Comparative Evaluation of Remineralizing Potential of Three Pediatric Dentifrices

Similar documents
EFFICACY OF FLUORIDE MOUTHRINSE CONTAINING TRICALCIUM PHOSPHATE ON PRIMARY ENAMEL LESIONS : A POLARIZED LIGHT MICROSCOPIC STUDY

Linking Research to Clinical Practice

Effect of Casein Phosphopeptide amorphous Calcium. and Calcium Sodium Phosphosilicate

ENHANCING REMINERALIZATION OF PRIMARY ENAMEL LESIONS WITH FLUORIDE DENTIFRICE CONTAINING TRICALCIUM PHOSPHATE

Remineralizing Effect of Child Formula Dentifrices on Artificial Enamel Caries Using a ph Cycling Model

Comparative Analysis of Remineralizing Potential of Three Commercially Available Agents- An in Vitro Study

GC Tooth Mousse Plus for Orthodontics. Helps keep you smiling. Made from milk

THE EFFECT OF CASEIN PHOSPHOPEPTIDE TOOTHPASTE VERSUS FLUORIDE TOOTHPASTE ON REMINERALIZATION OF PRIMARY TEETH ENAMEL

DOSAGE FORMS AND STRENGTHS White toothpaste containing 1.1% sodium fluoride (3)

Linking Research to Clinical Practice

Frequently Asked Questions. About Community Water Fluoridation. Overview. 1-What is fluoride?

Dental caries prevention. Preventive programs for children 5DM

NEW ZEALAND DATA SHEET

Effects of miswak and nano calcium carbonate toothpastes on the hardness of demineralized human tooth surfaces

Effect of Three Different Remineralizing Agents on Enamel Caries Formation An in vitro Study

CAries Management By Risk Assessment"(CAMBRA) - a must in preventive dentistry

Food, Nutrition & Dental Health Summary

Oral Care. Excellent cleaning performance, remineralization and whitening for toothpaste

Community Water Fluoridation and Testing: Recommendations for Supplementation in Children and Adolescents. Dwight Parker

Comparing the Effects of Whey Extract and Case in Phosphopeptide- Amorphous Calcium Phosphate (CPP-ACP) on Enamel Microhardness

MI Varnish The ultimate fluoride varnish

Chapter 14 Outline. Chapter 14: Hygiene-Related Oral Disorders. Dental Caries. Dental Caries. Prevention. Hygiene-Related Oral Disorders

EFFECT OF NANO-HYDROXYAPATITE ON REMINERALIZATION OF ENAMEL-A SYSTEMATIC REVIEW

Fluoridens 133 Fluorosilicic acid 136 Fluorosis, see Dental fluorosis Foams 118 acute toxicity 71, 122 clinical efficacy 122 Free saliva 149, 150

PRESS DOSSIER June 2011 WHITENING TOOTH PASTE

Restorative treatment The history of dental caries management consisted of many restorations placed as well as many teeth removed and prosthetic

Innovative Dental Therapies for the Aging Population

Omya Consumer Goods omya.com. Oral Care. Natural Minerals for Toothpaste Formulations

EFFECTIVENESS OF SOY MILK WITH CALCIUM ON BOVINE ENAMEL EROSIONS AFTER SOAKING IN CHLORINATED WATER

Bacterial Plaque and Its Relation to Dental Diseases. As a hygienist it is important to stress the importance of good oral hygiene and

Title. Citation 北海道歯学雑誌, 38(Special issue): Issue Date Doc URL. Type. File Information.

Remineralization Effect of Topical NovaMin Versus Sodium Fluoride (1.1%) on Caries-Like Lesions in Permanent Teeth

Title:Is there a place for Tooth Mousse(R) in the prevention and treatment of early dental caries? A systematic review.

Seniors Oral Care

Is there any clinical evidence?

GC Tooth Mousse Plus. Made from milk. Perfect for teeth.

