Flower Morphology. Flower Structure

Similar documents
Flower Morphology. Flower Structure. Name

Angiosperm Reproduction

ANGIOSPERM L.S. POLLEN GRAIN

POLYGONUM EMBRYO SAC CHALAZAL END ANTIPODAL CELL EMBRYO SAC OVULE L.S.

plant reproduction Alternation of Generations chapter 38

The Flower - what is it? 1/31/18. Magnoliophyta - Flowering Plants. Magnoliophyta - Flowering Plants. Magnoliophyta - Flowering Plants

Kingdom Plantae, Part II - Gymnosperms and Angiosperms

BIOLOGY 363 VASCULAR PLANTS LABORATORY #12

plant reproduction chapter 40 Alternation of Generations

Reproductive Development and Structure

SEXUAL REPRODUCTION IN FLOWERING PLANTS

Chapter 31: Plant Reproduction

BIOLOGY 460/560 PLANT PHYSIOLOGY LABORATORY #12

BIOLOGY CLASS: VIII TOPIC: Life Processes: Growth, Reproduction & Development (plants) Difference between self-pollination & cross pollination

NOTES: CH 38 Plant Reproduction

The Flower, Pollination, and Seeds

Plant Reproduction fertilization

Introduction. Copyright 2002 Pearson Education, Inc., publishing as Benjamin Cummings

Plant Science 1203L Laboratory 5 - Sexual Reproduction (Pollination and Double Fertilization)

REPRODUCTION IN FLOWERING PLANTS

Flowering Plant Reproduction

Chapter 38 Angiosperm Reproduction and Biotechnology

2014 Pearson Education, Inc. 1

Ontwikkeling; bevruchting

Introduction. Copyright 2002 Pearson Education, Inc., publishing as Benjamin Cummings

Sexual Reproduction in Flowering Plants

3/18/2012. Chapter 36. Flower Parts. Flower Parts. Reproduction in Angiosperms

NCERT Solutions for Class 12 Biology Chapter 2

Reproduction in plants

Reproduction and Development in Flowering Plants

CHAPTER 2 Sexual reproduction in flowering plants.

Plant Terminology. Floral Symmetry

Plants Provision for Life. Chapter 2 7 th Grade

Sexual Reproduction in Flowering Plants

Lab 9: Take-Home Exercise on Flowers and Fruits

Chapter 38: Angiosperm Reproduction and Biotechnology

BIOLOGY 3201 REPRODUCTION

Flowers, Fruit and Seeds Notes Flower Structure and Reproduction Taken from

Angiosperms. The most diverse group of plants, with about 14,000 genera and 257,000 species.

Lab sect. (TA name/time): BIOLOGY 317 Spring First Hourly Exam 4/22/10

Original content Copyright by Holt, Rinehart and Winston. Additions and changes to the original content are the responsibility of the instructor.

LABORATORY 2: Flowers

Reproduction 19/02/2016. Asexual Reproduction. Budding: Types of asexual reproduction: SEXUAL VS. ASEXUAL

BIOLOGY 210 Lab #9 Page 72 ANGIOSPERMS

Topic 26. The Angiosperms

Mastery. Sexual Reproduction and Meiosis. Chapter Content CHAPTER 3 LESSON 1. Directions: Study the diagram. Then answer the following questions.

Chapter 38. Plant Reproduction. AP Biology

Plants II Reproduction: Adaptations to Life on Land

Chapter 38. Plant Reproduction. AP Biology

Chapter 38: Angiosperm Reproduction and Biotechnology: To Seed or Not to Seed

Past Questions on Plant Reproduction

Downloaded from CHAPTER 2 SEXUAL REPRODUCTION IN FLOWERING PLANTS POINTS TO REMEMBER

SEXUAL REPRODUCTION IN PLANTS WITH SEEDS

Flowering plants can be pollinated by wind or animals.

Botany Physiology. Due Date Code Period Earned Points

Plants II Reproduction: Adaptations to Life on Land

Nyla Phillips-Martin 2013 mscraftynyla.blogspot.com

Unit 2: Multicellular Organisms

Unit E: Plant Propagation. Lesson 1: Understanding Sexual Reproduction

Animal, Plant & Soil Science. E2-4 Flower Anatomy

A2 WJEC BIOLOGY UNIT 4 Sexual reproduction in plants

Plant Life Cycles. Plant life cycles alternate between. producing gametes. Life cycle phases look different among various

Student Exploration: Pollination: Flower to Fruit

30 Plant Diversity II: The Evolution of Seed Plants

Seed Plants Lab. Learning Objectives. Procedure and Questions

BIOLOGI UMUM Priyambodo, M.Sc.

Chapter 40 Flowering Plant Sexual Reproduction

The plant kingdom is in the domain Eukarya and in the supergroup Archaeplastida

Safety Dissection tools are very sharp. Use appropriately and do not leave unattended in the presence of children.

