Head and neck cancer is a common malignancy

Similar documents
Aldehyde dehydrogenase 1: A specific cancer stem cell marker for human colorectal carcinoma

PRODUCTS FOR CANCER RESEARCH

TUMOR INITIATING CELLS: THE STEM CELL THEORY OF CANCER

The expression of ALDH1 in cervical carcinoma

PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland

Orosphere assay: A method for propagation of head and neck cancer stem cells

ALDH1A1 is a marker for malignant prostate stem cells and predictor of prostate cancer patients outcome

Material and Methods. Flow Cytometry Analyses:

CONTRACTING ORGANIZATION: University of Michigan Ann Arbor, MI

LETTERS. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice

Supplementary Figure 1. Identification of tumorous sphere-forming CSCs and CAF feeder cells. The LEAP (Laser-Enabled Analysis and Processing)

Supplemental Experimental Procedures

CONTRACTING ORGANIZATION: The Walter & Eliza Hall Institute Melbourne 3050 Australia

PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland

Lecturer, Department of Oral Medicine, University of Dental Medicine, Mandalay.

CRIPTO-1 A POSSIBLE NEW BIOMARKER IN GLIOBLASTOMA MULTIFORME PIA OLESEN, MD, PHD STUDENT

Characteristics of Cancer Stem Cells (CSCs)

Getting to the root of Cancer

Correlations of ALDH1 expression with molecular subtypes and ABCG2 in breast cancer

CD34+ Cells: A Comparison of Stem and Progenitor Cells in Cord Blood, Peripheral Blood, and the Bone Marrow

A subpopulation of CD24 + cells in colon cancer cell lines possess stem cell characteristics

Effective activity of cytokine-induced killer cells against autologous metastatic melanoma including cells with stemness features

Chapter 3. Use of Stem Cell Markers in Dissociated Mammary Populations

SUPPLEMENTARY INFORMATION. CXCR4 inhibitors could benefit to HER2 but not to Triple-Negative. breast cancer patients

TISSUE-SPECIFIC STEM CELLS

Extended Mammosphere Culture of Human Breast Cancer Cells

Cancer Stem Cells: A Step Toward the Cure

Supporting Information

5K ALDEFLUOR-positive/ CXCR1-negative. 5K ALDEFLUOR-positive/ CXCR1-positive BAAA BAAA CXCR1-APC BAAA BAAA CXCR1-APC

CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts

Roles of microrna-mediated Drug Resistance in Tumor Stem Cells of Small Cell Lung Carcinoma

Feasibility of hyperthermia as a purging modality in autologous bone marrow transplantation Wierenga, Pieter Klaas

The Cancer Stem Cell Concept in Progression of Head and Neck Cancer

INSTRUCTIONS Pierce Primary Cardiomyocyte Isolation Kit

Journal of Breast Cancer

Therapeutic implications of cancer stem cells. Cédric Blanpain, MD, PhD Laboratory of stem cells and cancer WELBIO, Université Libre de Bruxelles

Stem cells and Cancer. John Glod. December 2, 2009

A NOVEL CANCER STEM CELL (CSC) DRUG DISCOVERY PLATFORM. Collaborative Opportunity

Imaging of glycolytic metabolism in primary glioblastoma cells with

Viable Biobanking of Primary Head and Neck Squamous Cell Carcinoma

Cancer stem cells old concepts, new insights

ALDH, Aldehyde dehydrogenase; CSC, Cancer Stem Cells; GC, Gastric cancer, HSC, hematopoietic stem cells; BMDC, Bone Marrow derived Cells

Detailed step-by-step operating procedures for NK cell and CTL degranulation assays

Colorectal Cancer Stem Cells Are Enriched in Xenogeneic Tumors Following Chemotherapy

Significance of CD133 as a cancer stem cell markers focusing on the tumorigenicity of pancreatic cancer cell lines

SUPPLEMENTARY FIG. S2. Representative counting fields used in quantification of the in vitro neural differentiation of pattern of dnscs.