Comparative Evaluation of Fluoride Uptake Rate in the Enamel of Primary Teeth after Application of Two Pediatric Dentifrices

Effect of addition of Fluoride on Enamel remineralization potential of CCP-ACP and Novamin: A comparative Study

Timing of fluoride toothpaste use and enamel-dentin demineralization

Comparison Study on Casein Phosphopeptide-Amorphous Calcium Phosphate Paste and Fluoride Gel on Remineralization of Demineralized Enamel Lesions

COMPARATIVE EVALUATION OF THE EFFECT OF DIFFERENT TYPES OF CHEWING GUMS ON SALIVARY PH-AN INVIVO STUDY

Remineralisation of Enamel Subsurface Lesions with Casein Phosphopeptide - Amorphous Calcium Phosphate in Patients with Fixed Orthodontic Appliances

JODE ABSTRACT INTRODUCTION /jp-journals

Influence of Bioactive Materials on Whitened Human Enamel Surface in vitro study

EFFICACY OF AMORPHOUS CALCIUM PHOSPHATE, G.C. TOOTH MOUSSE AND GLUMA DESENSITIZER IN TREATING DENTIN HYPERSENSITIVITY : A RANDOMIZED CLINICAL TRIAL

Parental Attitudes and Tooth Brushing Habits in Preschool Children in Mangalore, Karnataka: A Cross-sectional Study

Examination and Treatment Protocols for Dental Caries and Inflammatory Periodontal Disease

IJCPD INTRODUCTION ABSTRACT /jp-journals

Tri-Calcium Phosphate (TCP) Espertise

EFFECT OF ADDING TRICALCIUM PHOSPHATE TO FLUORIDE MOUTHRINSE ON MICROHARDNESS OF DEMINERALIZED PRIMARY HUMAN TOOTH

Management of ECC and Minimally Invasive Dentistry

The Effect of Mineralizing Fluorine Varnish on the Progression of Initial Caries of Enamel in Temporary Dentition by Laser Fluorescence

Tooth hypersensitivity and Dental erosion DR. KÁROLY BARTHA

PERINATAL CARE AND ORAL HEALTH

Anticaries effect of dentifrices with calcium citrate and sodium trimetaphosphate

THE IMPACT OF MODIFIED FRUIT JUICE ON ENAMEL MICROHARDNESS: AN IN-VITRO ANALYSIS

It s all about dental health

Effect of fluoride varnish with added casein phosphopeptide-amorphous calcium phosphate on the acid resistance of the primary enamel

More Chocolate! The FUN Biochemistry of Cavity Prevention

A Comparative Evaluation of Sucrose, Sorbitol and Sugar Free Chewing Gum on Plaque ph in Children after Sucrose Challenge

Dental Research Journal

SUMMARY OF PRODUCT CHARACTERISTICS 1 NAME OF THE MEDICINAL PRODUCT 2 QUALITATIVE AND QUANTITATIVE COMPOSITION

COMPARATIVE EVALUATION OF REMINERALISATION POTENTIAL OF THREE DIFFERENT DENTIFRICES IN ARTIFICIALLY INDUCED CARIOUS LESIONS: AN INVITRO STUDY

DEPOSITS. Dentalelle Tutoring 1

Uses of Fluoride in Dental Practices

Evaluating the Efficacy of Xylitol Wipes on Cariogenic Bacteria in 19- to 35-month-old Children: A Double-blind Randomized Controlled Trial

Comparison of the Effect of Recaldent and Xylitol on the Amounts of Salivary Streptococcus Mutans

Zurich Open Repository and Archive

Oral Health Improvement. Prevention in Practice Vicky Brand

Alabama Medicaid Agency. 1st Look Program

Caries Clinical Guidelines. Low Caries Risk

Chemical Changes of Enamel Occlusal Surfaces Affected by Incipient Dental Caries: an EDX Study

Effect of Three Different Remineralizing Agents on White Spot Lesions; AnIn Vitro Comparative Study

Comparison of changes in salivary ph levels after consumption of plain milk and milk mixed with Sugar

v Review of how FLUORIDE works v What is FLUOROSIS v 2001 CDC Fluoride Guidelines v 2006 ADA Topical Fluoride Recommendation

Influence of Individual Saliva Secretion on Fluoride Bioavailability

SOFT DRINKS & DENTAL HEALTH.