Parts of a Flower. Stamen = Pistil = Petals (corolla) Sepals (calyx) Perianth = Receptacle Peduncle / Pedicel. anther + filament

16B Flower Dissection

Modes of Reproduction

Operation Flower Dissection

UNIT 4. REPRODUCTION

SPINE ROAD HIGH SCHOOL

Teaching A2 Biology Practical Skills Appendix 2

LABORATORY EXERCISE # 18 HOW ARE SEED PLANTS ADAPTED FOR NUTRITION AND REPRODUCTION?

Plant Reproduction. In a nutshell

Sexual Reproduction in Flowering Plants

How To Make A Seed EMBRYONIC DEVELOPMENT AND THE LIFE CYCLE OF ANGIOSPERMS NORA COOPER JAZMIN SAMANO DOMINIC SAADI

Angiosperm Reproduction (Ch.24) (Ch. 38)

Floral Structures - Analysis and Critical Observations

the reproductive organs of a flower

CHAPTER 2 Reproduction of Flowering Plants. Bui Tan Anh College of Natural Sciences

HOW DO ORGANISMS REPRODUCE

o Production of genetically identical offspring from one parent o E.g. - Bacteria Reproduce by binary fission a cell to divide into 2

Angiosperm Reproduction and Biotechnology

W.4.1 Write opinion pieces on topics or texts, supporting a point of view with reasons and information.

Objectives. Standards (NGSS and Common Core) For state specific standards visit edu.zspace.com/activities. Differentiation

Name that Pollinator

The Structure of a Flower Information Sheet

1.3 - Sexually Reproduction What is Sexual Reproduction?

IGCSE BIOLOGY 0610 SCHEME OF WORK 1

We will learn to label the parts of a plant and flower.

REPRODUCTION: THE CONTINUITY OF LIFE

"Our Flowering World" PRE-TEST. Directions: Write a definition for each of the terms listed below:

Chapter 17. Part 1 Plants. Plants, Fungi, and the Colonization of Land. Lecture by Dr. Prince

Page 1 BHUPINDRA ROAD, NEAR SAHNI BAKERY, 22 NO. PHATAK ,

Review of the previous lecture


Transcription:

wrong 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 right 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 score 100 98.8 97.6 96.4 95.2 94.0 92.9 91.7 90.5 89.3 88.1 86.9 85.7 84.5 83.3 82.1 81.0 79.8 78.6 77.4 76.2 Flower Morphology Name You are already familiar with a number of aspects of the vegetative structure of angiosperms from your previous laboratory work. Now you will concentrate on flower structure, since these are the parts of the plant that are most closely associated with sexual reproduction, and are widely used in the classification of the angiosperms. Over 250,000 species of angiosperms are recognized, and they include the principal plants covering the land surface and provide the great majority of the plants used for a variety of economic purposes. Flower Structure Although in gross appearance, the flowers of the angiosperms show a tremendous diversity, the parts which make up the flower are basically the same throughout. The most widely accepted interpretation of the nature of the flower is that it is a specialized branch; a stem with leaves. The flower has many parts. The plant stem below the flower is called the pedicel. At the very tip of this is the receptacle. The receptacle is the stem portion of the flower. It is found at the base in the center of the flower. Its internodes are short and the number of leaves is usually small, so the receptacle is not usually a large or obvious part of the flower. Sepals make up the lower (or outermost) whorl of floral leaves. They are frequently, but not always, green and rather leaf-like in appearance, although they usually are smaller than the foliage leaves of the plant. Collectively, all sepals of a flower constitute the calyx. The major function appears to be protection of the flower parts from herbivores during early development. Petals are attached above (inside) the sepals on the receptacle. They are usually larger than the sepals, brightly colored, and rather leaf-like in that they are broad and rather thin organs. Collectively they constitute the corolla. They serve as additional protection against herbivores in the bud stage, and also attract insects and/or facilitate the pollination of the flower when the insect reaches it. The two leaflike appendages, the sepals and petals (calyx and corolla), together make up the perianth of a complete flower. They may be similar in appearance to one another, or one or the other or both may be missing from an incomplete flower. Stamens, which are found above (inside) the corolla, are rarely leaflike in appearance. Each usually is composed of two distinct parts: an elongated narrow filament rising from the receptacle and a terminal enlarged anther which contains many pollen grains. All stamens of the flower, taken together, make up the androecium. One or more carpels, are located in the center (top) of the flower. Collectively they constitute the gynoecium. Each carpel has three parts. Starting at the base these are: the ovary, an enlarged hollow region bearing one or more ovules; a narrower, short to long style; and a terminal stigma of various sizes and shapes. If more than one carpel occurs in a flower, all may be separate from one another, but more frequently they are joined to one another to form a compound structure. The term pistil is often used in conjunction with the gynoecium of a flower; this may or may not be synonymous with carpel. If carpels are not fused to one another in a flower, then each carpel can be called a pistil and the flower has one or more simple pistils. If, however, more than one carpel occurs in the flower and these are all joined to one another, the flower has a single compound pistil. The cavity in the ovary portion of carpel or pistil is called the locule. There is one locule in a simple pistil and one or more in a compound pistil. The portion of the ovary to which the ovule is attached is the placenta. The number of ovules varies from one to several hundred per locule, depending upon the species. Document Ross E. Koning 1994. Permission granted for non-commercial instruction. Koning, Ross. E. 1994. Flower Morphology. Plant Physiology Information Website. http://plantphys.info/plants_human/labpdf/flowermorphology.pdf

