HHS Public Access Author manuscript Fatigue. Author manuscript; available in PMC 2018 February 20.

Similar documents
The scenario is familiar: A woman, typically

CFS/ME. Dr.R.Arulnanthy 03/08/09 BMJ 2007/Nice Guidance

Authors: Leonard A. Jason [1,4], Karina Corradi [1], Susan Torres-Harding [1], Renee R. Taylor [2], and Caroline King [3]

FIBROMYALGIA. Leena Mathew, M.D. Director Pain Fellowship Associate Professor Department of Anesthesiology Columbia University

FIBROMYALGIA. Howard L. Feinberg, D.O. F.A.C.O.I., F.A.C.R. OPSC San Diego 2017

Functional Somatic Syndromes Chris Stewart-Patterson, MD

Objectives. Objectives. Fibromyalgia overview 2/13/2013. Disclosure. FM research has flourished since 1980s. Acceptance fibromyalgia as a diagnosis

Headaches, 37, 42 Hypnotherapy, 101t, 106 Hypothalamic-pituitary-adrenal (HPA) axis, 59, 61, 63, 64, 65

Cerebral lactic acidosis correlates with neurological impairment in MELAS

Fibromyalgia. November 3, 2018 Raymond Hong, MD, MBA

The Role of Pregabalin in Fibromyalgia

Acupuncture Found Effective for Chronic Fatigue Syndrome

Chronic Fatigue Syndrome:

Fibromyalgia: Current Trends and Concepts

Fig. 1. Localized single voxel proton MR spectroscopy was performed along the long axis of right hippocampus after extension of patient s head to

Harvesting energy: photosynthesis & cellular respiration part 1I

Brain tissue and white matter lesion volume analysis in diabetes mellitus type 2

New service available for VoY Ryedale practice patients

The Impact of Centralized Pain on Acute and Chronic Post-surgical Pain

Harvesting energy: photosynthesis & cellular respiration

ME/CFS in Pregnancy: Myalgic Encephalomyelitis Chronic Fatigue Syndrome LUCINDA BATEMAN MD AUGUST 2018

Provocation Testing in CFS/ME James N. Baraniuk, MD Georgetown University, Washington DC USA

Class XI Chapter 14 Respiration in Plants Biology. 1. It is a biochemical process. 1. It is a physiochemical process.

Clinical Study High Frequency of Fibromyalgia in Patients with Psoriatic Arthritis: A Pilot Study

Cellular Respiration Guided Notes

Diagnostic exercise tests and treatment options in McArdle disease

Impact of Chronic Conditions on Health-Related Quality of Life


Proton MR Spectroscopy in Patients with Acute Temporal Lobe Seizures

Glycolysis. Cellular Respiration

Patient Discussion Guide: UNDERSTANDING FIBROMYALGIA HOW TO MANAGE IT&

Notable papers in autism research in 2018

chapter 1 - fig. 2 Mechanism of transcriptional control by ppar agonists.

Cellular Respiration. Unit 5: Plants, Photosynthesis, and Cellular Respiration

SUMMARY DECISION NO. 964/97. Fibromyalgia.

Proposal for modifications to ICD-10-CM for Chronic Fatigue Syndrome, Myalgic Encephalomyelitis, and Postviral fatigue syndrome

Muscle Metabolism Introduction ATP is necessary for muscle contraction single muscle cell form and break the rigor bonds of cross-bridges small

Van Ness J et al. Post-exertional Malaise in Women with CFS. J of Women s Health 2010;19:1-6

3. Distinguish between aerobic and anaerobic in terms of cell respiration. Outline the general process of both.

National Horizon Scanning Centre. Pregabalin (Lyrica) for fibromyalgia. September 2007

Final published version:

FIBROMIALGIA: CLASSIFICAZIONE ED EPIDEMIOLOGIA DELLA SINDROME

Fatigue in chronic migraine patients

Invisible Disability: Providing Compassionate Care for a Person with ME/CFS (Myalgic Encephalomyelitis/Chronic Fatigue Syndrome)

Post-traumatic stress disorder among patients with chronic pain and chronic fatigue

Supplementary Information Methods Subjects The study was comprised of 84 chronic pain patients with either chronic back pain (CBP) or osteoarthritis

Index. Note: Page numbers of article titles are in boldface type.