Kadkao Vongsavan 1 Praphasri Rirattanapong 1 and Rudee Surarit 2

THE INFLUENCE OF BASELINE HARDNESS AND CHEMICAL COMPOSITION ON ENAMEL DEMINERALIZATION AND SUBSEQUENT REMINERALIZATION.

Breastfeeding and dental health By Joanna Doherty, NCT breastfeeding counsellor

White Spot Lesions: A Hygiene Perspective in the Orthodontic Practice. 16 MAY 2016 // hygienetown.com. clinical orthodontics // feature

The Caries Balance: Contributing Factors and Early Detection

Tooth Mousse. Plus from GC. and MI Paste. Remineralising protective crèmes with triple the benefit: Strengthen. Protect. Replenish.

Health Promotion and Disease Prevention are the Foundation of Community Based Health Care

Recommendation for a non-animal alternative to rat caries testing

Teeth to Treasure. Grades: 4 to 6

Effect of different fluoride concentrations on remineralization of demineralized enamel: an in vitro ph-cycling study

THE REMINERALIZATION EFFECT OF BIOACTIVE GLASS ON ENAMEL CARIES-LIKE LESIONS IN PRIMARY TEETH

Many common oral health problems are related

SUMMARY OF PRODUCT CHARACTERISTICS 2 QUALITATIVE AND QUANTITATIVE COMPOSITION

Minimal Intervention in Pediatric Dentistry

Fluor Protector Overview

The effect of fluoride toothpaste on root dentine demineralization progression: a pilot study *

Analysis of Therapeutic Efficacy of Clinically Applied Varnish

Evaluation of change in Salivary ph, following consumption of different snacks and beverages and estimation of their oral clearance time

Effect of betel leaf extract gel on the hardness of enamel

Copyright and Acknowledgements. Caries Management Course Module: Topical Therapies. Disclaimer 3/31/2015

Effect of nano-hydroxyapatite concentration on remineralization of initial enamel lesion in vitro

THE COMBINED EFFECT OF XYLITOL AND FLUORIDE IN VARNISH ON BOVINE TEETH SURFACE MICROHARDNESS

EARLY CHILDHOOD CARIES & FLUORIDE VARNISH

Transcription:

Ashna Kapoor et al Original Article 10.5005/jp-journals-10005-1361 Comparative Evaluation of Remineralizing Potential of Three Pediatric Dentifrices 1 Ashna Kapoor, 2 KR Indushekar, 3 Bhavna G Saraf, 4 Neha Sheoran, 5 Divesh Sardana ABSTRACT Introduction: Dentifrices are available in different formulations and more commonly a single dentifrice is used by whole family; be it an adult or child. However, concerns over high fluoride in pediatric formulations coupled with inability of the children to spit have led to recommendations to minimize fluoride ingestion during toothbrushing by using a small amount of toothpaste by children and incorporating minimal quantity of fluoride in the toothpastes. Literature is scarce on the remineralization potential of popularly known Indian pediatric dentifrices; hence, pediatric dentifrices containing lesser concentration of fluoride have been marketed relatively recently for the benefit of children without posing a threat of chronic fluoride toxicity at the same time. Aim and objectives: The present study was undertaken to evaluate and compare the remineralization potential of three commercially available Indian pediatric dentifrices with different compositions on artificially induced carious lesions in vitro through scanning electron microscopy (SEM). Materials and methods: The present in vitro study was conducted on 45 sound extracted primary molar surfaces divided into three groups (15 each). Artificial demineralization was carried out, followed by remineralization using dentifrice slurry as per the group allocation. All the samples were studied for remineralization using SEM and the results statistically compared. Results: All three dentifrices tested showed remineralization; although insignificantly different from each other but significantly higher compared to the demineralizing surface. Conclusion: One can use pediatric dentifrices for preventing dental caries and decelerating lesion progression with an added advantage of lower fluoride toxicity risk. Keywords: Dentifrices, Fluoride, Remineraliation. How to cite this article: Kapoor A, Indushekar KR, Saraf BG, Sheoran N, Sardana D. Comparative Evaluation of Remineralizing Potential of Three Pediatric Dentifrices. Int J Clin Pediatr Dent 2016;9(3):186-191. 1 Postgraduate Student, 2 Professor and Head, 3 Professor 4 Senior Lecturer, 5 Senior Resident 1-4 Department of Pedodontics and Preventive Dentistry, Sudha Rustagi College of Dental Sciences and Research, Faridabad Haryana, India 5 Department of Pedodontics and Preventive Dentistry, All India Institute of Medical Sciences, New Delhi, India Corresponding Author: Divesh Sardana, Senior Resident Department of Pedodontics and Preventive Dentistry, All India Institute of Medical Sciences, New Delhi, India, Phone: +911242356213, e-mail: doc_divesh@yahoo.co.in 186 Source of support: Nil Conflict of interest: None INTRODUCTION Dental caries is a disease of the hard tissues of the teeth caused by interactions between cariogenic bacteria in dental plaque, fermentable carbohydrates (mainly sugars), and an imbalance in the process of demineralization and remineralization over time. 1 When the oral environment favors demineralization, it leads to dissolution of hydroxyapatite and diffusion of calcium and phosphate ions toward the enamel surface the process that can be reversed by remineralization. The clinical importance of remineralization was realized as early as 1966 by Backer Dirks, who found that nearly half of the white spot lesions in young individuals can remineralize. 2 The remineralization capacity of incipient lesions under the influence of fluoride could be due to increased uptake of fluoride by surface and subsurface enamel in comparison to the adjacent sound enamel due to increased porosity and surface area of the demineralized area. 3,4 Fluoride toothpastes and mouth rinses are the most widely used products to deliver fluoride to the oral cavity at an individual level; however, for children, only dentifrices are the most common source of fluoride ions. 5 Dentifrices are available in different formulations and more commonly a single dentifrice is used by whole family; be it an adult or child. Pediatric dentifrices containing lesser concentration of fluoride have been marketed relatively recently for the benefit of children without posing the threat of fluoride toxicity at the same time. Literature is scarce on the remineralization potential of pediatric dentifrices; hence, the present study was undertaken to evaluate and compare the remineralization potential of three commercially available pediatric dentifrices on artificially induced carious lesions in vitro through scanning electron microscopy (SEM). MATERIALS AND METHODS The present in vitro study was conducted on 45 sound extracted primary molar surfaces. The primary molar teeth that were collected were extracted due to orthodontic

