Good Morning! Take out your notes and vocab 1-10! Copyright 2003 Pearson Education, Inc. publishing as Benjamin Cummings

Similar documents
Chapter 7 The Nervous System

The Nervous System. Chapter 7. Essentials of Human Anatomy & Physiology. Elaine N. Marieb. Seventh Edition

The Nervous System. Functions of the Nervous System input gathering To monitor occurring inside and outside the body Changes =

The Nervous System PART A

The Nervous System PART B

The Nervous System 7PART A. PowerPoint Lecture Slide Presentation by Patty Bostwick-Taylor, Florence-Darlington Technical College

action potential afferent neuron Weblike; specifically, the weblike middle layer of the three meninges. arachnoid astrocytes autonomic nervous system

The Nervous System 7PART B. PowerPoint Lecture Slide Presentation by Patty Bostwick-Taylor, Florence-Darlington Technical College

The Nervous System. PowerPoint Lecture Slides C H A P T E R 7. Prepared by Patty Bostwick-Taylor, Florence-Darlington Technical College

Dispose of debris Nervous Tissue: Support Cells Ependymal cells Line cavities of the brain and spinal cord Circulate cerebrospinal fluid Nervous

The Nervous System PART B

Unit 3 : Nervous System

Unit 7 - The Nervous System 1

Structural Organization of Nervous System

NOTES CHAPTER 9 (Brief) The Nervous System LECTURE NOTES

Chapter 9. Nervous System

Organization of The Nervous System PROF. MOUSAED ALFAYEZ & DR. SANAA ALSHAARAWY

Neurology study of the nervous system. nervous & endocrine systems work together to maintain homeostasis

Anatomy & Physiology. Chapter 7 Notes Nervous System. Monitor/collecting stimuli occurring inside and outside the body

Chapter 7 Nervous System

The Brain Worksheet Sections 5-7

Organization of The Nervous System PROF. SAEED ABUEL MAKAREM

Unit 7: The Nervous System

Warm-Up. Label the parts of the neuron below.

sensory input receptors integration Human Anatomy motor output Ch. 7 effectors Structural classification

Chapter 8 Nervous System

Primary Functions. Monitor changes. Integrate input. Initiate a response. External / internal. Process, interpret, make decisions, store information

Nervous System. 1. What N.S. division controls skeletal muscles? 3. What kind of neuroglia myelinates axons in the PNS?

Lesson 14. The Nervous System. Introduction to Life Processes - SCI 102 1

Nervous System Dr. Naim Kittana Department of Biomedical Sciences Faculty of Medicine & Health Sciences An-Najah National University

Major Structures of the Nervous System. Brain, cranial nerves, spinal cord, spinal nerves, ganglia, enteric plexuses and sensory receptors

NERVOUS SYSTEM. Efferent or Motor Division. Afferent or Sensory Division

NERVOUS SYSTEM. Somatic (SNS) - Fibers send impulses from CNS to control voluntary action of skeletal muscle. impulses from visceral organs to the CNS

Nerve Cell Flashcards

Nervous System Worksheet

The neurvous system senses, interprets, and responds to changes in the environment. Two types of cells makes this possible:

Neural Basis of Motor Control

Nervous System: An Introduction. HAP Susan Chabot Lemon Bay High School

SOME BASIC TERMINOLOGY CNS: Central Nervous System: Brain + Spinal Cord

Bio11: The Nervous System. Body control systems. The human brain. The human brain. The Cerebrum. What parts of your brain are you using right now?

Nervous System. Human Anatomy & Physiology P. Wilson

Bell Work. Materials Needed: writing utensil and A&P book. Quietly pick up a Lesson 6.5 worksheet from the back table and work on it independently.

Chapter 7. The Nervous System

meninges Outermost layer of the meninge dura mater arachnoid mater pia mater membranes located between bone and soft tissue of the nervous system

BRAIN PART I (A & B): VENTRICLES & MENINGES

BIO 115 Anatomy & Physiology II Practice Assignment 4: The Nervous System & The Senses This is not a required assignment but it is recommended.

Meyers' A&P February 15, Unit 7. The Nervous System. I. Functions of the Nervous System. Monitors body's internal and external enviornments

The nervous system regulates most body systems using direct connections called nerves. It enables you to sense and respond to stimuli

Human Anatomy and Physiology

II. Nervous System (NS) Organization: can be organized by location/ structure or by function A. Structural Organization 1. Central N.S.

CHAPTER 48: NERVOUS SYSTEMS

Chapter 17 Nervous System

ANATOMY & PHYSIOLOGY ONLINE COURSE - SESSION 7 THE NERVOUS SYSTEM

Central Nervous System (CNS) -> brain and spinal cord. Major Divisions of the nervous system:

10.1: Introduction. Cell types in neural tissue: Neurons Neuroglial cells (also known as neuroglia, glia, and glial cells) Dendrites.

