krebs cycle, which breaks it down to CO 2 For two pyruvate molecules broken down in the second-stage reactions, two ATP form, and ten coenzymes (eight NAD + ; two FAD) are reduced

7.5 Aerobic Respiration s Big Energy Payoff Many ATP are formed during the third and final stage of aerobic respiration Electron transfer phosphorylation Occurs in mitochondria Results in attachment of phosphate to ADP to form ATP

Electron Transfer Phosphorylation Coenzymes NADH and FADH 2 donate electrons and H + to electron transfer chains Active transport forms a H + concentration gradient in the outer mitochondrial compartment H + follows its gradient through ATP synthase, which attaches a phosphate to ADP Finally, oxygen accepts electrons and combines with H +, forming water

Electron Transfer Phosphorylation

Summary: The Energy Harvest Typically, the breakdown of one glucose molecule yields 36 ATP Glycolysis: 2 ATP Acetyl CoA formation and Krebs cycle: 2 ATP Electron transfer phosphorylation: 32 ATP

Figure 7-9 p125

ANIMATED FIGURE: Third-stage reactions To play movie you must be in Slide Show Mode PC Users: Please wait for content to load, then click to play Mac Users: CLICK HERE

Take-Home Message: What happens during the third stage of aerobic respiration? In electron transfer phosphorylation, energy released by electrons flowing through electron transfer chains is captured in the attachment of phosphate to ADP; a typical net yield of aerobic respiration is thirty-six ATP per glucose The reactions begin when coenzymes that were reduced in the first and second stages of reactions deliver electrons and hydrogen ions to electron transfer chains in the inner mitochondrial membrane

Take-Home Message: (cont.) Energy released by electrons as they pass through electron transfer chains is used to pump H + from the mitochondrial matrix to the intermembrane space The H + gradient that forms across the inner mitochondrial membrane drives the flow of hydrogen ions through ATP synthases, which results in ATP formation

ANIMATION: Mitochondrial chemiosmosis To play movie you must be in Slide Show Mode PC Users: Please wait for content to load, then click to play Mac Users: CLICK HERE

7.6 Fermentation Fermentation pathways break down carbohydrates without using oxygen The final steps in these pathways regenerate NAD + but do not produce ATP

Fermentation Glycolysis is the first stage of fermentation Forms 2 pyruvate, 2 NADH, and 2 ATP Pyruvate is converted to other molecules, but is not fully broken down to CO 2 and water Regenerates NAD + but doesn t produce ATP Provides enough energy for some single-celled anaerobic species

Two Fermentation Pathways Alcoholic fermentation Pyruvate is split into acetaldehyde and CO 2 Acetaldehyde receives electrons and hydrogen from NADH, forming NAD + and ethanol Lactate fermentation Pyruvate receives electrons and hydrogen from NADH, forming NAD + and lactate

Glycolysis glucose 2 NAD + 2 2 4 pyruvate Alcoholic Fermentation 2 CO 2 acetaldehyde 2 ethanol 2 NAD + Figure 7-10a p127

Figure 7-10b p127

Glycolysis 2 2 NAD + glucose 2 4 pyruvate Lactate Fermentation 2 CO 2 2 2 NAD + lactate Figure 7-11a p127

ANIMATED FIGURE: Fermentation pathways To play movie you must be in Slide Show Mode PC Users: Please wait for content to load, then click to play Mac Users: CLICK HERE

Red and White Muscle Fibers Red muscle fibers make ATP by aerobic respiration Have many mitochondria Myoglobin stores oxygen Sustain prolonged activity White muscle fibers make ATP by lactate fermentation Have few mitochondria and no myoglobin Sustain short bursts of activity

Figure 7-11b p127

Figure 7-11c p127

Take-Home Message: What is fermentation? ATP can form by carbohydrate breakdown in fermentation pathways, which are anaerobic The end product of lactate fermentation is lactate. The end product of alcoholic fermentation is ethanol Both pathways have a net yield of two ATP per glucose molecule; the ATP forms during glycolysis Fermentation reactions regenerate the coenzyme NAD +, without which glycolysis (and ATP production) would stop

7.7 Alternative Energy Sources in Food Aerobic respiration can produce ATP from the breakdown of complex carbohydrates, fats, and proteins As in glucose metabolism, many coenzymes are reduced, and the energy of the electrons they carry ultimately drives the synthesis of ATP in electron transfer phosphorylation

Energy From Complex Carbohydrates Enzymes break starch and other complex carbohydrates down to monosaccharide subunits Monosaccharides are taken up by cells and converted to glucose-6-phosphate, which continues in glycolysis A high concentration of ATP causes glucose-6-phosphate to be diverted away from glycolysis and into a pathway that forms glycogen

Energy From Fats Enzymes cleave fats into glycerol and fatty acids Glycerol products enter glycolysis Fatty acids are converted to acetyl Co-A and enter the Krebs cycle Compared to carbohydrates, fatty acid breakdown yields more ATP per carbon atom When blood glucose level is high, acetyl CoA is diverted from the Krebs cycle and into a pathway that makes fatty acids

Energy from Proteins Enzymes split dietary proteins into amino acid subunits, which are used to build proteins or other molecules The amino group is removed and converted into ammonia (NH 3 ), a waste product eliminated in urine Acetyl CoA, pyruvate, or an intermediate of the Krebs cycle forms, depending on the amino acid

starch (a complex carbohydrate) glucose A Complex carbohydrates are broken down to their monosaccharide subunits, which can enter glycolysis. 1 Figure 7-12a p128

a triglyceride (fat) glycerol head fatty acid tails Figure 7-12b p128

Food Fats Complex Carbohydrates Proteins fatty acids glycerol glucose, other simple sugars 2 3 1 4 amino acids acetyl CoA PGAL acetyl CoA Glycolysis NADH pyruvate Krebs Cycle intermediate of Krebs cycle NADH, FADH 2 Electron Transfer Phosphorylation Figure 7-12b p128

alanine (an amino acid) pyruvate Figure 7-12c p128

ANIMATED FIGURE: Alternative energy sources To play movie you must be in Slide Show Mode PC Users: Please wait for content to load, then click to play Mac Users: CLICK HERE

Take-Home Message: Can organic molecules other than glucose be used for energy? Complex carbohydrates, fats, and proteins can be oxidized in aerobic respiration to yield ATP First the digestive system and then individual cells convert molecules in food into intermediates of glycolysis or the Krebs cycle