Comparative Evaluation of Remineralizing Potential of Three Pediatric Dentifrices reasons. Presence of carious lesion, white spot, hypoplasia, discoluration, or crack line formed the exclusion criteria of the study. The teeth specimens were divided into three groups of 15 samples each as follows: 1. Group A (Dentifrice 1): Sodium fluoride 0.24% (0.15% w/v fluoride ion) 1000 ppm. Composition: Sorbitol, water, hydrated silica, sodium lauryl sulfate, PEG-32, flavor, cellulose gum, sodium fluoride, sodium saccharin, vitamin E, calcium gluconate, MICA/CI 77891, CI 19140. 2. Group B (Dentifrice 2): Sodium fluoride 500 ppm. Composition: Sorbitol, Water, Hydrated Silica, Sodium Lauryl Sulfate, PEG-32, Flavor, Cellulose Gum, Sodium Fluoride, Sodium Saccharin, Vitamin E, Calcium Gluconate, MIica/CI 77891, CI 12490. 3. Group C (Dentifrice 3): 498 ppm sodium MFP and xylitol. Demineralizing Procedure 6 (Figs 1A to C) The demineralizing solution was prepared with the help of the following components in equal proportions: 2.2 mm CaCl 2 2.2 mm NaH 2 PO 4 0.05 M acetic acid 1 M KOH Double-distilled water HiIndicator ph paper. Freshly extracted sound primary molars were selected, cleaned, debrided, and sectioned with a safe-sided diamond disk to separate the crown and root portion. The crown was sectioned sagittally to obtain sound buccal enamel surface. Each specimen was then divided equally into three equal thirds [one-third positive control (sound surface), one-third negative control (demineralized), and the other third served as the study group (pediatric dentifrice)]. All the 45 specimens were suspended with the floss immersing their two-thirds of the surface in the demineralizing solution, while one-third of the surface was covered with nail varnish and served as positive control (sound surface). The specimens were suspended for 96 hours in the demineralizing solution before washing them with double-distilled water for 15 seconds. Remineralizing Procedure (Figs 2A to C) Dentifrice slurry was freshly prepared every time during the study period by thoroughly mixing 1 gm of test dentifrice in 2.5 ml of double-distilled water and A B Figs 1A to C: Demineralizing procedure (A) Sectioned tooth surface divided into three equal parts; (B) two-third of the tooth surface suspended in demineralizing solution using dental floss; and (C) rinsing with double-distilled water C A B Figs 2A to C: Remineralizing procedure (A) one-third of the tooth surface suspended in respective dentifrice slurry; (B) rinsing with double-distilled water; and (C) one-third of the tooth surface suspended in commercially available artificial saliva International Journal of Clinical Pediatric Dentistry, July-September 2016;9(3):186-191 187 C

Ashna Kapoor et al thoroughly centrifuging it at 4000 rpm for 20 minutes using a magnetic stirrer. During remineralization cycle, lower one-third of each specimen was immersed in 5 ml of freshly prepared dentifrice slurry for 5 minutes, leaving the middle third demineralized surface as negative control. The specimens were then removed, washed with double-distilled water for 15 seconds, and placed in commercially available artificial saliva for 8 hours to simulate oral environment. Composition: Active ingredients-each 5 ml contains Sodium Carboxymethyl cellulose 0.5%, Glycerine 30% in a pleasantly flavored base. Inactive ingredients: Sodium Saccharin, Sodium Methyl Paraben, Sodium Propylparaben, Lemon Oil. After 8 hours, the specimens were removed from the artificial saliva, washed with double-distilled water and again treated with freshly prepared dentifrice solution for 5 minutes in the same manner as described earlier, followed by overnight placement of the specimen in artificial saliva. The procedure was repeated daily for 7 days, followed by examination of all the specimens using SEM. Scanning Electron Microscopy (Figs 3A to C) Samples were rigidly mounted on a circular metallic sample holder with the help of sticky carbon tape. The samples were electrocoated with 20- to 50-nm thick gold using Bio-Rad Polaran sputter coater. After gold sputtering, the samples were subjected to SEM EVO 50. The scans were automatically generated on a computer attached to the SEM. An extremely high voltage [extra-high tension (EHT)] of 20 kv and magnification of 5000 was used to view sound, demineralized, and remineralized surface of all the 45 specimens. The remineralization effect in all three test groups, positive, and negative controls was noted by an independent examiner according to the evaluation parameter (Table 1) 7, which was then compared and evaluated statistically. Statistical Analysis All the statistical was analyzed using SPSS software (version 15.0, Chicago, USA) and significance value was set at 0.05 or less. Descriptive statistics that included mean, mode, and standard deviation were calculated for each of the category. Categorical data were analyzed by ANOVA for differences between groups. For continuous data, paired t-test was performed. RESULTS The three test groups were not statistically different from one another in terms of mean remineralization scores; although group A showed maximum remineralization (score = 3.27 ± 0.96), followed by group C (score = 2.87 ± 0.88) and B respectively (score = 2.73 ± 0.88) (Table 2). All the three test groups showed significant remineralization compared with demineralized enamel surface; however, the remineralization achieved was significantly low compared to the sound surface (Table 2). DISCUSSION Due to the ailing consequences of dental caries, the focus of current research is shifting to development of new methodologies for the early detection and noninvasive treatment of carious lesions. Remineralization of early carious lesions is one of the major advancement in this field, which retards the progression of a lesion causing its arrest and achieves lesion regression ideally. 8 Various means of remineralization became available, such as chewing gums (containing xylitol or tricalcium A B C Figs 3A to C: Scanning electron microscopy (A) Samples mounted on the metal stub; (B) gold sputtering unit; and (C) samples after gold sputtering 188