Concise Review: Emerging Concepts in Clinical Targeting of Cancer Stem Cells

Phenotypic Heterogeneity among Tumorigenic Melanoma Cells from Patients that Is Reversible and Not Hierarchically Organized

Aldehyde Dehydrogenase Activity of Breast Cancer Stem Cells is Primarily Due to Isoform ALDH1A3 and Its Expression is Predictive of Metastasis

Metastatic breast cancer stem cells

Jung Sun Lee 1, Woo Gyeong Kim 2. Introduction

Ex vivo Human Antigen-specific T Cell Proliferation and Degranulation Willemijn Hobo 1, Wieger Norde 1 and Harry Dolstra 2*

Human acute myelogenous leukemia stem cells are rare and heterogeneous when assayed in NOD/SCID/IL2Rγc-deficient mice

Supporting Information

Proteomic profiling of small-molecule inhibitors reveals dispensability of MTH1 for cancer cell survival

EML Erythroid and Neutrophil Differentiation Protocols Cristina Pina 1*, Cristina Fugazza 2 and Tariq Enver 3

A New Strategy Using ALDH high -CD8+T Cells to Inhibit Tumorigenesis

Type of file: PDF Size of file: 0 KB Title of file for HTML: Supplementary Information Description: Supplementary Figures

CHMP Oncology Working Party Workshop on: Histology Independent Indications in Oncology. Non-clinical models: Tumour Models - Proof of Concept

CDC & Florida DOH Attribution

IN VITRO AND IN VIVO CHARACTERIZATION OF CANCER STEM CELLS IN PRIMARY COLORECTAL CANCER MODELS

Identification of a Subpopulation of Nasopharyngeal Carcinoma Cells With Cancer Stem-Like Cell Properties by High Aldehyde Dehydrogenase Activity

Molecular Characterization of Leukemia Stem Cell Development. Scott A. Armstrong MD, Ph.D.

Truman Medical Center-Hospital Hill Cancer Registry 2014 Statistical Summary Incidence

Brain tumor stem cells and the tumor microenvironment

Isolation and Identification of Cancer Stem-Like Cells from Murine Melanoma Cell Lines

Extended Neurosphere Culture of Brain Tumor Stem Cells with the PromoCell 3D Tumorsphere Medium XF

Comprehensive evaluation of human immune system reconstitution in NSG. and NSG -SGM3 mouse models toward the development of a novel ONCO-HU

TRANSPORT OF AMINO ACIDS IN INTACT 3T3 AND SV3T3 CELLS. Binding Activity for Leucine in Membrane Preparations of Ehrlich Ascites Tumor Cells

Identifying Cancer Stem Cells in Solid Tumors: Case Not Proven

Expression of Aldehyde Dehydrogenase 1 as a Marker of Mammary Stem Cells in Benign and Malignant Breast Lesions of Ghanaian Women

Supplementary Figures

Differential Connexin Function Enhances Self-Renewal in Glioblastoma

IN VITRO ANTICANCER ACTIVITY OF FLOWER EXTRACTS OF COUROUPITA GUIANENSIS

Aldehyde dehydrogenase 1 expression correlates with the invasion of breast cancer

Human ovarian carcinoma associated mesenchymal stem cells regulate cancer stem cells and tumorigenesis via altered BMP production

Neck Dissection. Asst Professor Jeeve Kanagalingam MA (Cambridge), BM BCh (Oxford), MRCS (Eng), DLO, DOHNS, FRCS ORL-HNS (Eng), FAMS (ORL)

Self-Assessment Module 2016 Annual Refresher Course

Applications of Flow Cytometry in Diagnostic Cytology of Body Cavity Fluids

Tumorsphere Culture of Cancer Stem Cells (CSC) with the Cancer Stem Cell Medium, Application Note

World Congress on Breast Cancer

P-Cadherin Is Coexpressed with CD44 and CD49f and Mediates Stem Cell Properties in Basal-like Breast Cancer

Normal & Leukaemic haematopoiesis. Dr. Liu Te Chih Dept of Haematology / Oncology National University Health Services Singapore

ROLE OF STEM CELL IN DIAGNOSIS AND TREATMENT OF ORAL CANCER

MATERIALS AND METHODS. Neutralizing antibodies specific to mouse Dll1, Dll4, J1 and J2 were prepared as described. 1,2 All

