Isolation and Identification of the Phenolic Compounds from the Roots of Sanguisorba officinalis L. and Their Antioxidant Activities

Similar documents
TWO NEW ELLAGIC ACID GLYCOSIDES FROM LEAVES OF DIPLOPANAX STACHYANTHUS

Chukvelutins A-C, 16-norphragmalin limonoids with unprecedented skeletons from Chukrasia tabularis var. velutina

SUPPLEMENTARY MATERIAL

By: Jin-Bo Fang, Wei Jia, Wen-Yuan Gao, Zhi Yao, Jie Teng, Ai-Hua Zhao, and Hong-Quan Duan

C 21 Steroidal Glycosides from Acidic Hydrolysate of Cynanchum otophyllum

A Rare Secoiridoid Dimer Derivative from Ligustri lucidi fructus

STILBENOIDS FROM THE LIANAS OF GNETUM PENDULUM

Two Novel Phenolic Compounds from the Rhizomes of Cyperus rotundus L.

Cytotoxic sesquiterpene lactones from Eupatorium lindleyanum

Catalytic decarboxylative alkylation of β-keto acids with sulfonamides via the cleavage of carbon nitrogen and carbon carbon bonds

THE JOURNAL OF ANTIBIOTICS. Polyketomycin, a New Antibiotic from Streptomyces sp. MK277-AF1. II. Structure Determination

A New Cadinane Sesquiterpene from the Marine Brown Alga Dictyopteris divaricata

Supporting Information

Guajavadimer A, a dimeric caryophyllene-derived meroterpenoid with a new carbon skeleton from the leaves of Psidium guajava.

A Chalcone Glycoside from the Fruits of Sorbus commixta Hedl.

molecules ISSN by MDPI

Scyphiphin C, a New Iridoid from Scyphiphora hydrophyllacea

Delineation of the Role of Glycosylation in the Cytotoxic Properties of Quercetin using Novel Assays in Living Vertebrates

A New Triterpene Hexaglycoside from the Bark of Kalopanax septemlobus (Thunb.) Koidz.

Synthesis and Blastocyst Implantation Inhibition Potential of Lupeol Derivatives in Female Mice

Maplexins, new α-glucosidase inhibitors from red maple (Acer rubrum) stems

Supporting Information. Efficient copper-catalyzed Michael addition of acrylic derivatives with primary alcohols in the presence of base

Two New Glycosides from the Fruits of Morinda citrifolia L.

Two New Iridoid Glycosides from the Root Barks of Sambucus williamsii Hance

ph Switchable and Fluorescent Ratiometric Squarylium Indocyanine Dyes as Extremely Alkaline Sensors

FLAVANONE AND FLAVONE GLYCOSIDE FROM TAXUS BACCATA

Thiol-Activated gem-dithiols: A New Class of Controllable. Hydrogen Sulfide (H 2 S) Donors

A New Epoxy-cadinane Sesquiterpene from the Marine Brown Alga Dictyopteris divaricata

Research Article. Flavonoids and other compound isolated from leaves of Aconitum carmichaeli Debx. growing in Viet Nam

SYNTHESIS AND EVALUATION OF INFLUENZA VIRUS SIALIDASE INHIBITORY ACTIVITY OF HINOKIFLAVONE-SIALIC ACID CONJUGATES

Two New Oleanane Triterpene Glycosides from the Bark of Terminalia arjuna

New Phenylethanoid Glycosides from the Fruits of Forsythia Suspense (Thunb.) Vahl

Six New Dammarane-type Triterpene Saponins from the Leaves of Panax ginseng

Naoya Takahashi, Keiya Hirota and Yoshitaka Saga* Supplementary material

Manganese powder promoted highly efficient and selective synthesis of fullerene mono- and biscycloadducts at room temperature

A New Cytotoxic 19-Nor-cardenolide from the Latex of Antiaris toxicaria

Electronic Supplementary Information

A New Triterpenoid Saponin from Pulsatilla cernua

Supporting Information for. Use of the Curtius Rearrangement of Acryloyl Azides in the Synthesis of. 3,5-Disubstituted Pyridines: Mechanistic Studies

New isoflavonoids from Erythrina arborescens and structure revision of anagyroidisoflavone A

