Phenolic Contents and Antioxidant Properties from Aerial Parts of Achyranthes coynei Sant

Similar documents
Phytochemical and antioxidant properties of some Cassia species

Determination of total phenolic, flavonoid content and free radical scavenging activities of common herbs and spices.

Research Article GALLIC ACID AND FLAVONOID ACTIVITIES OF AMARANTHUS GANGETICUS

Antioxidant and antimicrobial potential of methanolic extract of Indian sacred grove Gymnostachyum febrifugum Benth. root

WORLD JOURNAL OF PHARMACY AND PHARMACEUTICAL SCIENCES. World Journal of Pharmacy and Pharmaceutical Sciences SJIF Impact Factor 6.

Antioxidant Activity of the plant Andrographis paniculata (Invitro)

Preparation and characterization of Aloe vera extract

Keywords: antioxidant; extraction; paper flower; phenolic compound

PRODUCTION OF VALUE ADDED PRODUCTS FROM SOME CEREAL MILLING BY-PRODUCTS SAYED SAAD ABOZAIED SMUDA THESIS DOCTOR OF PHILOSOPHY

SUPPLEMENTARY MATERIAL

OPTIMIZATION OF MICROWAVE-ASSISTED EXTRACTION OF BIOACTIVE COMPOUNDS FROM LEAVES AND STEMS OF THAI WATER SPINACH (Ipomoea aquatic var.

Phytochemical Analysis and Antioxidant property of Aegle marmelos Extracts

Pharmacologyonline 3: (2011)

Estimation of Total Phenol and Flavanoid Content and Antioxidant Activity of Urena lobata Leaf Extract

Optimization of extraction method and profiling of plant phenolic compounds through RP-HPLC

6 CHAPTER-6 TOTAL PHENOLIC AND FLAVONOID CONTENT DETERMINATION

2. MATERIAL AND METHODS / EXPERIMENTAL DETAILS / METHODOLOGY

In Vitro Antioxidant Activity of some Edibles Bearing Nutritional Value

Figure 8.1: Principle reaction behind DPPH assay Unnati Shah Institute of Pharmacy, Nirma University-Ph.D. thesis 136

Evaluation of the in vitro antioxidant potential of extracts obtained from Cinnamomum zeylanicum barks

Main pomegranate phytochemicals and their contribution to the antioxidant potencies of pomegranate juice

Total Polyphenol Content and Antioxidant Activity of The Extracts from Thunbergia laurifolia Lindl. Leaves

Research Article Derivative Spectrophotometric Method for Estimation of Metformin Hydrochloride in Bulk Drug and Dosage Form

Scholars Research Library. Determination of Phenol and flavonoid content from Vateria indica (Linn)

Journal of Chemical and Pharmaceutical Research

Scholars Research Library J. Nat. Prod. Plant Resour., 2017, 7(2): (

CHEM104 Exp. 9 Phytochemical Antioxidants with Potential Benefits in Foods Part I. 1

ESSENTIAL OILS AS ANTIOXIDANTS FOR FATLIQUORING EMULSION

Biological activities of an aboriginal herbal medicine, Piperaceae kadsura (Choisy) Ohwi, in Taiwan

Evaluation of In Vitro Antioxidant Activity of Sateria verticillata Leaves by Using DPPH Scavenging Assay

IJRPC 2011, 1(4) Rohan et al. ISSN: INTERNATIONAL JOURNAL OF RESEARCH IN PHARMACY AND CHEMISTRY

Development and validation of UV spectrophotometric estimation of lisinopril dihydrate in bulk and tablet dosage form using area under curve method

IN VITRO ANTIOXIDANT ACTIVITY AND PUNICALAGIN CONTENT QUANTIFICATION OF POMEGRANATE PEEL OBTAINED AS AGRO-WASTE AFTER JUICE EXTRACTION