Meeting Report. From December 8 to 11, 2012 at Atlanta, GA, U.S.A

Antimetastatic efficacy of adjuvant gemcitabine in a pancreatic cancer orthotopic model

Cancer metastasis, resistance to therapies and disease recurrence are

B16-F10 (Mus musculus skin melanoma), NCI-H460 (human non-small cell lung cancer

In vitro bactericidal assay Fig. S8 Gentamicin protection assay Phagocytosis assay

Gene expression profiling predicts clinical outcome of prostate cancer. Gennadi V. Glinsky, Anna B. Glinskii, Andrew J. Stephenson, Robert M.

The Hierarchical Organization of Normal and Malignant Hematopoiesis

Alan G. Casson FRCSC Professor of Surgery & VP Integrated Health Services University of Saskatchewan & Saskatoon Health Region

Stem Cells. Induced Stem Cells

Supplementary Table; Supplementary Figures and legends S1-S21; Supplementary Materials and Methods

Human Papillomavirus Testing in Head and Neck Carcinomas

Smoking, human papillomavirus infection, and p53 mutation as risk factors in oropharyngeal cancer: a case-control study

April 5, :45 AM 1:45 PM MARRIOTT MARQUIS HOTEL & MARINA, MIRAMAR VIGNETTE 1 VIGNETTE 2 VIGNETTE 3* VIGNETTE 4* VIGNETTE 5*

CytoSelect Tumor- Endothelium Adhesion Assay

Cancer stem cells are enriched in Fanconi anemia head and neck squamous cell carcinomas

Transcription:

ORIGINAL ARTICLE SINGLE-MARKER IDENTIFICATION OF HEAD AND NECK SQUAMOUS CELL CARCINOMA CANCER STEM CELLS WITH ALDEHYDE DEHYDROGENASE Matthew R. Clay, BSc, 1 Mark Tabor, MD, 2 John Henry Owen, BSc, 3 Thomas E. Carey, PhD, 3 Carol R. Bradford, MD, 3 Gregory T. Wolf, MD, 3 Max S. Wicha, MD, 4 Mark E. Prince, MD 3 1 Department of Molecular and Cell Biology, University of Wisconsin, Madison, Wisconsin 2 Department of Otolaryngology Head and Neck Surgery, College of Medicine, University of South Florida, Tampa, Florida 3 Department of Otolaryngology Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan. E-mail: mepp@umich.edu 4 Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan Accepted 15 October 2009 Published online 13 January 2010 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/hed.21315 Abstract: Background. In accord with the cancer stem cell (CSC) theory, only a small subset of cancer cells are capable of forming tumors. We previously reported that CD44 isolates tumorigenic cells from head and neck squamous cell cancer (HNSCC). Recent studies indicate that aldehyde dehydrogenase (ALDH) activity may represent a more specific marker of CSCs. Methods. Six primary HNSCCs were collected. Cells with high and low ALDH activity (ALDH high /ALDH low ) were isolated. ALDH high and ALDH low populations were implanted into NOD/ SCID mice and monitored for tumor development. Results. ALDH high cells represented a small percentage of the tumor cells (1% to 7.8%). ALDH high cells formed tumors from as few as 500 cells in 24/45 implantations, whereas only 3/37 implantations of ALDH low cells formed tumors. Correspondence to: M. E. Prince Contract grant sponsor: James Selleck Bower Endowed Research Fund; contract grant sponsor: National Institutes of Health/University of Michigan; contract grant number: Career Development Award SPORE P50 CA-097248; contract grant sponsor: The American Academy of Otolaryngology Head and Neck Surgery Foundation Percy Memorial Research Award. VC 2010 Wiley Periodicals, Inc. Conclusions. ALDH high cells comprise a subpopulation cells in HNSCCs that are tumorigenic and capable of producing tumors at very low numbers. This finding indicates that ALDH activity on its own is a highly selective marker for CSCs in HNSCC. VC 2010 Wiley Periodicals, Inc. Head Neck 32: 1195 1201, 2010 Keywords: cancer stem cells; aldehyde dehydrogenase; head and neck cancer; squamous cell cancer Head and neck cancer is a common malignancy that affects approximately 40,000 new patients in the United States each year. 1 Despite advances in therapy that have improved quality of life, survival rates have remained static for many years. Mortality from this disease remains high because of the development of distant metastasis and the emergence of treatment-resistant local and regional recurrences. To develop more effective therapies for head and neck squamous cell cancer (HNSCC), it is essential that we gain a deeper understanding of the biology Aldehyde Dehydrogenase and Head and Neck Cancer HEAD & NECK DOI 10.1002/hed September 2010 1195