SUMMARY. The isolation and characterisation of four flavonoid constituents. from the roots of Dalbergia congesta, not hitherto phytochemically

A New Alkaloid from Isatis costata

2,6,9-Triazabicyclo[3.3.1]nonanes as overlooked. amino-modification products by acrolein

Electronic Supplementary Information. Quinine/Selectfluor Combination Induced Asymmetric Semipinacol Rearrangement of

Supporting Information

A pillar[2]arene[3]hydroquinone which can self-assemble to a molecular zipper in the solid state

Six novel steroids from culture of basidiomycete Polyporus ellisii

Supporting Information. for. Angew. Chem. Int. Ed. Z Wiley-VCH 2003

An Orthogonal Array Optimization of Lipid-like Nanoparticles for. mrna Delivery in Vivo

Synthesis, Characterization and Application Study of Two Glycosides as Flavour Precursors

Preparation of Fluorinated Tetrahydropyrans and Piperidines using a New Nucleophilic Fluorination Reagent DMPU/HF

SUPPORTING INFORMATION for. Identification of key structural characteristics of Schisandra chinensis lignans

Direct Regioselective Esterification at O-2 of β- Cyclodextrin and Hydrolysis by Neighboring-group Participation

molecules ISSN

Analysis of Low-polar Ginsenosides in Steamed Panax Ginseng at High-temperature by HPLC-ESI-MS/MS

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008

Journal of Chemical and Pharmaceutical Research, 2017, 9(3): Research Article

A New Phenolic Compound Isolated from Semen Celosia cristata L.

p-toluenesulfonic Acid-Mediated 1,3-Dipolar Cycloaddition of

SUPPLEMENTARY MATERIAL Antiradical and antioxidant activity of flavones from Scutellariae baicalensis radix

LC-MS Analysis of Botanicals

Lewis acid-catalyzed regioselective synthesis of chiral α-fluoroalkyl amines via asymmetric addition of silyl dienolates to fluorinated sulfinylimines

Supporting Information. Radical fluorination powered expedient synthesis of 3 fluorobicyclo[1.1.1]pentan 1 amine

Neuroprotective and Antioxidant Constituents from Curcuma zedoaria Rhizomes

Electronic Supplementary Information

Masatoshi Shibuya,Takahisa Sato, Masaki Tomizawa, and Yoshiharu Iwabuchi* Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences,

Supporting Information

Secondary Metabolites from Seed Extracts of Syzygium Cumini (L.)

Supporting Information

Research on Extraction Process of Gallic Acid from Penthorum chinense Pursh by Aqueous Ethanol

Supporting Information

Quantification and bio-assay of α-glucosidase inhibitors from the roots of Glycyrrhiza uralensis Fisch.

New benzophenone and quercetin galloyl glycosides from Psidium guajava L.

Supporting Information. for. Synthesis of 2,1-benzisoxazole-3(1H)-ones by basemediated. photochemical N O bond-forming

An Unusual Glycosylation Product from a Partially Protected Fucosyl Donor. under Silver Triflate activation conditions. Supporting information

SUPPLEMENTARY MATERIAL

Chinese Journal of Natural Medicines 2018, 16(8):

NOTE A NEW PHENOLIC COMPOUND FROM ACETONE EXTRACT OF LICHEN Usnea flexuosa Tayl.

Supplementary Information

Electronic Supplementary Information (ESI)

yellow coloured amorphous powder, which on crystallization from hot acetone resulted in pale

Support Information. Table of contents. Experimental procedures. S2. Spectroscopic data... S2-S23. Photophysical properties..

# Supplementary Material (ESI) for Chemical Communications # This journal is The Royal Society of Chemistry 2005

Rameshwar Prasad Pandit and Yong Rok Lee * School of Chemical Engineering, Yeungnam University, Gyeongsan , Korea

New Triterpenoid Saponins from Fruit Specimens of Panax japonicus Collected in Toyama Prefecture and Hokkaido (2)

Identification of novel endophenaside antibiotics produced by Kitasatospora sp. MBT66

CAMAG TLC-MS INTERFACE

Asian Journal of Pharmaceutical Analysis and Medicinal Chemistry Journal home page:

Base-promoted acetal formation employing aryl salicylates

ANALYTICAL SCIENCES OCTOBER 2018, VOL The Japan Society for Analytical Chemistry

Toshiyuki MURAKAMI, Hideo OOMINAMI, Hisashi MATSUDA, and Masayuki YOSHIKAWA*

Supporting Information for. Boronic Acid Functionalized Aza-Bodipy (azabdpba) based Fluorescence Optodes for the. analysis of Glucose in Whole Blood

Supporting Information

Solid Phase Peptide Synthesis (SPPS) and Solid Phase. Fragment Coupling (SPFC) Mediated by Isonitriles

Isolation and NMR Spectral Assignments of 18-Glycyrrhetinic acid-3-o-d-glucuronide and 18-Glycyrrhetinic acid

Divergent Construction of Pyrazoles via Michael Addition of N-Aryl Hydrazones to 1,2-Diaza-1,3-dienes

New dimeric flavans from gambir, an extract of Uncaria gambir

Schwartz s reagent-mediated regiospecific synthesis of 2,3-disubstituted indoles from isatins

Flavonol glycosides from Castanea mollissima Blume

SUPPORTING INFORMATION

Transcription:

Molecules 2012, 17, 13917-13922; doi:10.3390/molecules171213917 PEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Article Isolation and Identification of the Phenolic Compounds from the Roots of Sanguisorba officinalis L. and Their Antioxidant Activities Shuang Zhang, Xin Liu, Zi-Long Zhang, Lu He, Zhe Wang and Guang-Shu Wang * School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China * Author to whom correspondence should be addressed; E-Mail: wgs@jlu.edu.cn; Tel.: +86-431-8561-9706. Received: 26 September 2012; in revised form: 15 November 2012 / Accepted: 16 November 2012 / Published: 23 November 2012 Abstract: Four phenolic compounds were isolated from the roots of Sanguisorba officinalis L. by silica gel column chromatography and preparative HPLC. n the basis of chemical and spectroscopic methods, their structures were identified as methyl 4--β-D-glucopyranosy- 5-hydroxy-3-methoxylbenzoate (1), 3,3,4 -tri--methylellagic acid (2), fisetinidol-(4α-8)- catechin (3), and (+)-catechin (4). Compound 1 is a new phenolic glycoside and compounds 2 and 3 were isolated from the Sanguisorba genus for the first time. Compounds 1 4 were also assayed for their antioxidant activities using the DPPH free radical assay. Keywords: Sanguisorba officinalis; isolation; antioxidant activities; phenolic glycoside; fisetinidol-(4α-8)-catechin; ellagic acid; catechin 1. Introduction Sanguisorba officinalis L. (Rosaceae) is a perennial plant widely distributed in China, and its roots have been used as a traditional Chinese medicine for the treatment of hemostasis and inflammation [1]. Until now, thirty two phenolic compounds, including tannins and flavonoids, were isolated from S. officinalis L. [2 7]. Pharmacological studies on its hemostatic and anti-inflammatory properties have been reported [8,9], but the molecular level mechanisms of these activities have not been reported until now. In order to study the mechanism of hemostasis, we have carried out the isolation and identification of bioactive constituents of the roots of S. officinalis L. In a previous paper [10], we have reported the terpenoid constituents from the roots of S. officinalis L. As another part of our study, we