DEVELOPMENT AND VALIDATION OF NEW HPLC METHOD FOR THE ESTIMATION OF PALIPERIDONE IN PHARMACEUTICAL DOSAGE FORMS

In vitro Antioxidant Activity of Ethanolic Extract of Psidium guajava Leaves

ISOLATION AND CHARACTERIZATION OF HESPERIDIN FROM ORANGE PEEL

ANTIOXIDANT ACTIVITY STABILITY TEST OF CULTURING MEDIA FROM Pleurotus ostreatus VAR. BHUTAN IN COSMETIC PRODUCTS

PHARMA SCIENCE MONITOR AN INTERNATIONAL JOURNAL OF PHARMACEUTICAL SCIENCES

International Journal of Research in Pharmacy and Science

Development, Estimation and Validation of Lisinopril in Bulk and its Pharmaceutical Formulation by HPLC Method

Antioxidant Activities in Various Peel Extracts of Four Varieties Rambutan (Nephelium lappaceum) Using DPPH, FRAP Assays

Antioxidants in Wax Cappings of Honey Bee Brood

Free radical scavenging activity of plant extracts of Chlorophytum tuberosum B

THE PHARMA INNOVATION - JOURNAL. Evaluation of antioxidant and cytotoxic activity of methanolic extract of Mimosa pudica leaves

Antioxidative activities and phenolic compounds of pumpkin (Cucurbita pepo) seeds and amaranth (Amaranthus caudatus) grain extracts

Pharmacognostic evaluation of Achyranthes coynei: Leaf

Detection of Antioxidants in the Development of an Effective Polyherbal Combination in the Management of Diabetes

TOTAL ANTIOXIDANT ACTIVITY, TOTAL PHENOLIC CONTENT AND RADICAL SCAVENGING ACTIVITY BOTH FLESH AND PEEL OF RED PITAYA, WHITE PITAYA AND PAPAYA

PRELIMINARY PHYTOCHEMICAL SCREENING AND IN-VITRO FREE RADICAL SCAVENGING ACTIVITY OF MELOCHIA CORCHORIFOLIA PLANT EXTRACTS

Synergistic effects of antioxidative peptides from rice bran

6. SUMMARY AND CONCLUSION

Antioxidant Activity by DPPH Radical Scavenging Method of Ageratum conyzoides Linn. Leaves

Research & Reviews: Journal of Pharmacology and Toxicological Studies

Development and Validation of Analytical Method for Determination of Andrographolide in Bulk Powder

Assessment of Antioxidant Activity of Giant Snowdrop (Galanthus elwesii Hook) Extracts with Their Total Phenol and Flavonoid Contents

Scholars Research Library. Evaluation of phenolic content and antioxidant activity of Aegle marmelos (L.) Corr. Serr.

Total Phenolic Content and Antioxidant Activity of Spilanthes Species from Peninsular India

A high-performance liquid chromatography (HPLC) method for determination of chlorogenic acid and emodin in Yinhuang Jiangzhi Tea

Development And Validation Of UV Spectrophotometric Method For Simultaneous Estimation Of Rutin And Gallic Acid In Hydroalcoholic Extract Of

Research Article An In-Vitro Free Radical Scavenging Activity of Methanolic Extracts of Whole Plant of Teramnus labialis (Linn.)

Research Article Simultaneous Estimation of DL-Methionine and Pyridoxine Hydrochloride in Tablet Dosage Form by RP-HPLC

Mukesh S. Sikarwar et al. Int. Res. J. Pharm. 2018, 9 (10) INTERNATIONAL RESEARCH JOURNAL OF PHARMACY

EVALUATION OF INVITRO ANTIOXIDANT ACTIVITY OF ETHANOLIC ROOT EXTRACT OF CURCULIGO ORCHIOIDES

Scholars Research Library. In-vitro antioxidant activity of Triumfetta pilosa Roth

ANTIOXIDANT ACTIVITY OF β-carboline DERIVATIVES

التأثري املضبد لاللتهبة ملستخلصبت قشىر وبذور الزمبن على أرجل فئزان التجبرة

Comparative evaluation for in vitro Antioxidant activity from Artocarpus heterophyllus Lamk and Balanites aegyptiaca L.

Journal of Chemical and Pharmaceutical Research, 2018, 10(2):1-5. Research Article. RP- HPLC Method for Estimation of Furosemide in Rabbit Plasma

Food Research And Development

Development and Validation of Improved RP-HPLC method for Identification and Estimation of Ellagic and Gallic acid in Triphala churna

TLC, HPTLC and Quantitative Estimation of Acetone, Methanolic and Hydro-Alcoholic Extract of Stem Bark of Bauhinia purpurea Linn.