3.7.1 Define cell respiration [Cell respiration is the controlled release of energy from organic compounds in cells to form ATP]

Respiration. Respiration. How Cells Harvest Energy. Chapter 7

10/26/2013. Mary-Ann Fitzcharles is a consultant, speaker, or member of an advisory board for the following companies: Lilly, Purdue, Pfizer, Valeant

DOWNLOAD OR READ : CHRONIC FATIGUE SYNDROME A NATURAL WAY TO TREAT M E PDF EBOOK EPUB MOBI

Fibromyalgia: Current Concepts Benjamin Wang, M.D., FRCPC Division of Rheumatology Mayo Clinic Jacksonville, FL

Fibromyalgia Update. Presenter: Manfred Harth MD FRCPC

Clinical Characteristics of Patients with Medically Unexplained Chronic Widespread Pain: A Primary Care Center Study

Living organisms obtain energy by breaking down organic molecules during cellular respiration.

Muscle Metabolism. Dr. Nabil Bashir

Making sense of fibromyalgia syndrome. Charles Radis D.O. Clinical Professor of Medicine UNECOM

How Cells Harvest Energy. Chapter 7. Respiration

Johns Hopkins Medicine - eform A

Introduction to Modern Imaging Physics and Techniques used in Clinical Neurology

Supplementary Appendix

Cellular Respiration Checkup Quiz. 1. Of the following products, which is produced by both anaerobic respiration and aerobic respiration in humans?

Effects of Contrast Material on Single-volume Proton MR Spectroscopy

Respiration. Respiration. Respiration. How Cells Harvest Energy. Chapter 7

Supplementary Note Details of the patient populations studied Strengths and weakness of the study

NIH Public Access Author Manuscript Med Sci Sports Exerc. Author manuscript; available in PMC 2011 January 1.

Characterization and Consequences of Pain Variability in Individuals With Fibromyalgia

ORIGINAL INVESTIGATION. Overlapping Conditions Among Patients With Chronic Fatigue Syndrome, Fibromyalgia, and Temporomandibular Disorder

Analysis of Variance in Fibromyalgia Symptom Severity Related to Demographic Variables

DOWNLOAD OR READ : TREATING FIBROMYALGIA PDF EBOOK EPUB MOBI

Since 1980, obesity has more than doubled worldwide, and in 2008 over 1.5 billion adults aged 20 years were overweight.

9-1 Cellular Respiration Slide 1 of 39

Jessie S. M. CHAN MPH, PhD candidate Centre on Behavioral Health Department of Social Work and Social Administration The University of Hong Kong

Overview of Lecture. Survey Methods & Design in Psychology. Correlational statistics vs tests of differences between groups

Chapter 7- Metabolism: Transformations and Interactions Thomson - Wadsworth

Fibromyalgia: What Primary Care Providers Need to Know

REQUISITION FORM NOTE: ALL FORMS MUST BE FILLED OUT COMPLETELY FOR SAMPLE TO BE PROCESSED. Last First Last First

Chapter 7 Cellular Respiration and Fermentation*

KEY CONCEPT The overall process of cellular respiration converts sugar into ATP using oxygen.

Cellular Respiration. Cellular Respiration. C 6 H 12 O 6 + 6O > 6CO 2 + 6H energy. Heat + ATP. You need to know this!

University of Groningen. Biomarkers in premanifest Huntington's disease van Oostrom, Joost Cornelis Hendricus

The Effect of Systematic Light Exposure on Sleep in a Mixed Group of Fatigued Cancer Survivors

Cellular Respiration Harvesting Chemical Energy ATP

Cellular Respiration

Advanced ANOVA Procedures

Review. Respiration. Glycolysis. Glycolysis is the decomposition (lysis) of glucose (glyco) to pyruvate (or pyruvic acid).