Molecules 2012, 17 13918 report in the present study the isolation and identification of a new phenolic glycoside 1, together with three phenolic compounds 2, 3 and 4, and their antioxidant activity. 2. Results and Discussion 2.1. Isolation and Identification of Compounds 1 4 Compound 1 was obtained as a colorless amorphous powder, which produced a positive reaction to FeCl 3 reagent. HR-MS(ESI) indicated the molecular formula of 1 to be C 15 H 20 10. Its IR spectrum indicated the presence of hydroxyl, carbonyl and aromatic groups. Acid hydrolysis of 1 afforded sugar component identified as D-glucose by TLC comparison with an authentic sample. The 1 H-NMR spectrum (DMS-d 6 ) showed the presence of two aromatic protons at δ 7.03 (s, 1H) and 6.92 (s, 1H), two methyl groups at δ 3.77 (s, 3H) and 3.79 (s, 3H), and one β-glucopyranose unit from the anomeric proton at δ 4.83 (d, J = 6.0 Hz). The 13 C-NMR spectrum (DMS-d 6 ) showed fifteen carbon signals, among which six are assigned to one sugar unit, nine to the aglycone moiety, and the nine aglycone moiety carbon signals were attributed to two methyl signals, two methine signals and five quaternary carbons by DEPT and HMQC spectra. By analyzing the 1 H-and 13 C-NMR data along with the reported data [11], the aglycone moiety was identified as the derivative of gallic acid. The correlations of one methyl protons at δ 3.77 to C-3 at δ 153.0 and another methyl protons at δ 3.79 to C-7 at δ 166.2 in the HMBC spectrum indicated that one methyl group is connected to C-3 through oxygen and another methyl group to C-7 through oxygen. The HMBC correlation H-1' at δ 4.83 to C-4 at δ 138.8 revealed that the linkage position with the glucose unit is at C-4. The complete assignment of the signals of compound 1 was based on DEPT 13 C-NMR and 2D NMR of H-H CSY, HMQC and HMBC. All the data of 1 H, 13 C, and HMBC NMR of compound 1 see Table 1, and key correlations and the structure of compound 1 see Figure 1. Therefore, the structure of compound 1 was elucidated as methyl 4--β-Dglucopyranosy-5-hydroxy-3- methoxybenzoate. Table 1. 1 H-NMR (400 MHz), 13 C-NMR (100 MHz), HMQC and HMBC data of methyl 4--β-D-glucopyranosy-5-hydroxy-3- methoxylbenzoate (DMS-d 6, ppm). No. C H HMBC (H C) aglycone No. C H HMBC (H C) glc 1 125.0 1 104.5 4.83 (d, 1H, J = 6.0 Hz) 138.8 2 102.9 6.92 111.8, 138.8, 2 74.0 3.27 (m, 1H) (s, 1H) 166.2 3 153.0 3 76.5 3.22 (m, 1H) 4 138.8 4 69.6 3.20 (m, 1H) 5 152.6 5 77.3 3.13 (m, 1H) 6 111.8 7.03 (s, 1H) 102.9, 138.8, 166.2 6 60.7 3.49 (m, 1H), 3.62 (d-like, 1H, J = 10.4 Hz) 7 166.2 3-CH3 56.2 3.77 153.0 7-CH3 51.9 3.79 166.2 All assignments based on extensive 1D and 2D NMR experiments (HMQC, HMBC, 1 H- 1 H CSY).

Molecules 2012, 17 13919 Using similar methods as described above, compounds 2 4 were identified as 3,3,4 -tri-methylellagic acid (2) [12], fisetinidol-(4α-8)-catechin (3) [13], and (+)-catechin (4) [14], respectively. Figure 1. The key HMBC correlations of methyl 4--β-D-glucopyranosy-5-hydroxy-3-methoxylbenzoate. H H H 4' 6' 3' 5' 2' H 1' H 3 C 4 3 2 1 7 CH 3 5 6 H Note: Arrows point from proton to carbon. 2.2. Antioxidant Activity of Compounds 1 4 Compounds 1 4 were next assayed for their antioxidant activity with the DPPH free radical assay, and the results are shown in Table 2. The data proved that fisetinidol-(4α-8)-catechin showed the strongest antioxidant activity. Table 2. The antioxidant assay data of the isolated compounds. Compound IC 50 (ug/ml) Methyl 4--β-D-glucopyranosy-5-hydroxy-3-methoxylbenzoate (1) 720 ± 7.3 3,3,4 -tri--methylellagic acid (2) 820 ± 7.3 Fisetinidol-(4α-8)-catechin (3) 12.3 ± 0.2 (+)-Catechin (4) 38.2 ± 0.5 Note: All values are averages of at least three runs in Table 2. 3. Experimental 3.1. General IR spectra were recorded on a FT-IR 5DX Nicolet/Nicolet Magna IR-560 spectrometer (Thermo Scientific, saka, Japan). 1 H- and 13 C-NMR spectra were recorded on a Bruker AV-400 spectrometer (Zürich, Switzerland). HR-ESI-MS were recorded on a Bruker microtf-q II mass spectrometer. Prep. HPLC was performed on a Shimadzu LC-10A equipped with a SPD-10A detector and Gemini 5 μm C 18 110A column (250 mm 10.00 mm, 5 μm, flow rate: 3.0 ml/min). The bioactivities were measured on WFZ UV-2100 ultraviolet visible spectrophotometer (Unico Shanghai Instrument Company Limited, Shanghai, China), using the 1,1-diphenyl-2-picrylhydrazyl free radical (DPPH, Sigma-Aldrich, Shanghai, China). The roots of S. officinalis L. were collected in Tong-Hua County in Jilin Province, China. They were identified by Prof. Jing-Min Zhang of the School of Pharmaceutical Sciences, Jilin University, Changchun, China.