Title: Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L.

MEDAK DIST. ANDHRA PRADESH STATE, INDIA. Research Article RECEIVED ON ACCEPTED ON

Journal of Chemical and Pharmaceutical Research, 2016, 8(9): Research Article

Journal of Chemical and Pharmaceutical Research, 2018, 10(2): Research Article

In Vitro Antioxidant and Cytotoxic Analysis of Boerhaavia diffusa Linn.

IJPRD, 2011; Vol 4(03): May-2012 ( ) International Standard Serial Number

Bioprospecting of Adenoon indicum: An Endemic Plant of Asteraceae from Western Ghats of India

SUPPLEMENTARY MATERIAL Phenolic, flavonoid contents, anticholinestrase and antioxidant evaluation of Iris germanica var; florentina

The In Vitro Antioxidant Activity of Polyalthia Longifolia

Chapter-8 Conclusion and Future Scope of the Study

Amudha S et al., Asian Journal of Pharmthiaceutical Technology & Innovation, 04 (21); 2016; Research Article

RP-HPLC Analysis of Temozolomide in Pharmaceutical Dosage Forms

Antifungal activity of methanolic and ethanolic leaf extracts of medicinal plants

Journal of Chemical and Pharmaceutical Research, 2016, 8(3): Research Article

210 J App Pharm Vol. 6; Issue 2: ; April, 2014 Mustafa et al, 2014

Determination of the antioxidant activity by the Rancimat method

Chapter 2 Biochemical changes and antioxidant activity of elephant- foot yam corm during development

DEVELOPMENT OF NEW ANALYTICAL METHODS FOR THE ESTIMATION OF OPIOID ANTAGONIST NALTREXONE HYDROCHLORIDE

In Vitro Antioxidant Activity Of The Hexane And Methanolic Extracts Of Cordia Wallichii And Celastrus Paniculata

Theory Photochem. Anna Horszwald (Michalska)

Osmaniye Korkut Ata University, Faculty of Engineering, Department of Food Engineering, Karacaoğlan Campus, 80000, Osmaniye-TURKEY.

Available Online through

Anticancer PSP and phenolic compounds in Lentinus squarrosulus and Lentinus polychrous

Efficacy of natural extracts on the storage quality of Apple

In vitro Free Radical Scavenging Activity of Alcoholic Root Extract of Pseudarthria viscida

Evaluation of Antioxidant Activity of Apple Peel and Pulp Extracts by Using Different Solvents

Available online through

Pelagia Research Library. Study of antioxidant activity of ethanolic extract of fresh Eichhornia crassipes (Mart.)Solms

Transcription:

Short Communication Phenolic Contents and Antioxidant Properties from Aerial Parts of Achyranthes coynei Sant V. UPADHYA, S. R. PAI*, G. ANKAD, P. J. HURKADALE 1 AND H. V. HEGDE Regional Medical Research Centre, ICMR, Nehru Nagar, 1 KLES College of Pharmacy, KLE University, Nehru Nagar, Belgaum-590 010, India Upadhya, et al.: Antioxidant Properties of A. coynei Aim of the study was to evaluate antioxidant activity and total phenolic content of Achyranthes coynei; an endemic plant used in treatment of several diseases in the same lines that of Achyranthes aspera by traditional practitioners of Belgaum region. Efficiency of methods was studied for aerial parts (leaves, stem, and inflorescence) extracted in methanol using continuous shaking, microwave assisted and ultra sonic technique, by exposing it for different time period. Total phenolic content was measured by Folin Ciocalteu method and antioxidant activity using 2,2' diphenyl 1 picryl hydrazyl radical scavenging assay and ferric reducing antioxidant power assay. Extracts of A. coynei revealed highest yield of total phenolic content in continuous shaking method compared to other methods. Significantly higher amount of phenolic content (467.07±23.35 tannic acid equivalent and 360.83±18.04 caffic acid equivalent mg/100 g FW) was estimated at 360 min of continuous shaking. In 2,2' diphenyl 1 picryl hydrazyl radical scavenging assay and ferric reducing antioxidant power assay, inflorescence and leaf showed highest potential activity, respectively. Stem extracts showed lower yield of total phenolic content and antioxidant activity. Results also showed 2,2' diphenyl 1 picryl hydrazyl radical scavenging assay had significant correlation with total phenolic content. This is first report of total phenolic content and antioxidant studies in A. coynei. Key words: Antioxidant activity, Achyranthes coynei, endemic, total phenolic content Plants are good source of biologically active secondary metabolites which have many therapeutic potential in many diseases and even in free radical associated disorders [1]. Among secondary metabolites synthesized, plant polyphenols are the aromatic hydroxylated compounds which have the most potent and therapeutically useful bioactive substances. Promising radical scavenging ability of the phenolic compounds produced in higher plants is studied extensively [2,3]. Oxidation stress is one of the major concerns of health in modern era and antioxidants have been reported to prevent oxidative damage caused by free radical, via interfering with the oxidation process by reacting with free radicals, by chelating with catalytic metals, and also by acting as oxygen scavengers [4,5]. Although several synthetic antioxidants, such as butylated hydroxyanisole and butylated hydroxytoluene, are available because of their toxicity problems; there is an upsurge of interest in the therapeutic potentials of plants as antioxidants. *Address for correspondence E-mail: sandeeprpai@rediffmail.com In addition to the natural antioxidants like vegetables, fruits, spices and tea, scientific evaluation of plant s properties through potent pharmacological activities, toxicity profiling and economic viability are needed for growing recognition for medicinal plants and herbal products as novel antioxidants in recent decades. Therefore, significant consideration has been directed toward the detection of antioxidant properties in plant species. Achyranthes coynei Sant. is a rare, endemic plant species belonging to family Amaranthaceae. Its distribution was restricted to Maharashtra and recently was reported from Karnataka [6]. Achyranthes aspera L. is the much known medicinal plant from the family used in treating various disorders [7]. Achyranthes coynei, locally known as Kempu uttarani is used as substitute for A. aspera by local traditional practitioners in similar disease treatment because of comparable appearance [6]. Green leaves, stem, and inflorescences of A. coynei were obtained from a single produce at Pachapur, July - August 2013 Indian Journal of Pharmaceutical Sciences 483

