Making a plastic from potato starch

Similar documents
Making a plastic from potato starch

Most of the ethanol that is used as a biofuel in this country is produced from corn.

Inspirational chemistry 97. Index sheets. Rhubarb contains oxalic acid, which has the formula C H 3. O + 2 Mn CO 2

Production of Bioplastic

SPECIFICATION CONTINUED Glucose has two isomers, α-glucose and β-glucose, with structures:

9. Determine the mass of the fat you removed from the milk and record in the table. Calculation:

EXPERIMENT 11 DOES THE FOOD WE EAT CONTAIN REDUCING SUGARS?

Catalytic Activity of Enzymes

You should wear eye protection throughout this practical. Amylase is harmful, avoid contact with eyes and skin.

13. Experiments with enzymes the effect of enzyme concentration on reaction rate Student Sheet

SALIVA TEST Introduction

» Croscarmellose Sodium is a cross linked polymer of carboxymethylcellulose sodium.

METHOD OF TEST FOR DETERMINATION OF INSOLUBLE RESIDUE OF CARBONATE AGGREGATES

Experiment 1. Isolation of Glycogen from rat Liver

CCMR Educational Programs

You should wear eye protection throughout this practical. Ammonia is corrosive and dangerous to the environment.

This hands-on workshop is designed to teach students about which foods contain starch and the properties of starch

Purity Tests for Modified Starches

Organic Molecule Composition of Milk: Lab Investigation

Cross-linking polymers alginate worms

EXPERIMENT 4 DETERMINATION OF REDUCING SUGARS, TOTAL REDUCING SUGARS, SUCROSE AND STARCH

The Effect of Hydrogen Peroxide Concentration (substrate) on the Activity of the Enzyme Catalase

Osmosis in Potato Slices

Enzyme Action: Testing Catalase Activity

Name... Class... Date...

Identification of Organic Compounds Lab

Rate of Decomposition of Hydrogen Peroxide as a Function of Catalase. Concentration

Tests for Carbohydrates

Lab 2. The Chemistry of Life

CORESTA RECOMMENDED METHOD N 39

ENZYME CONCENTRATIONS AND ENZYME ACTIVITY: PLANNING SHEET

12AL Experiment 8 (3 days): Synthesis of Isopentyl Acetate (aka: Banana Oil)

TECHNICAL BULLETIN METHOD 1: DETERMINATION OF TOTAL DIETARY FIBRE

Amylase: a sample enzyme

Dopa oxidase. Reaction: The reaction is the conversion of L-dopa (L-3,4- dihydroxyphenylalanine) to dopachrome (red). dopa oxidase

McMush Lab Testing for the Presence of Macromolecules

Carboxylic Acids and Esters

PURPOSE: To synthesize soap from fat and lye. To observe the physical and chemical properties of soap.

Figure 2. Figure 1. Name: Bio AP Lab Organic Molecules

Teacher Demo/Student Activity: Limit to Cell Size

Determining the Molecular Mass of an Unknown Acid by Titration

Synthesis and application of ecofriendly liquid detergents of mixed carbohydrates and glycol origin

Lab 6: Cellular Respiration

Testing for the Presence of Macromolecules

Petrolatum. Stage 4, Revision 1. Petrolatum is a purified semi solid mixture of hydrocarbons obtained from petroleum.

Experiment Optional #2: The Synthesis of Aspirin

Testing the capacity of biological buffer systems to resist changes in ph By P. H. Meter

CHEMISTRY OF LIFE 13 MARCH 2013

Experiment 12 Sugar!

LAB Potato Cores Honors Biology, Newton North High

Lab: Organic Compounds

OBSERVING MITOSIS. Purpose. Preparing the cells. Interpreting what you see on your cell preparation. Salters-Nuffield Advanced Biology Resources

Study the lecture notes and the textbook, and then answer the following questions.

09 Enzymes. December 04, Chapter 9 Enzymes. Mr. C Biology 1

Problem Based Practical Activities Problem 10: Patient prognosis

Core practical 4: Investigate the effect of sucrose concentration on pollen tube growth

1.0 Purpose To provide guidelines for preparing reagents used in casework in the Firearm and Tool Mark Section.

NJIT SUMMER RET PROGRAM 2012 INSTRUCTIONAL MODULE BY MINA ARMANI NANO TECHNOLOGY IN PHARMACEUTICAL INDUSTRY Solubility and Intermolecular Forces

To understand osmosis, we must focus on the behavior of the solvent, not the solute.