Molecules 2012, 17 13920 3.2. Extraction and Isolation The air-dried the roots of S. officinalis (4.0 kg) were extracted with 70% EtH (ca. 20 L, 24 h, room temperature). The EtH extract was concentrated under reduced pressure, and the viscous concentrate (420 g) was passed through a D101 polyporous resin column eluting successively with H 2, 30% EtH, 70% EtH, and 95% EtH, and by vacuum distillation recovery, four fractions were obtained. The 30% ethanol eluate was further chromatographed repeatedly on silica gel columns and then purified by preparative RP-HPLC with CH 3 H H 2 (30:70) to yield the new compound 1 (20 mg). The 95% ethanol eluate was further chromatographed repeatedly on silica gel columns eluted with CHCl 3 MeH EtAc H 2 (3:1:4:2.5, 3:1:7:1.5) to yield compound 2 (200 mg). The 70% EtH fraction was subjected to silica gel column chromatography eluted with a stepwise gradient mixture of CHCl 3 MeH (9:1; 6:1; 3:1), and finally with MeH alone, and four fractions I IV were obtained. Fraction IV was further subjected to a silica gel column eluted with CHCl 3 MeH EtAc H 2 (6.5:5:4:1.7), and three fractions (A, B, C) were obtained. Fraction A was applied to a DS-A (50 μm, 12 nm, YMC, Kyoto, Japan) column eluted with a stepwise gradient mixture of MeH H 2 (2:3; 3:2; 4:1) to yield compound 3 (230 mg). Fraction C was first separated by a DS-A (50 μm, 12 nm, YMC, Kyoto, Japan) column eluted with a stepwise gradient mixture of MeH H 2 (2:3; 3:2; 4:1), and then purified by preparative HPLC using MeH H 2 (80:20) to yield compound 4 (20 mg). Methyl 4--β-D-glucopyranosy-5-hydroxy-3-methoxylbenzoate (1): Colorless amorphous powders, produced a positive reaction to FeCl 3 reagent, m.p. 212 214 C. HRESIMS, m/z: 383.0948 [M+Na] + (calcd for 383.0949). IR (KBr) max cm 1 : 3375 (H), 1703 (C=), 1578, 1502, 1403 (aromatic C=C), 1052 (C C). 1 H and 13 C-NMR: See Table 1. 3,3,4 -Tri--methylellagic acid (2): Pale yellow amorphous powder, produced a positive reaction to FeCl 3 reagent. ESIMS, m/z: 345 [M+H] +. 1 H-NMR (DMS-d 6 ) δ: 10.46 (1H, s, C4-H), 7.53 (1H, s, 5-H), 7.60 (1H, s, 5 -H), 4.07 (3H, s, C3-CH 3 ), 4.09 (3H, s, C3 -CH 3 ), 4.01 (3H, s, C4 -CH 3 ). 13 C-NMR (DMS-d 6 ) δ: 111.6 (C-1), 141.0 (C-2 ), 140.2 (C-3), 152.6 (C-4), 111.2 (C-5), 112.5 (C-6), 158.3 (C-7), 111.9 (C-1 ), 141.5 (C-2 ), 140.8(C-3 ), 153.8 (C-4 ), 107.5 (C-5 ), 113.4 (C-6 ), 158.5 (C-7 ); 61.0 (C3-CH 3 ), 61.3 (C3 -CH 3 ), 56.7 (C4 -CH 3 ). Fisetinidol-(4α-8)-catechin (3): yellow amorphous powder produced a positive reaction to FeCl 3 reagent. HRESIMS, m/z: 563.1536 [M+H] + ; (calcd for C 30 H 27 11, 563.1548). 1 H-NMR (DMS-d 6 ) δ: 2.41 (dd, J = 16.0 and 9.2 Hz, H-4F), 2.84 (dd, J = 16.0 and 5.2 Hz, H-4F), 3.76 (m, H-3F), 4.32 (d, J = 8.5 Hz, H-4C), 4.35 (d, J = 8.5 Hz, H-2C), 4.45 (t, J = 8.5 Hz, H-3C), 4.48 (d, J = 8.4 Hz, H-2F), 6.05 (dd, J = 8.0 and 1.5 Hz, H-6 E), 5.92(s, H-6D), 6.06 (d, J = 2.4 Hz, H-8A), 6.17 (dd, J = 8.0 and 2.4 Hz, H-6A), 6.48 (d, J = 8.0 Hz, H-5A), 6.65 (dd, J = 8.0 and 2.0 Hz, H-6 B and H-6 E), 6.66 (d, J = 8.0 Hz, H-5 E and H-5A), 6.68 (d, J = 8.0 Hz,H-5 B), 6.76 (d, J = 2.0 Hz, H-2 B), 6.80 (d, J = 2.0 Hz, H-2 E). 13 C-NMR (DMS-d 6 ) δ: 28.8 (C-4F), 40.0 (C-4C), 66.9 (C-5F), 67.9 (C-3C), 81.4 (C-2F), 82.9 (C-2C), 95.9 (C-6D), 98.6 (C-4aF), 101.9 (C-8A), 106.5 (C-8D), 108.0 (C-6A), 114.7 (C-2 E), 114.8 (C-5 E), 115.0 (C-2 B), 115.2 (C-5 B),118.2 (C-4aC), 118.4 (C-6 E), 119.6 (C-6 B), 128.5 (C-5A), 130.9 (C-1 E), 131.2 (C-1 B), 144.8 (C-3 B and C-3 E), 144.9 (C-4 B and C-4 E), 153.8 (C-7D), 154.2 (C-8aA), 154.7 (C-8aD), 155.0 (C-5D), 156.6 (C-7A).