Page 2 Carpels are not the only flower parts that may be joined to one another. Members of each whorl in the flower may be fused to other members of the same whorl. There may also be fusion between whorls; for example, the stamens of many flowers appear to diverge from the surface of the corolla. In an extreme case, the perianth and stamens are fused to the ovary wall and become free from it only at the top of the ovary. In flowers where the floral whorls diverge below the gynoecium, the ovary is said to be superior and the flower hypogynous. In contrast, when the free floral whorls arise from the top of the ovary, the ovary is called inferior and the flower epigynous. An intermediate condition can be found in which the several floral whorls are attached around the middle of the ovary; such a flower is called perigynous. Flowers are perfect, if both stamens and carpels are present but imperfect if one or the other is lacking. In the latter case, both staminate and carpellate flowers may occur on the same plant (monoecious) or may be on separate plants (dioecious). Flowers may be regular, exhibiting radial symmetry, or be irregular and show bilateral symmetry. Note, that in a longitudinal section such as the one below, it is not possible to be sure of the symmetry! Use as many of the terms in bold type in the description above as possible to label the longitudinal section below (there should be at least 24 labels!): /24

Page 3 Dissecting Alstroemeria Flowers Examine one of the flowers provided; draw and label the flower below to show all parts and their relation to one another. Then answer the following questions about your flower: What is the symmetry of your flower? radial bilateral. Are both calyx and corolla present? yes no.? The sepals are: free fused. The petals are: free fused. How many sepals are there? Petals? Stamens? Pistils? Where are the stamens in relation to the sepals and petals? If one, the pistil is: simple compound. If compound, of how many carpels is it composed? How did you determine this? I counted the and The ovary is: superior inferior. : The flower is: hypogynous perigynous epigynous. : How many ovules are there? one less than 20 many. Where is/are the placenta(e) to which they are attached? axile radial parietal. Give the complete flower formula for your flower (8 pts): -- Diagram and label your flower in the space provided below. Use as many structure name labels as possible based upon the description on pages 1 and 2 (16 labels required). /41

Page 4 Sex and Development in the Flower THE POLLEN GRAIN. Look carefully at the stamen of the flower. How many anther sacs do you find? In most species there are four, one in each corner of the anther, but at maturity the two in each half fuse. Cells produced in the anther sacs divide by meiosis to produce four microspores each. These separate from one another and each divides once by mitosis to produce a pollen grain composed of a tube cell and a smaller generative cell within the pollen wall. It is at this stage that the anther sac opens, most often longitudinally, and the pollen is shed. Observe the demonstration slide showing a cross section of a Lilium anther containing mature pollen grains. How can you distinguish the tube nucleus from the generative nucleus? The tube nucleus is The generative nucleus is Examine fresh pollen from one of the flowers in the lab. In the space below, sketch a diagram of the pollen grain (from a prepared slide) and label it completely. THE EMBRYO SAC. The carpel bears ovules which consist of one or two protective integuments which meet at the tip, leaving a narrow opening or micropyle. The ovule is connected to the ovary by means of a stalk, the funiculus. Inside the integument, meiosis has taken place and an haploid embryo sac develops within. This is organized into seven cells: three cells at the micropylar end (two synergids and one egg), three antipodal cells at the opposite end, and the one central cell containing two polar nuclei. /8

Page 5 Observe the demonstration slide(s) of the ovule and embryo sac in Rhododendron and, in the space below, sketch a diagram of the ovule with embryo sac and label completely. Place your labels for the integument, micropyle, and funiculus on the left side of the diagram. Place your labels for the parts of the embryo sac on the right side. POLLINATION AND SPERM PRODUCTION. When the pollen grain is shed from the anther, it is carried (usually by insect, bird, or wind) to the stigma of a carpel. The pollen grain germinates there, sending out the tube cell, which grows through the tissues of the stigma and style to reach the ovary. Keeping in mind the very small size of the pollen grain, and its non-green color, what is the source of nutrition of the pollen tube? The nuclei remain near the tip of the pollen tube as it passes through the style, and the generative nucleus undergoes mitosis to form two sperm nuclei. On reaching the ovary, the pollen tube enters an ovule via the micropyle, penetrating a synergid and there bursting at the tip. The two sperm nuclei are discharged. SYNGAMY. One of the two sperm nuclei moves to the egg cell and fuses with its nucleus to form the zygote. The second sperm nucleus fuses with the two polar nuclei in the central cell to form a primary endosperm cell. This double syngamy is characteristic of all angiosperms. If each nucleus in the syngamy has one set of chromosomes, how many sets would be found in the zygote? How many sets of chromosomes would be found in Observe the demonstration slide showing double syngamy in Lilium. the primary endosperm cell? The primary endosperm cell, the zygote, and the rest of the ovule form the seed, a subject for future study. /11