COMMENTARY ON USING LNT FOR RADIATION PROTECTION AND RISK ASSESSMENT

Similar documents
What is the Appropriate Radiation Level for Evacuations? J. M. Cuttler Cuttler & Associates Inc., Mississauga, Ontario, Canada

The Linear No-Threshold Model (LNT): Made to Be Tested, Made to Be Questioned. Richard C. Miller, PhD Associate Professor The University of Chicago

International Nuclear Energy Academy 2015 Annual Meeting, Vienna, Sep 14 Beneficial radiation effects contradict the LNT model s cancer predictions

Where does the estimate of 29,000 cancers come from? Based on Table 12D from BEIR VII, + risk estimates for 56,900,000 patients

HEALTH EFFECTS OF LOW LEVEL RADIATION: WHEN WILL WE ACKNOWLEDGE THE REALITY?

Sources of Data of Stochastic Effects of Radiation. Michael K O Connor, Ph.D. Dept. of Radiology, Mayo Clinic

Radiation Health Effects

Core Concepts in Radiation Exposure 4/10/2015. Ionizing Radiation, Cancer, and. James Seward, MD MPP

Current and Planned NCRP Activities

C H A M B E R O F COMME R C E O F T H E U N ITED STATES OF AME R ICA. November 19, 2015

Health Physics and the Linear No-Threshold Model

Estimating Risk of Low Radiation Doses (from AAPM 2013) María Marteinsdóttir Nordic Trauma,

Rulemaking1CEm Resource

Supplementary Information. Renseignements supplémentaires. Exposé oral. Oral Presentation. Presentation from Jerry Cuttler

LOW DOSES OF RADIATION REDUCE RISK IN VIVO

Cancer Risk Factors in Ontario. Other Radiation

RADON RESEARCH IN MULTI DISCIPLINES: A REVIEW

Putting Radiation Risks from NORM Into Perspective

Downloaded From: on 1/15/2019 Terms of Use:

Biological Effects of Radiation KJ350.

Radioactivity. Lecture 8 Biological Effects of Radiation

Estimates of Risks LONG-TERM LOW DOSE EFFECTS OF IONIZING RADIATION

IS THERE A WAY TO RESOLVE THE CONTROVERSY ON LOW DOSE EFFECTS? D. J. Higson. Consultant 260 Glenmore Rd, Paddington, NSW 2021, Australia

Effects of Long-Term Exposure to Radiation. Tim Marshel R.T. (R)(N)(CT)(MR)(NCT)(PET)(CNMT)

Epidemiologic Studies. The Carcinogenic Effects of Radiation: Experience from Recent Epidemiologic Studies. Types of Epidemiologic Studies

The health risks of exposure to internal radiation. Korea National Assembly Seoul 22 nd August 2015

7/22/2014. Radiation Induced Cancer: Mechanisms. Challenges Identifying Radiogenic Cancers at Low Dose & Low Dose Rate (<100 mgy & <5 10 mgy/h)

Ernest Rutherford:

Annex X of Technical Volume 4 RADIATION AND HEALTH EFFECTS AND INFERRING RADIATION RISKS FROM THE FUKUSHIMA DAIICHI ACCIDENT

Everyday Radiation. David D. Dixon HDT Rally Hutchinson, KS October 15, 2014

Protecting the Health of Uranium Mine Workers: The Situation from the 1930s to the Present Day

Are Atomic-Bomb Dose-Response Data from ABCC/RERF Reasonable for Assessment of Radiation Risk?