BIL 256 Cell and Molecular Biology Lab Spring, Tissue-Specific Isoenzymes

Collin County Community College BIOL Muscle Physiology. Muscle Length-Tension Relationship

SYNOPSIS. Publications No publications at the time of writing this report.

Cellular Respiration Assignment

Anaerobic Fermentation

Fibromyalgia , The Patient Education Institute, Inc. id Last reviewed: 03/12/2017 1

FM CFS leaky gut April pag 1

Prof. dr Michèl A. Willemsen. Radboud university medical center Department of Pediatric Neurology Nijmegen, The Netherlands Milano, Oct 2016

The Brain in pain: The neurophysiology of chronic pain in CFS/ME Report to Action for M.E. Research Panel By Dr Julius Bourke October 2017

4. Which step shows a split of one molecule into two smaller molecules? a. 2. d. 5

Definition พ.ญ.ส ธ ดา เย นจ นทร. Epidemiology. Definition 5/25/2016. Seizures after stroke Can we predict? Poststroke seizure

The Prevalence of Chronic Fatigue Syndrome in Emergency Healthcare Professionals and the Associated Factors

Richard B. Lipton, 1 Joel Saper, 2 Messoud Ashina, 3 David Biondi, 4 Suman Bhattacharya, 4 Joe Hirman, 5 Barbara Schaeffler, 4 Roger Cady 4

Transcription:

Elevations of Ventricular Lactate Levels Occur in Both Chronic Fatigue Syndrome and Fibromyalgia Benjamin H Natelson 1, Diana Vu 1, Jeremy D. Coplan 3, Xiangling Mao 4, Michelle Blate 1, Guoxin Kang 4, Eli Soto 2,*, Tolga Kapusuz 2, and Dikoma C. Shungu 4 1 Department of Neurology, Mount Sinai Beth Israel, New York, NY 2 Department of Pain Medicine, Mount Sinai Beth Israel, New York, NY 3 Department of Psychiatry & Behavioral Sciences, State University of New York-Downstate Medical Center, Brooklyn NY 4 Department of Radiology, Weill Medical College of Cornell University, New York, NY Abstract HHS Public Access Author manuscript Published in final edited form as: Fatigue. 2017 ; 5(1): 15 20. doi:10.1080/21641846.2017.1280114. Background Chronic fatigue syndrome (CFS) and fibromyalgia (FM) frequently have overlapping symptoms, leading to the suggestion that the same disease processes may underpin the two disorders the unitary hypothesis. However, studies investigating the two disorders have reported substantial clinical and/or biological differences between them, suggesting distinct pathophysiological underpinnings. Purpose The purpose of this study was to further add to the body of evidence favoring different disease processes in CFS and FM by comparing ventricular cerebrospinal fluid lactate levels among patients with CFS alone, FM alone, overlapping CFS and FM symptoms, and healthy control subjects. Methods Ventricular lactate was assessed in vivo with proton magnetic resonance spectroscopic imaging ( 1 H MRSI) with the results normed across the 2 studies in which the data were collected. Results Mean CSF lactate levels in CFS, FM and CFS+FM did not differ among the three groups, but were all significantly higher than the mean values for control subjects. Conclusion While patients with CFS, FM and comorbid CFS and FM can be differentiated from healthy subjects based on measures of CFS lactate, this neuroimaging outcome measure is not a viable biomarker for differentiating CFS from FM or from patients in whom symptoms of the two disorders overlap. Chronic fatigue syndrome (CFS) and Fibromyalgia (FM) are medically unexplained illnesses which often co-occur[1]. Because the two illnesses can have features in common, some [2, 3] have suggested that they are essentially the same illness with FM patients reporting more problems with pain and CFS patients more problems with fatigue. We have termed this the single syndrome hypothesis [1]. * Current affiliation: Millenium Pain Centers, Bloomington, IL