of this disease and the cells that are responsible for recurrent and persistent cancer. The cancer stem cell (CSC) theory of carcinogenesis postulates that tissue stem cells or progenitor cells are a target for genetic changes that lead to malignant transformation. Based on their similarity to normal stem cells, CSCs are also likely to be more resistant to therapy and may be responsible for tumor persistence and recurrence. Evidence has been accumulating that supports the validity of this theory in a number of malignant diseases. 2 8 Epithelial cancers, including HNSCCs, contain heterogeneous populations of cells, some of which are tumorigenic and many others that are not. Accumulated evidence indicates that CSCs retain phenotypic features of their cell of origin, irrespective of whether that is a stem cell or an early progenitor cell. 9,10 Stem cell markers or molecular processes that are also expressed on CSCs should provide the means to identify and study CSCs. Thus, conserved stem cell molecular pathways may possibly be used in the search for CSCs. In recent studies in breast and central nervous system cancers, tumorigenic subpopulations of CSCs have been isolated based on expression of cell surface markers. 11 16 Using a modification of a method used to identify CSCs in breast cancer we isolated a subpopulation of HNSCC cells marked by the cell surface marker CD44 (CD44- positive cells [CD44þ]) that produce tumors in the NOD/SCID mouse model. 12,17 In contrast, even 10-fold higher numbers of CD44-negative (CD44 ) tumor cells were unable to form tumors. Although this was the first demonstration of CSCs in HNSCC, the high percentage of HNSCCs found to be CD44þ and the number of such cells necessary (5 10 3 ) to develop a tumor suggested that, although the CD44þ cell population contained CSCs, it was unlikely to be a pure population of CSCs. Aldehyde dehydrogenase (ALDH) expression has been suggested as a potential functional marker for stem cells and CSCs. ALDH, which detoxifies intracellular aldehydes through oxidation, may have a role in the differentiation of stem cells through the oxidation of retinoic acid. 18 20 High ALDH activity has been used to isolate normal hematopoietic and central nervous system stem cells. 21 24 ALDH activity is also found in subsets of multiple myeloma and acute myeloid leukemia. 24,25 Wicha et al 26 used ALDH activity to isolate breast CSCs. ALDH 1 expression has recently been reported to be a putative marker for CSCs in HNSCC and colon cancer. 27,28 These findings indicate that ALDH expression may be an important new marker for the isolation of CSCs. In this study we investigated the ALDH active population of HNSCC cells for tumorigenic activity. MATERIALS AND METHODS Approvals for the collection of cancer specimens and for use of the animal model were obtained through the appropriate review boards. The University of Michigan s Guide for the Care and Use of Laboratory Animals was followed. Samples of HNSCC cancer were obtained from subjects undergoing surgical resection or biopsy of their tumor. Specimens were immediately transported to the laboratory in Dulbecco s modified Eagle s medium (DMEM; GIBCO Media/Invitrogen Corp., Carlsbad, CA) containing 10% fetal bovine serum (FBS; Sigma Aldrich, St. Louis, MO) on ice. Single-cell suspensions were created. Specimens were cut into small fragments with sterile scissors and minced with a sterile scalpel, rinsed with Hanks balanced salt solution (HBSS; Invitrogen) containing 2% heat-inactivated calf serum (HICS; Invitrogen), and centrifuged for 5 minutes at 1000 rpm. The resulting tissue specimen was placed in a solution of DMEM F-12 containing 300 U/mL collagenase and 100 U/mL hyaluronidase (STEMCELL Technologies, Vancouver, BC, Canada). The mixture was incubated at 37 C mixing to dissociate cells. The digestion was arrested with the addition of FBS and the cells were filtered through a 40-lm nylon sieve. The cells were washed twice with HBSS/2% HICS and stained for flow cytometry as described in the following text. ALDH activity was identified in the cancer cells using the ALDEFLUOR substrate in accord with the manufacturer s protocol (StemCo Biomedical, Durham, NC). Specimens that were analyzed for ALDH activity were counterstained with anti-cd44 (allophycocyanin [APC] conjugated; BD Pharmingen, San Diego, CA) at the appropriate dilution. Cells of other lineages were identified and removed using markers anti-cd2, CD3, CD10, CD16, and CD18 (CyChrome [Cy] conjugated; BD Pharmingen) that are not expressed on the tumor cells. Nonviable cells were eliminated using 4 0,6-diamidino-2-phenylindole (DAPI; BD Pharmingen). During flow cytometry analysis, other lineage 1196 Aldehyde Dehydrogenase and Head and Neck Cancer HEAD & NECK DOI 10.1002/hed September 2010