from Belgaum and a specimen was authenticated and deposited at Herbaria, Regional Medical Research Centre, Belgaum (Voucher Number: RMRC 785). Three methods with three exposure times were compared for their antioxidant activity and the yield of phenolics. For all methods 1 g of plant materials (green leaves, stem, and inflorescence) were extracted with 20 ml of 95% methanol. Continuous shaking (CSE) was carried out on orbital shaker (Remi Instruments, Mumbai, India) at a constant stirring of 110 rpm at room temperature for 30, 180, and 360 min separately. Microwave assisted (MAE) was carried out at 1, 3, and 5 min of exposure using microwave oven (Godrej, GM 30 CA1 SIM) at 180 W. The suspensions were cooled after every 1 min to avoid bumping of solvent out of the flask in order to complete 3 and 5 min of microwave exposure. Ultrasonic (USE) was performed on ultrasonic bath (Soncis Vibracell, USA) 130 Watt, at working amplitude of 60 Khz. The samples were exposed for 5, 15, and 30 min of sonication at room temperature. These extracts were filtered using Watman filter paper No. 1 and volume was made up to 20 ml with 95% methanol. Total phenolic content (TPC) was quantified using modified Folin Ciocalteu method described by Wolfe et al. [8]. The absorbance of blue color was read at 760 nm on double beam spectrophotometer. The results were compared to the standard curve and were expressed as mg tannic and/or caffeic acid equivalent per 100 g fresh plant material. Antioxidant activities were determined as the measure of free radical scavenging activity using 2,2' diphenyl 1 picryl hydrazyl (DPPH) assay as determined by Brand Williams et al. [9]. The absorbance at 515 nm was measured using methanol as blank and DDPH radical scavenging activity was calculated. Ferric reducing antioxidant power (FRAP) assay was used to measure the total antioxidant power. Antioxidant assay was preformed as previously described and absorbance was taken at 593 nm [10]. The results were expressed as ascorbic acid equivalent antioxidant capacity (AEAC) and Trolox equivalent antioxidant capacity (TEAC) as determined by Gil et al. [11]. The values are represented as mean±sd of three individual readings. The calibration curves for all standards were generated with the correlation coefficients (R 2 ) above 0.9500. The regression equations for various determinations are given as follows, for TPC: tannic acid, y=0.003x+0.115; caffeic acid y=0.004x+0.092; for DPPH assay: TEAC, y=0.000x+0.001; AEAC, y=0.000x-0.024; for FRAP assay: TEAC, y=0.000x+0.152; AEAC, y=0.000x+0.114. The respective contents were calculated using above equations from standard calibration curves. Estimated TPC from various parts of A. coynei extracted using CSE, MAE, and USE methods are depicted in Table 1. Total phenolic content ranged from 85.13±4.26 to 467.07±23.35 mg tannic acid equivalent (TAE)/100 g and 65.77±03.29 to 360.83±18.04 mg caffeic acid equivalent (CAE)/100 g on fresh weight basis. TPC in stem was lowest from 85.13±4.26 mg TAE/100 g and 65.77±3.29 mg CAE/100 g at 30 min to highest of 190.02±9.50 mg TAE/100 g and 146.80±7.34 mg CAE/100 g at 360 min of CSE. TPC in leaves ranged from 220.79±11.04 to 354.51±17.73 mg TAE/100g and TABLE 1: EFFICIENCY OF EXTRACTION METHODS ON CONTENT OF TOTAL PHENOLICS IN VARIOUS PARTS OF A. COYNEI Method of Continuous shaking Microwave assisted Ultra sonic Plant parts SD=Standard deviation Time min Total phenolic content mg/100g FW Tannic acid±sd Caffeic acid±sd Leaf 30 312.67±15.63 241.56±12.08 180 354.51±17.73 273.88±13.69 360 315.59±15.78 243.81±12.19 Stem 30 086.10±04.31 066.52±03.33 180 142.35±07.12 109.98±05.50 360 190.02±09.50 146.80±07.34 Inflorescence 30 302.90±15.15 234.01±11.70 180 368.44±18.42 284.64±14.23 360 467.07±23.35 360.83±18.04 Leaf 1 295.94±14.80 228.63±11.43 3 270.08±13.50 208.65±10.43 5 324.39±16.22 250.61±12.53 Stem 1 115.90±05.80 089.54±04.48 3 130.15±06.51 100.55±05.03 5 145.43±07.27 112.35±05.62 Inflorescence 1 250.32±12.52 193.39±09.67 3 411.14±20.56 317.63±15.88 5 249.67±12.48 192.89±09.64 Leaf 5 220.79±11.04 170.57±08.53 15 290.65±14.53 224.54±11.23 30 300.42±15.02 232.09±11.60 Stem 5 085.13±04.26 065.77±03.29 15 107.27±05.36 082.87±04.14 30 101.38±05.07 078.32±03.92 Inflorescence 5 297.23±14.86 229.63±11.48 15 303.17±15.16 234.22±11.71 30 364.98±18.25 281.97±14.10 484 Indian Journal of Pharmaceutical Sciences July - August 2013