Name: Date: AP Biology LAB : FACTORS INFLUENCING ENZYME ACTIVITY

WEAR GOGGLES, GLOVES AND A LAB APRON!!!!

2.1.1 Biological Molecules

Biochemical Analysis of Plant Enzymes

Challenge Finding which plants have an enzyme called catalase That breaks hydrogen peroxide into water and oxygen.

BIOLOGY 1101 LAB 1: OSMOSIS & DIFFUSION. READING: Please read pages & in your text prior to lab.

Chemistry 151 Last Updated: Dec Lab 2: Measurements & Chemical Changes

McMush Lab Testing for the Presence of Biomolecules

Pectins. Residue Monograph prepared by the meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA), 82 nd meeting 2016

EXPERIMENT 9 LIPIDS: DETERMINATION OF FAT IN FRENCH FRIES. a fat molecule. Materials Needed

EXERCISE 5. Enzymes H amylase + starch + amylase-starch complex maltose+ amylase.

12BL Experiment 2: Extraction & Saponification of Trimyristin from Nutmeg

Preparation and Comparison of Soaps Minneapolis Community and Tech. College C1152 Principles of Chemistry II v.5.10

Who took Kaleb s ipod? -- An organic compound mystery

GENERAL TESTS FOR CARBOHYDRATE. By Sandip Kanazariya

University of Leicester Materials Centre. Plastics from potatoes and rubber from rice

HiPer Western Blotting Teaching Kit

THERMALLY OXIDIZED SOYA BEAN OIL interacted with MONO- and DIGLYCERIDES of FATTY ACIDS

TRATION: ANALYSIS OF SODIUM HYDROXIDE

Experiment 9 Amino Acids and Proteins

AP BIOLOGY Enzyme Catalysis

The Hydrogen Peroxide Breakdown

EXPERIMENT 6 Properties of Carbohydrates: Solubility, Reactivity, and Specific Rotation

Emulsions. Purpose of emulsions and of emulsification:

Aim: To study the effect of ph on the action of salivary amylase. NCERT

Used to pick up or hold hot objects Protects the eyes from flying objects or chemical splashes

Instruction Manual Updated 8/27/2013 Ver. 1.1

Core practical 14: Investigate the effect of gibberellin on the production of amylase in germinating cereals using a starch agar assay

Method 7.6 Raw sugar: reducing sugars by the Luff Schoorl method

KIDNEY STONE ANALYSIS

Exploding Corn: Student Pages DIFFERENCES BEWEEN MASS AND VOLUME CHANGES WITH POPCORN

Enzyme Action: Testing Catalase Activity

Enzymes Adapted from Air All Around: Oxygen Investigation

Lab #3 Potentiometric Titration of Soda Ash (after Christian, p , p ) (phenolphthalein)

Organic compounds. Carbohydrates

Organic Compounds in the Foods

For Examiner s Use Total EMPA mark Surname. Candidate. Number. Other Names

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

OCR (A) Biology A-level

EXPERIMENT 2: ACID/BASE TITRATION. Each person will do this laboratory individually. Individual written reports are required.

Transcription:

Making a plastic from potato starch In this activity students make a plastic from potato starch and investigate the effect that adding a plasticiser has on the properties of the polymer that they make. Extracting starch from potatoes Potatoes (100 g) Grater Beakers (400 cm 3 ), 4 Large pestle and mortar Access to: Tea strainer Distilled water Making the plastic film Beaker (250 cm 3 ) Large watch glass Bunsen burner Heat resistant mat Tripod Gauze Stirring rod Petri dish or white tile Universal indicator paper Teat pipettes Measuring cylinder (25 cm 3 ) Measuring cylinder (10 cm 3 ) Access to: Balance (not essential, see note 1) Potato starch - either extracted in the first part or 2.5 g bought potato starch (see note 2)