Molecules 2012, 17 13921 (+)-Catechin (4): Pale yellow amorphous powder, produced a positive reaction to FeCl 3 reagent. ESIMS, m/z: 291 [M+H] +. 1 H-NMR (DMS-d 6 ) δ: 2.35 (1H, dd, J = 15.9, 7.8 Hz, H-4), 2.66 (1H, dd, J = 15.9, 4.8 Hz, H-4), 3.81 (1H, m, H-3), 4.48 (1H, d, J = 7.3 Hz, H-2), 5.69 (1H, s, H-8), 5.89 (1H, s, H-6), 6.59 (1H, d, J = 7.8 Hz, H-6 ), 6.68 (1H, d, J = 7.8 Hz, H-5 ), 6.72 (1H, s, H-2 ). 13 C-NMR (DMS-d 6 ) δ: 27.8 (C-4), 66.3 (C-3), 81.0 (C-1), 93.8 (C-8), 95.1 (C-6), 99.0 (C-4a), 114.5 (C-2 ), 115.0 (C-5 ), 118.4 (C-6 ), 130.6 (C-1 ), 144.8 (C-3,4 ), 155.3 (C-8a), 156.1 (C-5), 156.4 (C-7). 3.3. Acid Hydrolysis of 1 Solution of 1 (1.0 mg) in 0.5 M H 2 S 4 (2.0 ml) was heated under reflux for 3 h. After cooling, the reaction mixture was diluted with H 2, neutralized with BaC 3, then filtered. The solution was partitioned with EtAc to give two layers. The aqueous layer was evaporated and then subjected to TLC analysis with authentic sugar samples using n-buh MeH CHCl 3 HAc (12.5:4.5:9:1.5:1, detection with aniline-phthalic acid). Compounds 1 afforded D-glucose (R f = 0.30). 3.4. Bioactivity Assay The antioxidant activity of compounds 1 4 were assessed according to their DPPH scavenging ability. Reaction mixtures, containing 0.5 ml of the relevant compound (dissolved in EtH) and 2.5 ml of a 100 µm DPPH ethanolic solution, were added to 96-well microtiter plates and incubated at 37 C for 30 min. Absorbances were measured at 515 nm. Percent inhibition was determined by comparison with an EtH-treated control group. IC 50 values denote the concentration of samples required to scavenge 50% of the DPPH free radicals. 4. Conclusions Compound 1 is a new phenolic glycoside and compounds 2 and 3 were isolated from the Sanguisorba genus for the first time. Compounds 1 4 were assayed for their antioxidant activity with DPPH free radicals, and the data proved that fisetinidol-(4α-8)-catechin showed the strongest antioxidant activity. Acknowledgments This work was supported by National Science and Technology Major Project of China (2009ZX09502-011). The authors gratefully thank Jing-Min Zhang (School of Pharmaceutical Sciences, Jilin University) for the identification of plants. References 1. The Editorial Board of Zhong Hua Ben Cao of State Administration of Traditional Chinese Medicine of the People s Republic of China. Zhong Hua Ben Cao 4, 1st ed.; Scientific and Technical Publishers: Shanghai, China, 1999; p. 281. 2. Nonaka, G.; Tanaka, T.; Nishioka, I. Tannins and related compounds. Part 3. A new phenolic acid, sanguisorbic acid dilactone, and three new ellagitannins, sanguiins H-1, H-2, and H-3, from Sanguisorba officinalis. J. Chem. Soc. Perkin. Trans. 1 1982, 4, 1067 1073.