Table 1. Patient demographics, tumor classification, and characteristics. Sample Age/ Sex Site Classification Differentiation HN72 74/M Tonsil T2N0M0 Well HN76 71/F Floor of mouth T3N2cM0 Poor HN78 67/M Oral tongue T2N2cM0 Moderate HN79 45/F Tonsil T2N1M0 Moderate HN80 44/M Larynx T3N0M0 Moderate HN84 59/M Tongue base T4N0M0 Poor Abbreviations: M, male; F, female. cells and the DAPI-stained dead cells were eliminated by gating. The specific flow gates for ALDH-positive cells were set using a control sample of the isolated tumor cells in which ALDH activity was inhibited with diethylaminobenzaldehyde (DEAB). Subsequent flow cytometry runs were used to identify populations of cells with high aldehyde dehydrogenase activity (ALDH high ) and those that express the surface marker CD44 (CD44þ), whereas measurements of cell numbers were used to identify the percentage of each population present: ALDH high, ALDH low, CD44þ, and CD44. Overlap between these populations was assessed to identify populations of cells with the characteristics CD44þ ALDH high, CD44þ ALDH low, CD44- ALDH high, and CD44 ALDH low in HNSCC. HNSCC subpopulations of interest were collected based on their ALDH expression. Subpopulations of ALDH high and ALDH low cells were injected subcutaneously into NOD/SCID mice and evaluated for their tumorigenic potential. When sufficient numbers were available, the cells were serially diluted prior to injection. The cells were mixed with Matrigel Basement Membrane Matrix (BD Pharmingen) solution to form a final volume of 200 ll. Injection sites were sealed with a liquid skin adhesive. The animals were assessed for tumor growth. The tumorgenicity of the injected cell populations was evaluated by evidence of tumor growth in NOD/SCID mice and by histology. When the number of cells allowed for serial dilutions to be injected, we determined the minimum number of cells required for each population to produce a tumor in the NOD/SCID mouse. The resultant tumors were assessed by flow cytometric and histologic analysis for tumor heterogeneity and proportion of cells with ALDH activity. RESULTS Six primary tumors were collected from subjects with HNSCC. Two tumors originated in the oral cavity (floor of mouth, tongue), 3 originated in the oropharynx (2 in the tonsil, 1 base of tongue), and 1 originated in the larynx. The subjects ranged in age from 45 to 74 years old. There were 3 moderately differentiated, 2 poorly differentiated, and 1 well-differentiated tumor (Table 1). Although most of the tumor samples were small, when sufficient numbers of cells were available costained flow cytometry sorts and injections of serially diluted cells were performed. HNSCC can be separated into 2 subpopulations using the ALDEFLUOR substrate to FIGURE 1. Head and neck squamous cell carcinoma (HNSCC) cells that have high levels of aldehyde dehydrogenase (ALDH) expression also express CD44 at high levels. (A) HN79 cells sorted for ALDH expression. P6 represents cells with high levels of ALDH expression (ALDH high ). (B) Only HN79 cells with elevated ALDH levels (P6) have been sorted for CD44 expression. The cells in P10 represent the population of cells with high ALDH expression that also express CD44. Approximately 70% of the ALDH high cells are also CD44þ. Aldehyde Dehydrogenase and Head and Neck Cancer HEAD & NECK DOI 10.1002/hed September 2010 1197