Natelson et al. Page 2 Methods The existence of separate criteria for diagnosis of each of these disorders allows one to test the hypothesis that the two illnesses are the same or different. Finding similar biological changes in both illnesses would argue for commonality, or at least a shared pathophysiological marker, while finding differences would argue for different pathophysiological underpinnings for each illness. In a series of studies, we have looked across a number of physiological variables and have found differences between the two illnesses in sleep pattern [4], rates of sleep pathology [5], cardiovascular response to exercise [6], and in the dopaminergic response to a tryptophan probe [7]. In several studies, we have reported that cerebral lactate is elevated in CFS [8, 9]; recently we have extended that work and have found that patients with FM alone and those with CFS plus FM have elevations of ventricular lactate which differ significantly from healthy volunteers [10]. The purpose of this study was to extend that observation to include patients with CFS only in order to allow a comparison across these three diagnostic groups CFS alone, FM alone and CFS + FM. The subjects were patients with FM only, CFS only or CFS plus FM. FM only patients fulfilled the 1990 case definition [11] and reported over 3 months of widespread pain and had at least 11 of 18 tender points when pressed with 4 kg of force. CFS only patients fulfilled the 1994 CDC case definition [12] as modified by our Center as follows: Patients had to report having new onset of fatigue lasting at least 6 months and severe enough to produce a substantial or greater decrease in activity in either work, school, personal or social spheres where substantial was defined as a 3 on a 0 to 5 visual analog scale (1was mild reduction and 5 very severe reduction). In addition, patients had to report having at least a substantial burden (again at least a 3 on the 0 to 5 scale) from four or more of the following symptoms: sore throat; tender glands; headache; myalgia; arthralgia; brain fog; unrefreshing sleep or syndromic worsening following minimal exertion. Patients with CFS plus FM fulfilled both case definitions while those with CFS only did not fulfill criteria for the diagnosis of FM and those with FM only did not fulfill criteria for CFS. Patients with FM only or CFS plus FM were drawn from a population whose results have already been reported [10]. These patients had participated in a double blind, placebo controlled trial of milnacipran and, while medications from a range of class of drugs were allowed, SNRIs were not allowed (cohort 1). An additional group of patients with CFS only or CFS plus FM, taking no brain-active medications, also participated (cohort 2). In addition, subjects for both cohorts included healthy people, who were age and sex matched to the patients and did not exercise regularly. Protocol for Ventricular Lactate Measurements by 1 H MRSI All neuroimaging studies were conducted on a research-dedicated, multinuclear General Electric 3.0 T EXCITE MR system at the Citigroup Biomedical Imaging Center of Weill Cornell Medical College. In vivo levels of ventricular lactate were obtained in all subjects with a standard quadrature single-channel head coil using a multislice 1 H MRSI technique[13], as fully described previously [8, 10]. The lactate level data presented in this study are the mean values of the