170.57±8.53 to 273.88±13.69 mg CAE/100g. Among all parts and methods tested highest TPC was observed in inflorescence (467.07±23.35 TAE and 360.83±18.04 CAE mg/100 g) at 360 min of CSE method and lowest was recorded in stem. Synchronized patterns of increase in TPC with respect to time of were observed for inflorescence in CSE and USE; stem in CSE and MAE and leaf in MAE and USE methods. Antioxidant potential of aerial parts of A. coynei using different methods were tested using DPPH and FRAP assay and results were presented in Table 2. Ascorbic acid equivalent activity was recorded higher over trolox in both antioxidant assays for the tested extracts. The DDPH radical scavenging activity was highest in inflorescence extract with CES 360 min (TEAC 473.63 µm and AEAC 666.43 µm) as per Table 2. The results were in correlation to the phenolic content estimated. Increase in DPPH activity with respect to time (30-360 min) was observed in CSE and MAE methods. Minor fluctuation in the activity was observed for extracts exposed to USE method. However, it was interesting to note that in CSE yielded higher and significant results over the other methods tested. Ferric reducing capacity was higher in leaf sample extracted using 180 min of CSE method (688.82±34.44 µm TEAC and 844.02±42.20 µm AEAC). The pattern observed for the FRAP activity was unlike that of DPPH and TPC. Increase in activity was proportional to the immediate next exposure time in series for all the methods followed by drop or no change (Table 2). This may be because extended exposure time in any method affecting activity. Small variation in activity was noticed with change in exposure times for a particular method and plant part. Leaf yielded highest activity for FRAP over stem and inflorescence. Different levels reported in this study may be attributed to the different plant parts and methods with time used to express as total phenolic contents. In general, there was a significant correlation between TPC and DPPH scavenging assays over FRAP. Findings of the study also indicate polyphenols are important contributors in free radical scavenging TABLE 2: EFFICIENCY OF EXTRACTION METHODS ON DPPH RADICAL SCAVENGING AND FRAP ANTIOXIDANT ACTIVITIES IN VARIOUS PARTS OF A. COYNEI Method of Plant parts Time min DPPH µm FRAP µm TEAC±SD AEAC±SD TEAC±SD AEAC±SD Continuous shaking Microwave assisted Leaf 30 239.17±11.96 337.04±16.85 462.14±23.11 566.26±28.31 180 386.44±19.32 544.57±27.23 688.82±34.44 844.02±42.20 360 432.39±21.62 609.32±30.47 508.37±25.42 622.91±31.15 Stem 30 110.16±05.51 155.24±07.76 173.98±08.70 213.18±10.66 180 208.54±10.43 293.87±14.69 286.28±14.31 350.78±17.54 360 291.6±14.58 410.92±20.55 293.59±14.68 359.73±17.99 Inflorescence 30 231.51±11.58 326.25±16.31 254.55±12.73 311.90±15.60 180 418.84±20.94 590.23±29.51 451.70±22.59 553.47±27.67 360 473.63±23.68 667.43±33.37 547.82±27.39 671.25±33.56 Leaf 1 315.75±15.79 444.96±22.25 491.05±24.55 601.69±30.08 3 304.56±15.23 429.18±21.46 515.89±25.79 632.12±31.61 5 374.07±18.70 527.14±26.36 586.44±29.32 718.57±35.93 Stem 1 169.66±08.48 239.08±11.95 193.81±09.69 237.48±11.87 3 195.58±09.78 275.61±13.78 239.11±11.96 292.98±14.65 5 202.06±10.10 284.74±14.24 231.80±11.59 284.03±14.20 Inflorescence 1 220.91±11.05 311.30±15.57 251.00±12.55 307.56±15.38 3 353.45±17.67 498.08±24.90 350.26±17.51 429.17±21.46 5 196.17±09.81 276.44±13.82 228.36±11.42 279.81±13.99 Ultra sonic Leaf 5 229.74±11.49 323.75±16.19 391.69±19.58 479.94±24.00 15 284.53±14.23 400.96±20.05 499.61±24.98 612.17±30.61 30 311.04±15.55 438.31±21.92 493.66±24.68 604.88±30.24 Stem 5 107.80±05.39 151.92±07.60 286.28±14.31 350.78±17.54 15 139.61±06.98 196.74±09.84 254.24±12.71 311.52±15.58 30 132.54±06.63 186.78±09.34 204.87±10.24 251.03±12.55 Inflorescence 5 237.40±11.87 334.55±16.73 266.55±13.33 326.61±16.33 15 259.20±12.96 365.26±18.26 295.46±14.77 362.03±18.10 30 295.13±14.76 415.90±20.80 327.09±16.35 400.78±20.04 SD=Standard deviation, TEAC=Trolox equivalent antioxidant capacity, AEAC=acid equivalent antioxidant capacity, FRAP=ferric reducing antioxidant power, DPPH=diphenyl-1-picryl hydrazyl July - August 2013 Indian Journal of Pharmaceutical Sciences 485