Ionizing Radiation. Michael J. Vala, CHP. Bristol-Myers Squibb

Current and Planned Reports and Conferences of the National Council on Radiation Protection and Measurements

DOWNLOAD OR READ : IONIZING RADIATION EFFECTS IN ELECTRONICS FROM MEMORIES TO IMAGERS DEVICES CIRCUITS AND SYSTEMS BOOK 50 PDF EBOOK EPUB MOBI

SPECIAL ISSUE INTRODUCTION

Radiation related cancer risk & benefit/risk assessment for screening procedures

A risk assessment of the potential impacts of radon, terrestrial gamma and cosmic rays on childhood leukaemia in France

Risk Models for Radiationinduced

Laurier D. GT CIPR, Paris, 29 Nov This presentation has neither been approved nor endorsed by the Main Commission of ICRP

Radiation Exposure 1980 to 2006

RADON RISK IN URANIUM MINING AND ICRP

HEALTH P H Y S I C S SOCIETY

1. The Accident of Chernobyl Unit 4 of 1,000 MWe Graphite-Moderated Boiling Water Pressure Tube Reactor in 1986

Long-term Epidemiological Studies on Radiation Effects in A-bomb Survivors

Ionizing Radiation Exposure of the Population of the United States. David A. Schauer Executive Director

Thomas S. Tenforde. President CIRMS 2006 Conference. National Institute of Standards & Technology Gaithersburg, Maryland October 23-25, 2006

Radiation Dose Specification

U.S. Low Dose Radiation Research Program

BEIR VII: Epidemiology and Models for Estimating Cancer Risk

Space Radiation Risks for Long. Duration Missions Edward Semones

STUDIES OF LOW-DOSE RADIATION AND CANCER. E. Lubin

UNSCEAR ANNEX E RADON: SOURCES TO EFFECTS ASSESSMENT FOR RADON IN HOMES AND WORKPLACES

1/31/2014. Radiation Biology and Risk to the Public

What is the Situation Regarding Low Dose and Low Dose-Rate Ionizing Radiation in the USA? William F. Morgan, Ph.D., D.Sc

Low-Level Radiation Improvement of Health and Therapy of Cancer

Leukemia: Lessons from the Japanese Experience

Everyday Radiation. David D. Dixon HDT Rally Hutchinson, KS October 13, 2015

It Is Time to Move Beyond the Linear No-Threshold Theory for Low-Dose Radiation Protection

Background Radiation in U.S. ~ msv/yr msv/yr ~0.02 ~0.02 msv msv/day /day (~2 m rem/day) mrem/day) NCRP 4

The Epidemiology of Leukaemia and other Cancers in Childhood after Exposure to Ionising Radiation

nuclear science and technology

An Open Letter To IAEA

American Nuclear Society Annual Meeting Chicago, June 24-28, 2012 President s Special Session

Radiation doses and cancer incidence (excluding thyroid cancer) due to the Chernobyl accident

Radiation in Everyday Life

Implications for Radiation Protection

CONTENTS NOTE TO THE READER...1 LIST OF PARTICIPANTS...3

RADIATION-INDUCED NEOPLASTIC TRANSFORMATION IN VITRO, HORMESIS AND RISK ASSESSMENT

Radiation Protection- Cath lab

Vascular & Interventional Education Days Thomas M Griglock, Ph.D., DABR Chief Diagnostic Imaging Physicist, OHSU

A Commentary on: A History of the United States Department of Energy (DOE) Low Dose Radiation Research Program: Dr. Antone L.

American Nuclear Society. Technical Brief for ANS Position Statement on the Health Effects of Low-Level Radiation

ESTIMATING RADIOGENIC CANCER RISKS

"The Good Side of Radiation: Medical Applications"

CANCER AND LOW DOSE RESPONSES IN VIVO: IMPLICATIONS FOR RADIATION PROTECTION

Understanding Radiation and Its Effects

Managing Patient Dose in Computed Tomography (CT)

Dose-equivalent equivalent = absorbed

Radiation-Induced. Neoplastic Transformation In Vitro, Hormesis and Risk Assessment. Les Redpath Department of Radiation Oncology UC Irvine

Radiation Epidemiology: The Good, the Bad, and the Ugly

Oral Presentation. Exposé oral. Submission from Jerry Cuttler. Mémoire de Jerry Cuttler CMD 18-H6.35

A risk assessment of the potential impacts of radon, terrestrial gamma and cosmic rays on childhood leukemia in France

Epidemiologic Data on Low-Dose Cancer Risk

Issues to Discuss 2/28/2018. The Adverse Effects of Occupational and Environmental Ionizing Radiation: James Seward, MD MPP. Past, Present, and Future