Table 2. Percentage of ALDH high cells in the HNSCC specimens, percentage of CD44þ cells that are ALDH high, and percentage of ALDH high cells that are also CD44þ. Sample Percentage ALDH high Percentage of ALDH high cells that are CD44þ Percentage of CD44þ cells that are ALDH high HN72 1.0 70.2 23.60 HN76 1.8 74.4 16.49 HN78 1.3 50.6 13.40 HN79 6.2 72.9 N/A HN80 7.8 69.9 N/A HN84 2.6 N/A 9.86 Abbreviations: ALDH, aldehyde dehydogenase; HNSCC, head and neck squamous cell cancer, N/A, not applicable. Note: Not all combinations are reported because of limitations related to cell numbers available for analysis. determine ALDH activity and flow cytometry to sort and collect the cells. As expected, the majority of HNSCC cells had low ALDH activity. In these tumors, the proportion of ALDH high cells had a mean of 3.5 2.8% (1.0% to 7.8%). The ALDH high subpopulation overlaps significantly with the CD44þ population of cells. When the ALDH high population was sorted for CD44, the majority of cells also expressed CD44, 50.6% to 74.4% (Figure 1 and Table 2). Conversely, when CD44þ cells were sorted for ALDH activity, only 9.8% to 23.6% of the CD44þ cells had high ALDH activity, indicating that a large proportion of ALDH high cells are CD44þ, but a much smaller proportion of CD44þ cells are ALDH high. ALDH high HNSCC cells are highly tumorigenic compared with ALDH low cells (Table 3). HNSCC cells with high ALDH activity produced tumors in the NOD/SCID mouse model in 24/45 injections (53%), whereas HNSCC cells with low ALDH activity resulted in tumors in only 3/37 injections (p <.00001, chi-square test). Tumors developed in 7/15 (47%) mice injected with as few as 50 to 100 ALDH high HNSCC cells, whereas no tumors occurred in 0/14 injections of the same number of ALDH low cells. ALDH high cells produce tumors that have a histology similar to that of the original tumor (see Figure 2). The ALDH high cells can be passaged in the mouse model and reproduce the original tumor heterogeneity for ALDH activity that is, the proportion of cells that are ALDH high is similar to the proportion in the original tumor (see Figure 3). DISCUSSION The identification of highly tumorigenic subpopulations of cells the CSCs in solid tumors has significant implications regarding cancer biology, response to therapy, and the development of new cancer treatments. Therapies based on tumor regression may produce treatments effective against the majority of more differentiated cancer cells while sparing the CSC subpopulation. 8 The development of more effective cancer therapeutics will require the CSCs to be selectively targeted and eliminated. For this strategy to be successful, the CSC cells must be reliably identified and isolated so their characteristics can be studied. CD44 is a cell surface marker that identifies a subpopulation of cancer cells from HNSCCs that are highly tumorigenic. However, the CD44 subpopulation of HNSCCs likely contains both non-cscs and CSCs as shown by the need to Table 3. Number of tumors resulting from implantations of ALSH high and ALDH low cells for each HNSCC specimen. No. of cells injected Sample Population 5000þ 1001 5000 501 1000 101 500 50 100 HN72 ALDH high 1/2 0/1 1/1 2/3 ALDH low 0/1 0/2 0/4 HN76 ALDH high 1/3 2/2 0/2 ALDH low 1/2 HN78 ALDH high 3/4 2/4 2/4 ALDH low 0/4 1/4 0/4 HN79 ALDH high 1/1 1/1 1/1 2/4 ALDH low 0/1 0/2 0/4 HN80 ALDH high 0/2 1/2 2/4 ALDH low 0/3 0/2 HN84 ALDH high 1/2 1/2 ALDH low 1/2 0/2 Abbreviations: ALDH, aldehyde dehydogenase; HNSCC, head and neck squamous cell cancer. 1198 Aldehyde Dehydrogenase and Head and Neck Cancer HEAD & NECK DOI 10.1002/hed September 2010