Week 7 and 8 Master Worksheet

Nervous System Worksheet

Biology 3201 Quiz on Nervous System. Total 33 points

Essentials of Human Anatomy & Physiology. Seventh Edition. The Nervous System. Copyright 2003 Pearson Education, Inc. publishing as Benjamin Cummings

Axon Nerve impulse. Axoplasm Receptor. Axomembrane Stimuli. Schwann cell Effector. Myelin Cell body

Organiza?on of the nervous system. Organiza?on of the nervous system. BIOL 164 Human Biology Ch 8 The Nervous System. I. CNS (Central Nervous System)

Functional Organization of the Central Nervous System

The Nervous System & Nervous tissue. Dr. Ali Ebneshahidi

Chapter 9 Nervous System Test Review

The Nervous System. Chapter 9

Nervous System: Part IV The Central Nervous System The Brain

Nervous System - PNS and CNS. Bio 105

Biology 3201 Nervous System #2- Anatomy. Components of a Nervous System

3/15/17. Outline. Nervous System - PNS and CNS. Two Parts of the Nervous System

Organization and Overview of the Central Nervous System CNS 424. By Prof. Hisham Al-Matubsi

Unit Three. The brain includes: cerebrum, diencephalon, brain stem, & cerebellum. The brain lies within the cranial cavity of the skull.

Nervous System: An Introduction. HAP Susan Chabot Lemon Bay High School

Dendrites Receive impulse from the axon of other neurons through synaptic connection. Conduct impulse towards the cell body Axon

Nervous System (Part A-1) Module 8 -Chapter 14

Body control systems. Nervous system. Organization of Nervous Systems. The Nervous System. Two types of cells. Organization of Nervous System

Somatic Nervous Systems. III. Autonomic Nervous System. Parasympathetic Nervous System. Sympathetic Nervous Systems

Biology 218 Human Anatomy

UNIT 5 REVIEW GUIDE - NERVOUS SYSTEM 1) State the 3 functions of the nervous system. 1) 2) 3)

Page 1. Neurons Transmit Signal via Action Potentials: neuron At rest, neurons maintain an electrical difference across

ACTIVITY2.15 Text:Campbell,v.8,chapter48 DATE HOUR NERVOUS SYSTEMS NEURON

Nervous System and Brain Review. Bio 3201

Nervous System. Chapter Structure of the Nervous System. Neurons

Chapter 12 Nervous System Written Assignment KEY

Five Levels of Organization Cell Tissue Organ Organ System Organism

Biology. Slide 1 of 37. End Show. Copyright Pearson Prentice Hall

Nervous System. Master controlling and communicating system of the body. Secrete chemicals called neurotransmitters

By Mr. Danilo Villar Rogayan Jr.

CHAPTER 13&14: The Central Nervous System. Anatomy of the CNS

Unit Six The Nervous System

NERVOUS SYSTEM C H A P T E R 2 8

Body control systems. Let s start at the top: the human brain. The Cerebrum. The human brain. What parts of your brain are you using right now?

Nervous System C H A P T E R 2

NURSE-UP INTRODUCTION TO THE NERVOUS SYSTEM

Fundamentals of the Nervous System and Nervous Tissue. Nervous System. Basic Divisions of the Nervous System C H A P T E R 12.

Chapter 17. Nervous System Nervous systems receive sensory input, interpret it, and send out appropriate commands. !

Homework Week 2. PreLab 2 HW #2 Synapses (Page 1 in the HW Section)

Lecture - Chapter 13: Central Nervous System

The Nervous System An overview

The Nervous System. Nervous System Functions 1. gather sensory input 2. integration- process and interpret sensory input 3. cause motor output

Transcription:

Good Morning! Take out your notes and vocab 1-10!

Functions of the Nervous System 1. Sensory input gathering information To monitor changes occurring inside and outside the body (changes = stimuli) 2. Integration to process and interpret sensory input and decide if action is needed. 3. Motor output A response to integrated stimuli The response activates muscles or glands Slide 7.1a

Structural Classification of the Nervous System Central nervous system (CNS) Brain Spinal cord Peripheral nervous system (PNS) Nerve outside the brain and spinal cord Slide 7.2

Functional Classification of the Peripheral Nervous System Sensory (afferent) division Nerve fibers that carry information to the central nervous system Figure 7.1 Slide 7.3a

Functional Classification of the Peripheral Nervous System Motor (efferent) division Nerve fibers that carry impulses away from the central nervous system Figure 7.1 Slide 7.3b

Functional Classification of the Peripheral Nervous System Motor (efferent) division Two subdivisions Somatic nervous system = voluntary Autonomic nervous system = involuntary Figure 7.1 Slide 7.3c

Organization of the Nervous System Figure 7.2 Slide 7.4

Neuroglia vs. Neurons Neuroglia divide. Neurons do not. Most brain tumors are gliomas. Most brain tumors involve the neuroglia cells, not the neurons. Consider the role of cell division in cancer!