Natelson et al. Page 3 Statistical Methods Results peak areas obtained for all voxels within the ventricular space. For normalization of levels across subjects, the lactate peak areas were expressed in institutional units (i.u.) as ratios relative to the root-mean-square (rms) of the background noise in each spectrum an approach that we have used previously in a number of studies [8, 14, 15]. Variables were evaluated for normality of distribution. Since values of ventricular lactate had been acquired using two different neuroimaging methods [n=40 and N=34 respectively; total = 74 subjects], values from each cohort were converted to z-scores and combined into a single dependent variable of standardized values [16]. Since there were no male controls, male patients (N=13) were excluded from the analysis (Data from these men did not exhibit significantly different ventricular lactate scores from the women patient participants, when controlling for age and BMI (P>0.05). In a general linear model (GLM), the patient status variable was used as a categorical variable [healthy volunteers (n = 29), CFS alone (n = 17), FM alone (n = 7), CFS + FM combined (n=21)] and covariates included age and body mass index (BMI). When results of this analysis were significant, post-hoc GLMs were computed to allow paired comparisons to be made using the same covariates. To evaluate the effects of BMI across diagnostic groups, the group X BMI interaction was examined in a factorial design with z-score ventricular lactate as the dependent variable and age as a covariate. To correct for the three potential post-hoc comparison (CFS versus HV, FM versus HV and CFS +FM versus HV), significance was set at p 0.016, two-tailed. Data are presented as means with standard errors in parentheses. Variables were normally distributed. There was an overall group effect for z-score ventricular lactate for diagnostic group [F (3,68) = 7.59; p = 0.0002; partial η 2 = 0.25, see Figure 1]. The model was adjusted for age [F (1,68) = 0.99; p = 0.32] and BMI [F (1,68) = 11.85; p = 0.001] where an increase in BMI was associated with increased lactate (Figure 2). Univariate post-hoc testing covarying for age and BMI revealed that patients with CFS alone exhibited higher levels of z-score ventricular lactate [N = 17, mean (SE) = 0.47 (0.17)] compared to healthy volunteers [N = 29, mean (SE) = -0.53 (0.13); F (1,42) = 18.66; p = 0.00009]. Similar effects, adjusting for age and BMI, were observed for FM alone patients [N = 7, mean (SE) = -0.04 (0.16); F (1,32) = 7.08; p = 0.012] and patients with CFS and FM [N= 21, mean (SE) = 0.27 (0.12); F (1,46) = 6.56; p = 0.00004]. There were no significant differences for z-score converted ventricular lactate among the illness groups. Effects were unchanged by exclusion of a CFS outlier > 3 standard deviations from the mean. Although BMI directly predicted z-lactate (Pearson's r = 0.37; N= 74; p = 0.001; see Figure 2) the group x BMI interaction was not significant, indicating no significant difference in the z-lactate increases for increases in BMI across the three diagnostic groups.

Natelson et al. Page 4 Discussion Acknowledgments References Relative to healthy controls, ventricular lactate is elevated to the same degree for patients with CFS alone, FM alone and CFS plus FM. While elevations in this variable could be used as biological markers of syndromes characterized by medically unexplained pain or fatigue, they cannot be used to differentiate CFS from FM. However, the existence of elevations in ventricular lactate in both illnesses suggests a problem in brain-related mitochondrial metabolism. Accumulations of ventricular lactate can be assumed to occur when aerobic metabolism is impaired. Pyruvate generated by anaerobic metabolism of glucose is not aerobically metabolized and is converted to lactate by lactate dehydrogenase [17]. Since elevations in lactate may reflect a down-stream effect of areas of anaerobic metabolism or a result of central neuro-inflammation, finding elevations do not necessarily mean that the mechanism for the lactate elevations is the same for CFS [18], where oxidative stress has been invoked, as for FM. Further research will be needed to answer this question. Regardless, finding similar levels of ventricular lactate for CFS, CFS plus FM and FM is additional support for the single syndrome hypothesis. Although further research is needed to determine if CFS and FM are different illnesses or variants of the same pathophysiological process, ventricular lactate could certainly serve as a biological marker of underlying brain dysfunction for some patients with either or both diagnoses. In summary, this is the first report, to our knowledge, that included, using standardized scores, three patient groups CFS, FM and CFS plus FM and demonstrated that each of the three groups separated from healthy volunteers but did not separate from each other. Moreover, this is the first biomarker we are aware of that identifies a biological comorbidity shared by both CFS and FM. Limitations include that all subjects in the analysis were females, but male values did not differ from females. Moreover, in order to obtain the current results, two cohorts were combined but standardized scores, which normalize both mean and variance, were used to combine the data [16]. Further studies are required to elucidate the pathophysiology of the FM-CFS spectrum. This research was supported by NIH grant NS-075653 and funds from Forest Laboratories to BHN. 1. Ciccone DS, Natelson BH. Comorbid illness in the chronic fatigue syndrome: A test of the single syndrome hypothesis. Psychosom Med. 2003; 62(2):268 275. 2. Barsky AJ, Borus JF. Functional somatic syndromes. Annals of Internal Medicine. 1999; 130(11): 910 921. [PubMed: 10375340] 3. Geisser ME, et al. Comorbid somatic symptoms and functional status in patients with fibromyalgia and chronic fatigue syndrome: sensory amplification as a common mechanism. Psychosomatics. 2008; 49(3):235 242. [PubMed: 18448779] 4. Kishi A, et al. Sleep-Stage Dynamics in Patients with Chronic Fatigue Syndrome with or without Fibromyalgia. Sleep. 2011; 34(11):1551 1560. [PubMed: 22043126] 5. Pejovic S, et al. Chronic fatigue syndrome and fibromyalgia in diagnosed sleep disorders: a further test of the unitary hypothesis. BMC Neurol. 2015; 15:53. [PubMed: 25884538]