activities. The results are in accordance with those carried out in other plants [12]. Hagerman et al. [13] reported that the high molecular weight phenolics (tannins) have potent scavenging activity toward the free radicals and that the activity depends on the molecular weight, the number of aromatic rings, and nature of hydroxyl groups. Therefore, antioxidant activities of these extracts cannot be predicted on the basis of their TPC alone, but will also require proper characterization of individual phenolic components. The present study reports TPC and antioxidant activity of A. coynei for the first time. Results showed antioxidant potential of aerial parts using different methods. The study may support use of A. coynei to prevent in vivo oxidative damage associated with illnesses. Present study also suggests further need for detailed phytochemical investigation and pharmacological studies to support use of this plant by traditional practitioners. ACKNOWLEDGEMENTS Authors are grateful to the Director in Charge, Regional Medical Research Centre (ICMR) Belgaum, for providing facilities. VU and SRP are grateful to the Indian Council of Medical Research, for SRF and PDF financial grants, respectively. Authors extend their thanks to Dr. Subarna Roy and Dr. Rajesh Joshi RMRC, Belgaum for their support and suggestions. REFERENCES 1. Lee YM, Kim H, Hong EK, Kang BH, Kim SJ. Water extract of 1:1 mixture of Phellodendron cortex and Aralia cortex has inhibitory effects on oxidative stress in kidney of diabetic rats. J Ethnopharmacol 2000;73:429 36. 2. Pai SR, Nimbalkar MS, Pawar NV, Patil RP, Dixit GB. Seasonal discrepancy in phenolic content and antioxidant properties from bark of Nothopodytes nimmoniana (Grah.) Mabb. Int J Pharm Biosci 2010;1:1 17. 3. Balasundram N, Sundram K, Samman S. Phenolic compounds in plants and agriindustry by products: Antioxidant activity, occurrence and potential uses. Food Chem 2006;99:191 203. 4. Shahidi F, Wanasundara PK. Phenolic antioxidants. Cri Rev Food Sci Nutr 1992;32:67 103. 5. Buyukokurouglu ME, Gulcin I, Oktay M, Kufrevioglu OI. In vitro antioxidant properties of dantrolene sodium. Pharmacol Res 2001;44:491 4. 6. Pai SR, Upadhya V, Hegde HV, Kholkute SD. Achyranthes coynei Santapau, 1949 (Amaranthaceae) An addition to the flora of Karnataka, India. J Threat Taxa 2011;3:1875 9. 7. Achyranthes Linn. (Amaranthaceae). In: Gupta AK, Tandon N, editors. Reviews on Indian Medicinal Plants. Vol. 1. New Delhi: Indian Council of Medical Research; 2004. p. 140 64. 8. Wolfe K, Wu X, Liu RH. Antioxidant activity of apple peels. J Agric Food Chem 2003;51:609 14. 9. Brand Williams W, Cuvelier ME, Berset C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Tech 1995;28:25 30. 10. Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: The FRAP assay. Anal Biochem 1996;239:70 6. 11. Gil MI, Tomás Barberán FA, Hess Pierce B, Holcroft DM, Kader AA. Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. J Agric Food Chem 2000;48:4581 9. 12. Sreeramulu D, Raghunath M. Antioxidant activity and phenolic content of roots, tubers and vegetables commonly consumed in India. Food Res Int 2010;43:1017 20. 13. Hagerman AE, Riedl KM, Jones GA, Sovik KN, Ritchard NT, Hartzfeld PW, et al. High molecular weight plant polyphenolics (tannins) as biological antioxidants. J Agric Food Chem 1998;46:1887 92. Accepted 25 May 2013 Revised 23 May 2013 Received 29 January 2013 Indian J Pharm Sci 2013;75(4):483-486 Development and Validation of High performance Thin Layer Chromatographic Method for Ursolic Acid in Malus domestica Peel P. H. NIKAM, J. A. KAREPARAMBAN, A. P. JADHAV* AND V. J. KADAM Department of Quality Assurance, Bharati Vidyapeeth s College of Pharmacy, Belapur, Navi Mumbai-400 614, India Nikam, et al.: Quantification of Ursolic Acid in Malus domestica by HPTLC Ursolic acid, a pentacyclic triterpenoid possess a wide range of pharmacological activities. It shows hypoglycemic, antiandrogenic, antibacterial, antiinflammatory, antioxidant, diuretic and cynogenic activity. It is commonly present in plants especially coating of leaves and fruits, such as apple fruit, vinca leaves, rosemary leaves, and eucalyptus 486 Indian Journal of Pharmaceutical Sciences July - August 2013