Comparative Evaluation of Remineralizing Potential of Three Pediatric Dentifrices Table 1: Evaluation parameters for remineralization Pattern observed SEM photographs (present study) Scoring criteria (Gupta et al 1998) 7 Deep prismatic holes giving a typical honeycomb appearance and/or single or groups of focal holes. 0 (Demineralized) Fine particle-like granular variable-sized deposits with uneven distribution. 1 Reduction in the depths of prismatic holes due to deposition of minerals within the prism cores. Honeycomb appearance still present. 2 Enamel prisms pits visible with mineral deposit only partially filling up prism cores. Honeycomb appearance not visible. 3 Amorphous precipitate-like deposit scattered unevenly on the surface or globular particles deposited uniformly on the enamel surface. 4 Smooth homogeneous flat surface with slightly discernible prism shadows. 5 (Sound) Table 2: Comparison between mean remineralization scores between demineralized and remineralized surface for all three groups Groups Demineralized surface (mean score) Sound surface (mean score) Remineralized surface (mean score) t-test A 0 a 5 b 3.27 ± 0.96 c a vs c F value = 13.163; p < 0.001 b vs c F value = 6.985; p < 0.001 B 0 a 5 b 2.73 ± 0.88 d a vs d F value = 11.979; p < 0.001 b vs d F value = 9.934; p < 0.001 C 0 a 5 b 2.87 ± 0.91 e a vs e F value = 12.128; p < 0.001 b vs e F value = 9.025; p < 0.001 c vs d vs e ANOVA = 2.311 p = 0.267 a: demineralised surface score of 0; b: sound surface score of 5; c: remineralised surface mean score (Group A); d: remineralised surface mean score (Group B); e: remineralised surface mean score (Group C); Statistically significant at p < 0.001 [ANOVA test] International Journal of Clinical Pediatric Dentistry, July-September 2016;9(3):186-191 189