Natelson et al. Page 5 6. Cook DB, et al. Responses to exercise differ for chronic fatigue syndrome patients with fibromyalgia. Med Sci Sports Exerc. 2012 7. Weaver SA, et al. Sex differences in plasma prolactin response to tryptophan in Chronic Fatigue Syndrome patients with and without comorbid fibromyalgia. J Womens Health (Larchmt). 2010; 3:6 11. 8. Mathew SJ, et al. Ventricular cerebrospinal fluid lactate is increased in chronic fatigue syndrome compared with generalized anxiety disorder: an in vivo 3.0 T (1)H MRS imaging study. NMR Biomed. 2009; 22(3):251 258. [PubMed: 18942064] 9. Shungu DC, et al. Increased ventricular lactate in chronic fatigue syndrome. III. Relationships to cortical glutathione and clinical symptoms implicate oxidative stress in disorder pathophysiology. NMR Biomed. 2012; 25(9):1073 1087. [PubMed: 22281935] 10. Natelson BH, et al. Effect of Milnacipran Treatment on Ventricular Lactate in Fibromyalgia: A Randomized, Double-Blind, Placebo-Controlled Trial. J Pain. 2015; 16(11):1211 9. [PubMed: 26335989] 11. Wolfe F, et al. The American College of Rheumatology 1990 criteria for the classification of fibromyalgia: Report of the Multicenter Criteria Committee. Arthritis Rheum. 1990; 33:160 172. [PubMed: 2306288] 12. Fukuda K, et al. The chronic fatigue syndrome: A comprehensive approach to its definition and study. Ann Intern Med. 1994; 121(12):953 959. [PubMed: 7978722] 13. Duyn JH, et al. Multisection proton MR spectroscopic imaging of the brain. Radiology. 1993; 188(1):277 282. [PubMed: 8511313] 14. Kaufmann P, et al. Cerebral lactic acidosis correlates with neurological impairment in MELAS. Neurology. 2004; 62(8):1297 1302. [PubMed: 15111665] 15. Weiduschat N, et al. Cerebral metabolic abnormalities in A3243G mitochondrial DNA mutation carriers. Neurology. 2014; 82(9):798 805. [PubMed: 24477106] 16. Coplan JD, et al. Reduced hippocampal N-acetyl-aspartate (NAA) as a biomarker for overweight. NeuroImage: Clinical. 2014; 4:326 335. [PubMed: 24501701] 17. Kaufmann P, et al. Cerebral lactic acidosis correlates with neurological impairment in MELAS. Neurology. 2004; 62(8):1297 1302. [PubMed: 15111665] 18. Shungu DC, et al. Increased ventricular lactate in chronic fatigue syndrome. III. Relationships to cortical glutathione and clinical symptoms implicate oxidative stress in disorder pathophysiology. NMR in Biomedicine. 2012; 25(9):1073 1087. [PubMed: 22281935]

Natelson et al. Page 6 Figure 1. Mean and standard errors for z-score converted ventricular lactate values for controls patients with CFS alone, FM alone and CFS plus FM. Asterisks indicate (P < 0.16) significant differences of patient groups from healthy controls.

Natelson et al. Page 7 Figure 2. Relation between body mass index and z-score converted ventricular lactate values of all study subjects combined [BMI [F(1,68) = 11.85; p = 0.001] where an increase in BMI was associated with increased lactate, adjusted for age and diagnostic group].