Nervous Tissue: Support Cells (Neuroglia or Glia) Astrocytes Abundant, star-shaped cells Brace neurons Form barrier between capillaries and neurons- Blood brain Barrier Control the chemical environment of the brain (CNS) Figure 7.3a Slide 7.5

Blood Brain Barrier Includes the least permeable capillaries of the body Excludes many potentially harmful substances Useless against some substances Fats and fat soluble molecules Respiratory gases Alcohol Nicotine Anesthesia Slide 7.48

Nervous Tissue: Support Cells Microglia (CNS) Spider-like phagocytes Dispose of debris Ependymal cells (CNS) Line cavities of the brain and spinal cord Circulate cerebrospinal fluid Figure 7.3b, c Slide 7.6

Cerebrospinal Fluid Similar to blood plasma composition Formed by the choroid plexus Forms a watery cushion to protect the brain Circulated in arachnoid space, ventricles, and central canal of the spinal cord Slide 7.46

Nervous Tissue: Support Cells Oligodendrocytes (CNS) Produce myelin sheath around nerve fibers in the central nervous system Figure 7.3d Slide 7.7a

Nervous Tissue: Neurons Neurons = nerve cells Cells specialized to transmit messages Major regions of neurons Cell body nucleus and metabolic center of the cell Processes fibers that extend from the cell body (dendrites and axons) Slide 7.8

Neuron Anatomy Cell body Nucleus Large nucleolus Figure 7.4a Slide 7.9b

Neuron Anatomy Extensions outside the cell body Dendrites conduct impulses toward the cell body Axons conduct impulses away from the cell body (only 1!) Figure 7.4a Slide 7.10

Axons and Nerve Impulses Axons end in axonal terminals Axonal terminals contain vesicles with neurotransmitters Axonal terminals are separated from the next neuron by a gap Synaptic cleft gap between adjacent neurons Synapse junction between nerves Slide 7.11

Nerve Fiber Coverings Schwann cells produce myelin sheaths in jelly-roll like fashion Nodes of Ranvier gaps in myelin sheath along the axon Figure 7.5 Slide 7.12

Application In Multiple Scleroses the myelin sheath is destroyed. The myelin sheath hardens to a tissue called the scleroses. This is considered an autoimmune disease. Why does MS appear to affect the muscles?

Neuron Cell Body Location Most are found in the central nervous system Gray matter cell bodies and unmylenated fibers Nuclei clusters of cell bodies within the white matter of the central nervous system Ganglia collections of cell bodies outside the central nervous system Slide 7.13

Functional Classification of Neurons Sensory (afferent) neurons Carry impulses from the sensory receptors Cutaneous sense organs Proprioceptors detect stretch or tension Motor (efferent) neurons Carry impulses from the central nervous system Slide

Functional Classification of Neurons Interneurons (association neurons) Found in neural pathways in the central nervous system Connect sensory and motor neurons Slide

Neuron Classification Figure 7.6 Slide 7.15

How Do Neurons Operate? Neuron at Rest Resting Potential Occurs when the neuron is at rest. A condition where the outside of the membrane is positively(+) charged compared to the inside which is negatively(-) charged. Neuron is said to be polarized.

Starting a Nerve Impulse Depolarization a stimulus causes sodium (Na + ) to flow inside the axon The exchange of ions initiates an action potential in the neuron Called depolarization Figure 7.9a c Slide 7.18

The Action Potential If the action potential (nerve impulse) starts, it is propagated over the entire axon After depolariztion Potassium ions rush out of the neuron after sodium ions rush in, which repolarizes the membrane The sodium-potassium pump restores the original configuration This action requires ATP Slide 7.19

Nerve Impulse Propagation The impulse continues to move toward the cell body Impulses travel faster when fibers have a myelin sheath Figure 7.9c e Slide 7.20

Refractory Period Brief period of time between the triggering of an impulse and when it is available for another. NO NEW action potentials can be created during this time.