FIGURE 2. ALDH high cells reproduce tumors that are histologically similar to the original tumor. (A) HN84 primary tumor (original magnification, 20). (B) HN84 tumor resultant from ALDH high injection (original magnification, 20). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.] inject in the order of 5 10 3 cells to produce a tumor in the animal model. 17 In other cancers, combinations of cell surface markers have been used successfully to isolate CSCs, and smaller numbers of the isolated cells have been shown to produce tumors in an animal model, suggesting this methodology is capable of isolating the CSCs more selectively. These findings indicated FIGURE 3. ALDH high cells re-create the original tumor heterogeneity for ALDH expression and maintain the distribution of ALDH in cancer cells passaged in the animal model. (A) Primary HN84 cancer cells inhibited with diethylamino-benzaldehyde (DEAB). (B) Primary HN84 cancer cells sorted for ALDH expression: 11.1% of the cancer cells are ALDH high.(c) Cancer cells derived from tumors grown in the animal model (passage 1) inhibited with DEAB. (D) Cancer cells sorted for ALDH expression from tumor grown in the animal model from HN84 ALDH high exhibit the same heterogeneity for ALDH expression as the original tumor. Aldehyde Dehydrogenase and Head and Neck Cancer HEAD & NECK DOI 10.1002/hed September 2010 1199

FIGURE 4. Proposed model for the cancer stem cell (CSC) compartment in HNSCC. a need to identify a more selective single marker or combination of markers for CSCs in HNSCCs. Wicha et al 26 recently demonstrated that ALDH expression can be used to identify breast CSCs and that injections of small numbers of these cells produce tumors in an animal model. Interestingly, the normal breast stem/progenitor cells also have high expression of ALDH, strongly supporting the concept that stem and progenitor cells are the targets of malignant transformation in breast cancer. 26 We have shown here that ALDH expression isolates a subpopulation of cancer cells from HNSCCs that are highly tumorigenic. The ALDH-positive cells are able to produce tumors at a 10-fold reduction over that which was possible with CD44þ cells alone. 17 The tumors grown from ALDH high cells re-create the original tumor heterogeneity and histology, and the ALDH high cells can be passaged in the animal model, fulfilling the requirements for CSC phenotype. These data along with the recent report by Chen et al 27 strongly support the use of ALDH expression as a method to select CSCs in HNSCC. As expected, the ALDH subpopulation of HNSCC cells mainly comprise a small subpopulation of the CD44þ cells, suggesting ALDH expression isolates a subset of CD44þ cells that contain the actual tumorigenic CSCs (see Figure 4). Thus we conclude that the tumorigenic cells have both phenotypic markers. The explanation as to why CD44 and ALDH are expressed by the stem cell population is not known, although one could speculate that the ability to oxidize retinoic acid, a proposed function of ALDH, is a requirement for stem cell activity. It is also not certain that both markers are always expressed on the tumorigenic stem cells because there appears to be a small fraction of ALDH-positive cells that are CD44. However, the limited number of cells precluded a separate selection of these cells for testing, and our prior experiments had shown that even large numbers of CD44-negative cells are not tumorigenic. No doubt there are other phenotypic markers that are expressed by CSCs. For example, in breast cancer, CD24 is also a stem cell marker. In HNSCC, this does not appear to be the case; thus there seem to be tissue-specific stem cell markers as well as general stem cell markers. ALDH expression may represent a CSC that is generally applicable to all CSCs, although this remains to be proven. The small numbers of CSCs obtained from HNSCC limit the critical experiments that must be carried out to understand the role of these cells in cancer persistence, recurrence, and resistance to therapy. Repeated recultivation in the NOD/SCID mouse or in vitro culture methods would allow for repeated experiments, and our future work will target these mechanisms. REFERENCES 1. Jain S, Khuri FR, Shin DM. Prevention of head and neck cancer: current status and future prospects. Curr Probl Cancer 2004;28:265 286. 2. Golub TR. Genome-wide views of cancer. N Engl J Med 2001;344:601 602. 3. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature 2001;414: 105 111. 4. Pardal R, Clarke MF, Morrison SJ. Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 2003;3:895 902. 5. Al-Hajj M, Clarke MF. Self-renewal and solid tumor stem cells. Oncogene 2004;23:7274 7282. 6. Tai MH, Chang CC, Kiupel M, Webster JD, Olson LK, Trosko JE. Oct4 expression in adult human stem cells: evidence in support of the stem cell theory of carcinogenesis. Carcinogenesis 2005;26:495 502. 7. Owens DM, Watt FM. Contribution of stem cells and differentiated cells to epidermal tumours. Nat Rev 2002;3:444 451. 8. Wicha MS, Liu S, Dontu G. Cancer stem cells: an old idea a paradigm shift. Cancer Res 2006;66:1883 1890. 9. Jamieson CH, Ailles LE, Dylla SJ, et al. Granulocytemacrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 2004;351:657 667. 10. Kelly LM, Gilliland DG. Genetics of myeloid leukemias. Ann Rev Gen Hum Gen 2002;3:179 198. 11. Li C, Lee CJ, Simeone DM. Identification of human pancreatic cancer stem cells. Methods Mol Biol 2009;568: 161 173. 1200 Aldehyde Dehydrogenase and Head and Neck Cancer HEAD & NECK DOI 10.1002/hed September 2010

12. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 2003;100: 3983 3988. 13. Singh SK, Clarke ID, Terasaki M, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res 2003;63:5821 5828. 14. Hemmati HD, Nakano I, Lazareff JA, et al. Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci U S A 2003;100:15178 15183. 15. Ignatova TN, Kukekov VG, Laywell ED, Suslov ON, Vrionis FD, Steindler DA. Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia 2002;39:193 206. 16. Singh SK, Hawkins C, Clarke ID, et al. Identification of human brain tumour initiating cells. Nature 2004;432: 396 401. 17. Prince ME, Sivanandan R, Kaczorowski A, et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci U S A 2007;104:973 978. 18. Duester G. Families of retinoid dehydrogenases regulating vitamin A function: production of visual pigment and retinoic acid. Eur J Biochem 2004;267:4315 4324. 19. Sophos NA, Vasiliou V. Aldehyde dehydrogenase gene superfamily: the 2002 update. Chem-Biol Interact 2003; 143 144:5 22. 20. Chute JP, Muramoto GG, Whitesides J, et al. Inhibition of aldehyde dehydrogenase and retinoid signaling induces the expansion of human hematopoietic stem cells. Proc Natl Acad Sci U S A 2006;103:11707 11712. 21. Armstrong L, Stojkovic M, Dimmick I, et al. Phenotypic characterization of murine primitive hematopoietic progenitor cells isolated on basis of aldehyde dehydrogenase activity. Stem Cells 2004;22:1142 1151. 22. Hess DA, Wirthlin L, Craft TP, et al. Selection based on CD133 and high aldehyde dehydrogenase activity isolates long-term reconstituting human hematopoietic stem cells. Blood 2006;107:2162 2169. 23. Hess DA, Meyerrose TE, Wirthlin L, et al. Functional characterization of highly purified human hematopoietic repopulating cells isolated according to aldehyde dehydrogenase activity. Blood 2004;104:1648 1655. 24. Matsui W, Huff CA, Wang Q, et al. Characterization of clonogenic multiple myeloma cells. Blood 2004;103:2332 2336. 25. Pearce DJ, Taussig D, Simpson C, et al. Characterization of cells with a high aldehyde dehydrogenase activity from cord blood and acute myeloid leukemia samples. Stem Cells 2005;23:752 760. 26. Ginestier C, Hur MH, Charafe-Jauffret E, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 2007;1:555 567. 27. Chen YC, Chen YW, Hsu HS, et al. Aldehyde dehydrogenase 1 is a putative marker for cancer stem cells in head and neck squamous cancer. Biochem Biophys Res Commun 2009;385:307 313. 28. Huang EH, Hynes MJ, Zhang T, et al. Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis. Cancer Res 2009;69:3382 3389. Aldehyde Dehydrogenase and Head and Neck Cancer HEAD & NECK DOI 10.1002/hed September 2010 1201