Food colouring Propane-1,2,3-triol (glycerol) Dilute hydrochloric acid, 0.1 mol dm- 3 (Low hazard at this concentration) Dilute sodium hydroxide, 0.1 mol dm- 3 (Irritant at this concentration) Technical notes Dilute hydrochloric acid (Low hazard at concentration used) Refer to CLEAPSS Hazcard 47 and Recipe card 31 Dilute sodium hydroxide (Irritant at concentration used) Refer to CLEAPSS Hazcard 91 and Recipe card 65 1 If access to a balance is difficult get students to use a heaped spatula of starch rather than 2.5 g. 2 Even if students are extracting their own starch, it is worth having some commerical potato starch available in case they do not extract enough. 3 If a drying cabinet is available, it is useful for drying out the plastic films. It takes about 90 mins at 100 C. Procedure HEALTH & SAFETY: Wear eye protection Extracting the starch a Grate about 100 g of potato. The potato does not need to be peeled, but it should be clean. Put the potato into the mortar. b Add about 100 cm 3 of distilled water to the mortar, and grind the potato carefully. c Pour the liquid off through the tea strainer into the beaker, leaving the potato behind in the mortar. d Repeat steps b and c twice more. d Leave the mixture to settle in the beaker for 5 mins.

e Decant the water from the beaker, leaving behind the white starch which should have settled in the bottom. Put about 100 cm 3 of distilled water in with the starch and stir gently. Leave to settle again and then decant the water, leaving the starch behind. Making the plastic film a Put 22 cm 3 of water into the beaker and add 4 g of the potato starch slurry from the previous step (or 25 cm 3 water and 2.5 g of commercial potato starch), 3 cm 3 of hydrochloric acid and 2 cm 3 of propane-1,2,3-triol. b Put the watch glass on the beaker and heat the mixture using the Bunsen burner. Bring it carefully to the boil and then boil it gently for 15 mins. Do not boil it dry. If it looks like it might, stop heating. c Dip the glass rod into the mixture and dot it onto the indicator paper to measure the ph. Add enough sodium hydroxide solution to neutralise the mixture, testing after each addition with indicator paper. You will probably need to add about the same amount as you did of acid at the beginning (3 cm 3 ). d You can then add a drop of food colouring and mix thoroughly. e Pour the mixture onto a labelled petri dish or white tile and push it around with the glass rod so that there is an even covering. f Repeat the process, but leave out the propane-1,2,3-triol. g Label the mixtures and leave them to dry out. It takes about one day on a radiator or sunny windowsill, or two days at room temperature. Alternatively, use a drying cabinet. It takes about 90 mins at 100 C. Teaching notes This activity can be used simply as a practical to enhance the teaching of polymers or plastics. It can be used to introduce further work on biopolymers and bioplastics and/or it can be used as an example of the effects of plasticisers. A similar process is used in industry to extract starch, which is then used in a number of products including food and packaging.

If students extract their own potato starch then they can use that. It is a wet slurry rather than a dry powder so they need about 4 g with about 22 cm 3 water. If they do not have enough then they can add a bit of bought potato starch to the mix. If access to a balance is difficult, then get students to use a heaped spatula of starch rather than 2.5 g. If access to 10 cm 3 measuring cylinders is difficult, then get students to use four pipette squirts of hydrochloric acid and three squirts of propane-1,2,3-triol. If you have a drying cabinet, the mixture should dry in about 90 mins at 100 C. Warn students not to let the mixture boil dry, or it pops and has a tendency to jump out of the beaker. For this reason, students should wear eye protection at all stages. While using food colouring is optional, it does enhance the product and the colour it gives makes the plastic film look more like plastic. Only one drop is needed or the film is too dark. If students use too much water then their polymer won t solidify and remains a liquid. Starch is made of long chains of glucose molecules joined together. Strictly it contains two polymers: amylose which is straight-chained and amylopectin which is branched. When starch is dried from an aqueous solution it forms a film due to hydrogen bonding between the chains. However, the amylopectin inhibits the formation of the film. Reacting the starch with hydrochloric acid breaks down the amylopectin, forming more satisfactory film. This is the product that students make without propane-1,2,3-triol. The straight chains of the starch (amylose) can line up together and although this makes a good film, it is brittle because the chains are too good at lining up. Areas of the film can become crystalline, which causes the brittleness.

Section of a starch molecule (amylose and amylopectin) Students should be able to see a difference in the two films that they make. The one without the propane-1,2,3-triol is far more brittle, the one with it shows more plastic properties. Adding propane-1,2,3-triol makes a difference due to its hydroscopic (water attracting) properties. Water bound to the propane-1,2,3-triol gets in amongst the starch chains and stops the crystalline areas from forming, preventing the brittleness and resulting in more plastic properties, thus acting as a plasticiser. This can be explained to students without mentioning water just that the propane- 1,2,3-triol acts as a plasticiser.