Ashna Kapoor et al phosphate) and casein phosphopeptides-amorphous calcium phosphate (CPP-ACP) have been introduced over the time; however, their use in daily practice has not been established. Moreover, the risk of ingestion and hence, toxicity has been a cause of concern in pediatric patients. The same risks may be attributed to dentifrices when they are used both by adults and by children of the same family. Hence, pediatric dentifrices were marketed with claims of better tolerance and safety in pediatric patients. Due to low fluoride content of these dentifrices, it would be interesting to study their remineralization effect on the enamel; hence the present study was carried out comparing three commercially available pediatric dentifrices. Though the results were not statistically different from each other in the present study, group A showed a higher healing potential followed by group C and then by group B. The fluoride contents of three pediatric dentifrices used in our study were 1000 ppm sodium fluoride in group A (Dentifrice 1), 500 ppm sodium fluoride in group B (Dentifrice 2), and 498 ppm sodium monoflurophosphate in group C (Dentifrice 3). The better result in group A could be attributed to higher fluoride content, although use of different fluoride agent could also be another reason. Also, group C contained xylitol, which acts on calcium ion carrier and maintains constant calcium ion content by introducing calcium ions from the surface layer to the middle and deep demineralized layers, thereby enhancing remineralization. 9,10 The remineralizing potential of pediatric dentifrices has also been demonstrated in the earlier studies by Malekafzali and Tadayon, 11 Itthagarun et al, 12 and Ekambaran et al. 13 Experimental model based on the formation of lesions in in vitro systems can be used to understand the effects of such agents on carious processes. However, in vitro systems face criticism because of the mechanical limitations in various ways: 14,15 (1) They are unable to completely simulate the complex intraoral conditions leading to caries development, even when artificial mouth systems, bacterial biofilms, and saliva are employed. This is particularly relevant for testing fluoridated dentifrices with monofluorophosphate (MFP), since the enzyme systems required for MFP hydrolysis are present in saliva and plaque in vivo, but are absent in most in vitro test methods; (2) they cannot mimic solid surface area/solution ratios or the saliva/ plaque fluid composition encountered in vivo, since different oral surfaces are bathed in different volumes and source combinations of saliva, (3) there are artifacts associated with the choice of substrate and test conditions, particularly the time periods of de- and remineralization, which are much faster than those expected to occur in 190 in vivo conditions; and (4) they are not able to adequately simulate topical use and clearance of products from the oral cavity. While dentifrices are typically slurried to simulate dilution during brushing, the uptake and reactivity of fluoride are consistently lower in vivo than in vitro, which may result in inaccurate assessments of the anticaries potential of formulations directed toward enhancement of fluoride delivery. All these limitations must be kept in mind when data from ph cycling studies are intended to be extrapolated for the clinical situations. In the oral cavity, the ph alterations are more frequent depending on individual s dietary and oral hygiene habits; therefore, it is difficult to exactly simulate the oral conditions that prevail in the mouth. Nevertheless, there is greater control over these variables in an in vitro model, which may be difficult to obtain in a mouth. The present study tried to simulate oral conditions as far as possible, viz., 5 minutes suspension in dentifrice slurry every 8th hour (simulating 5 minutes of brushing twice daily) and suspension in artificial saliva (simulating the effect of saliva in oral cavity). Various methods have been used by different authors to demineralize enamel 16,17 ; however, the present method was modified from ten Cate and Duijsters 6 because of the convenience in the reduced time period of immersion and easy availability of chemicals. Time period of 96 hours was used for demineralization based on the study by Rirattanapong et al 18 to produce 60 to 100 µm deep artificial carious lesions. Various methods have been used for evaluating the remineralization of white spot lesions, such as clinical evaluation, polarized microscopy, energy dispersion X-ray analysis (EDX), microhardness test, chemical analysis, stereomicroscopy, and SEM. The present study employed SEM with high-resolving power because of reported high sensitivity toward early reactions occurring at crystal level. 1 The objective of any fluoride preventive therapy is to attain maximum anticaries action with the minimal risk of fluorosis. This risk is a function of both the amount of dentifrice and the fluoride concentration. Fluoride dentifrices may account for 57% of the total fluoride ingested in 4- to 6-year age group children due to their inability to spit out the toothpaste during brushing. 19 These concerns have led to recommendations to minimize fluoride ingestion during tooth-brushing by using a small amount of toothpaste by children and incorporating minimal quantity of fluoride in the toothpastes. Hence, from the present study, it can be concluded that all three dentifrices tested showed remineralizing potential although insignificantly different from each other but significantly higher compared to the demineralizing surface. Future studies are needed utilizing ph cycling