Continuation of the Nerve Impulse between Neurons Impulses are able to cross the synapse to another nerve Neurotransmitter is released from a nerve s axon terminal The dendrite of the next neuron has receptors that are stimulated by the neurotransmitter An action potential is started in the dendrite Slide 7.21

How Neurons Communicate at Synapses Figure 7.10 Slide 7.22

The Reflex Arc Reflex rapid, predictable, and involuntary responses to stimuli Reflex arc direct route from a sensory neuron, to an interneuron, to an effector Figure 7.11a Slide 7.23

Simple Reflex Arc Figure 7.11b, c Slide 7.24

Types of Reflexes and Regulation Autonomic reflexes Smooth muscle regulation Heart and blood pressure regulation Regulation of glands Digestive system regulation Somatic reflexes Activation of skeletal muscles Slide 7.25

The Meninges Dura mater - outermost layer Arachnoid mater - no blood vessels, in between layer (resembles a spider web) Pia mater -inner membrane, contains nerves and blood vessels to nourish cells

The Meninges CSF = cerebrospinal fluid Figure 13.25a

Dura mater is being peeled away in this photo.

Regions of the Brain Cerebral hemispheres Diencephalon Brain stem Cerebellum Figure 7.12 Slide 7.27

Cerebral Hemispheres (Cerebrum) Paired (left and right) superior parts of the brain Include more than half of the brain mass Figure 7.13a Slide

Cerebral Hemispheres (Cerebrum) The surface is made of ridges (gyri) and grooves (sulci) Figure 7.13a Slide

Layers of the Cerebrum Gray matter Outer layer Composed mostly of neuron cell bodies, glial cells and unmyelinated axons. White Matter axons and connections between neurons Figure 7.13a Slide

Lobes of the Brain (general functions) Frontal reasoning, thinking, language Parietal touch, pain, relation of body parts (somatosensory) Temporal Lobe hearing, taste Occipital vision

Frontal Lobe Prefrontal cortex: abstract intellectual functions Gustatory cortex: taste Primary motor cortex: direct voluntary movement Premotor cortex: coordinating learned movements Speech center Broca s area (left hemisphere) processes the breathing and vocalization patterns required to speak Damage cause difficulty speaking or speaking the wrong words even when you know exactly what you want to say.

Parietal and Occipital Primary sensory cortex: Touch, pressure, pain and temperature receptors Somatic Sensory association area: recognize different types of touch Visual Cortex/ Visual association area: Visual stimuli and process images

Temporal Lobe: Auditory and Olfactory cortex: Sound and Smell Left temporal lobe: general interpretive area recieves information from all association areas and processes information expecially sound Damage to G.I.A: cause inability to process the meanings of words put together. AKA Wernicke s area

Diencephalon Sits on top of the brain stem Enclosed by the cerebral hemispheres Made of three parts Thalamus Hypothalamus Epithalamus Slide

Thalamus Surrounds the third ventricle The relay station for sensory impulses Transfers impulses to the correct part of the cortex for localization and interpretation Slide 7.35

Hypothalamus Under the thalamus Important autonomic nervous system center Helps regulate body temperature Controls water balance Regulates metabolism Slide

Hypothalamus An important part of the limbic system (emotions) The pituitary gland is attached to the hypothalamus Slide

Epithalamus Forms the roof of the third ventricle Houses the pineal body (an endocrine gland) Includes the choroid plexus forms cerebrospinal fluid Slide 7.37

Brain Stem Attaches to the spinal cord Parts of the brain stem Midbrain Pons Medulla oblongata Slide

Midbrain Mostly composed of tracts of nerve fibers Reflex centers for vision and hearing Cerebral aquaduct 3 rd -4 th ventricles Slide 7.39

Pons The bulging center part of the brain stem Mostly composed of fiber tracts Includes nuclei involved in the control of breathing Slide 7.40

Medulla Oblongata The lowest part of the brain stem Merges into the spinal cord Includes important fiber tracts Contains important control centers Heart rate control Blood pressure regulation Breathing Swallowing Vomiting Slide 7.41

Cerebellum Two hemispheres with convoluted surfaces Provides involuntary coordination of body movements Slide

Cerebellum Figure 7.15a Slide

Ventricles and Location of the Cerebrospinal Fluid Figure 7.17a Slide

Ventricles and Location of the Cerebrospinal Fluid Figure 7.17b Slide

Structure of a Nerve Endoneurium surrounds each fiber Groups of fibers are bound into fascicles by perineurium Fascicles are bound together by epineurium Figure 7.20 Slide 7.56

Development Aspects of the Nervous System The nervous system is formed during the first month of embryonic development Any maternal infection can have extremely harmful effects The hypothalamus is one of the last areas of the brain to develop Slide

Development Aspects of the Nervous System No more neurons are formed after birth, but growth and maturation continues for several years (new evidence!) The brain reaches maximum weight as a young adult However, we can always grow dendrites! Slide