Molecules 2012, 17 13922 3. Nonaka, G.; Tanaka, T.; Nita, M.; Nishioka, I. A dimeric hydrolyzable tannin, sanguiin H-6 from Sanguisorba officinalis L. Chem. Pharm. Bull. 1982, 30, 2255 2257. 4. Tanaka, T.; Nonaka, G.; Nishioka, I. Tannins and related compounds. XXVIII: Revision of the structures of sanguiins H-6, H-2, and H-3 and isolation and characterization of sanguiin H-11, a novel tetrameric hydrolysable tannin, and seven related tannins, from Sanguisorba officinalis. J. Chem. Res. 1985, 6, 176 177. 5. Tanaka, T.; Nonaka, G.; Nishioka, I. 7--galloyl-(+)-catechin and 3--galloylprocyanidin B-3 from Sanguisorba officinalis. Phytochemistry 1983, 22, 2575 2578. 6. Tanaka, T.; Nonaka, G.; Nishioka, I. Tannins and related compounds XVI. Isolation and characterization of six methyl glucoside gallates and a gallic acid glucoside gallate from Sanguisorba officinalis L. Chem. Pharm. Bull. 1984, 32, 117 121. 7. Cheng, D.L.; Cao, X.P.; Zhou, P.X.; Yang, P. Isolation and identification of flavonoid compounds in Sanguisorba officinalis. Chin. Tradit. Herb. Drugs 1995, 26, 570 571. 8. Yu, B.B.; Zhong, F.X.; Dong, X. Progress on chemical ingredient of Sanguisorba officinalis L. Chin. J. Inf. TCM 2009, 16 (Suppl.), 103 105. 9. Xia, H.M.; Sun, L.L.; Sun, J.Y.; Zhong, Y. Progress on chemical ingredient and pharmacological activity of Sanguisorba officinalis L. Food Drug 2009, 11, 67 69. 10. Sun, W.; Zhang, Z.L.; Liu, X.; Zhang, S.; He, L.; Wang, Z.; Wang, G.S. Terpene glycosides from the roots of Sanguisorba officinalis L. and their hemostatic activities. Molecules 2012, 17, 7629 7636. 11. Ding, Y.; Liang, C.; Nguyen, H.T.; Choi, E.M.; Kim, J.A.; Kim, Y.H. Chemical constituents from Acer mandshuricum and their effects on the function of osteoblastic MC3T3-E1 cells. Bull. Korean Chem. Soc. 2010, 31, 929 933. 12. Shi, X.H.; Du, X.L.; Kong, L.Y. Studies on chemical constituents in roots of Euphorbia soongarica (In Chinese). Zhongguo Zhong Yao Za Zhi 2006, 31, 1503 1506. 13. Duan, W.G.; hara, S.; Hashida, K.; Makino, R. Condensed tannins from steamed Acacia mearnsii bark. Holzforschung 2005, 59, 289 294. 14. Sun, Y.; Xu, B.C.; Xu, D.P.; Gu, W.Y. Study on several phenolic compounds in grape seeds. J. Henan Univ. Technol. (Nat. Sci. Ed.) 2006, 27, 73 77. Sample Availability: Samples of the compounds 2 and 3 are available from the authors. 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).