Comparative Evaluation of Remineralizing Potential of Three Pediatric Dentifrices method to simulate oral environment and testing the remineralization potential using microhardness test. CONCLUSION From the study, it can be concluded that all the three pediatric dentifrices showed remineralizing potential, which was significantly high compared to the control demineralized surface but low compared to the sound surface. Group A showed better remineralizing potential, followed by groups C and B respectively, possibly due to different anticariogenic constituents. Thus, one can use pediatric dentifrices for preventing dental caries and decelerating lesion progression with an added advantage of lower fluoride toxicity risk. REFERENCES 1. Walsh T, Worthington HV, Glenny AM, Appelbe P, Marinho VC, Shi X. Fluoride toothpastes of different concentrations for preventing dental caries in children and adolescents. Cochrane Database Syst Rev 2010;20:CD007868. 2. Dirks OB. Post-eruptive changes in dental enamel. J Dent Res 1966 May;45 (Suppl 3):503-511. 3. White DJ. Reactivity of fluoride dentifrices with artificial caries. Effects on subsurface lesions: fluoride uptake, fluoride distribution, surface hardening and remineralisation. Caries Res 1988;22(1):27-36. 4. Itthagarun A, Wei SH. Analysis of fluoride ion concentrations and in vitro fluoride uptake from different commercial dentifrices. Int Dent J 1996 Aug;46(4):357-361. 5. Levy SM, Kohout FJ, Kiritsy MC, Heilman JR, Wefel JS. Infants fluoride ingestion from water, supplements and dentifrice. J Am Dent Assoc 1995 Dec;126(12):1625-1632. 6. ten Cate JM, Duijsters PP. Alternating demineralization and remineralization of artificial enamel lesions. Caries Res 1982;16(3):201-210. 7. Gupta K, Tewari A, Sahni A, Chawla HS, Gauba K. Remineralizing efficacy of a mineral enriched mouth rinse and fluoridated dentifrice on artificial carious lesion: an in vivo scanning electron microscopic study. J Indian Soc Pedod Prev Dent 1998 Sep;16(3):67-71. 8. Pitts NB, Wefel JS. Remineralisation/desensitization: what is known? What is the future? Adv Dent Res 2009;21(1):83-86. 9. Sano H, Nakashima S, Songpaisan Y, Phantumvait P. Effect of a xylitol and fluoride containing toothpaste on the remineralisation of human enamel in vitro. J Oral Sci 2007 Mar;49(1):67-73. 10. Manton DJ, Walker GD, Cai F, Cochrane NJ, Shen P, Reynolds EC. Remineralisation of enamel subsurface lesions in situ by the use of three commercially available sugar-free gums. Int J Paedr Dent 2008 Jul;18(4):284-290. 11. Malekafzali B, Tadayon N. Comparative evaluation of fluoride uptake rate in the enamel of primary teeth after application of two pediatric dentifrices. J Dent Med Sci 2006;3(3):135-139. 12. Itthagarun A, Thaveesangpanich P, King NM, Tay FR, Wefel JS. Effects of different amounts of low fluoride toothpaste on primary enamel lesion progression: a preliminary study using in vitro ph-cycling system. Eur Arch Paediatr Dent 2007 Mar;8(1):69-73. 13. Ekambaran M, Itthagarun A, King NM. Comparison of the remineralizing potential of child formula dentifrices. Int J Paediatr Dent 2011 Mar;21(2):132-140. 14. White DJ. The application of in vitro models to research on demineralization and remineralization of the teeth. Adv Dent Res 1995 Nov;9(3):175-193. 15. White DJ. The comparative sensitivity of intra-oral, in vitro, and animal models in the profile evaluation of topical fluorides. J Dent Res 1992 Apr;71(Spec issue):884-894. 16. Featherstone JD, Rodgers BE, Smith MW. Physicochemical requirements for rapid remineralisation of early carious lesions. Caries Res 1981;15(3):221-235. 17. Ingram GS, Fejerskov O. Scanning electron microscope study of artificial caries lesion formation. Caries Res 1986;20(1):32-39. 18. Rirattanapong P, Smutkeeree A, Surarit R, Saendsirinavin C, Kunanantsak V. Effects of fluoride dentifrice on remineralization of demineralized primary enamel. Southeast Asian J Trop Med Public Health 2010 Jan;41(1):243-249. 19. Pessan JP, Silva SM, Buzalaf MA. Evaluation of the total fluoride intake of 4-7-year-old children from diet and dentifrice. J Appl Oral Sci 2003 Jun;11(2):150-156. International Journal of Clinical Pediatric Dentistry, July-September 2016;9(3):186-191 191