Dose Response COMMENTARY: ETHICAL ISSUES OF CURRENT HEALTH- PROTECTION POLICIES ON LOW-DOSE IONIZING RADIATION

Implications of Recent Epidemiologic Studies for the Linear Nonthreshold Model and Radiation Protection

Radiation Protection and Your National Council on Radiation Protection and Measurements (NCRP)

Chernobyl's Legacy: Black Prophecies' Bubble

THE AUSTRALASIAN RADIATION PROTECTION SOCIETY S POSITION STATEMENT ON RISKS FROM LOW LEVELS OF IONIZING RADIATION

Understanding radiation-induced cancer risks at radiological doses

Quiz True/False: Large amounts of radiation to insects will cause them to mutate!

Radiation Dose in Pediatric Imaging

Managing Patient Dose in Computed Tomography (CT) INTERNATIONAL COMMISSION ON RADIOLOGICAL PROTECTION

Lab & Rad Safety Newsletter

Hiroshima / Fukushima: Gender Matters in the Atomic Age

Ionizing Radiation. Alpha Particles CHAPTER 1

Importance of Adaptive Response in Cancer Prevention and Therapy

Dosimetry in Medical Exposures: Trends, Challenges and Next Steps

Transcription:

Dose-Response, X:xxx xxx, 2010 Formerly Nonlinearity in Biology, Toxicology, and Medicine Copyright 2010 University of Massachusetts ISSN: 1559-3258 DOI: 10.2203/dose-response.10-003.Cuttler COMMENTARY ON USING LNT FOR RADIATION PROTECTION AND RISK ASSESSMENT Jerry M. Cuttler Cuttler & Associates Inc., Mississauga, ON, Canada An article by Jerome Puskin attempts to justify the continued use of the linear nothreshold (LNT) assumption in radiation protection and risk assessment. In view of the substantial and increasing amount of data that contradicts this assumption; it is difficult to understand the reason for endorsing this unscientific behavior, which severely constrains nuclear energy projects and the use of CT scans in medicine. Many Japanese studies over the past 25 years have shown that low doses and low dose rates of radiation improve health in living organisms including humans. Recent studies on fruit flies have demonstrated that the original basis for the LNT notion is invalid. The Puskin article omits any mention of important reports from UNSCEAR, the NCRP and the French Academies of Science and Medicine, while citing an assessment of the Canadian breast cancer study that manipulated the data to obscure evidence of reduced breast cancer mortality following a low total dose. This commentary provides dose limits that are based on real human data, for both single and chronic radiation exposures. Jerome Puskin s perspective on the use of the linear no-threshold (LNT) assumption for radiation protection and risk assessment (Puskin 2009) raises the question: does the U.S. Environmental Protection Agency (EPA) really protect the public or only the established worldwide practice of protecting people from radiation, which costs hundreds of billions of dollars a year? EPA exposure limits are many orders of magnitude below the levels where there is evidence of harm (Jaworowski 1999, Sanders 2010), leading to inappropriate restrictions on the use of nuclear energy to generate electricity and on the use of ionizing radiation in medicine to diagnose serious illnesses. Harmless and beneficial doses should not be regulated. Living organisms can adapt and have adapted to natural radiation, which ranges in intensity from about 0.1 to more than 70 rem per year. The assumptions and models employed by the EPA are not based on modern biological science. The LNT assumption of radiation carcinogenesis, formulated more than 50 years ago, was originally based on experiments that were carried out on fruit flies in the mid-1920s (Muller 1954). At that time, it appeared to be reasonable for estimating cancer risk because this risk was considered to be proportional to mutation rate, which was found to be proportional to radiation dose in high dose ranges. Radiobiologists now know that organisms have defenses against Address correspondence to Jerry M. Cuttler, Cuttler & Associates Inc., Mississauga, ON, Canada. Email: jcuttler@cpusl.com 1

J. M. Cuttler FIGURE 1 DNA damage and that these can be stimulated by low doses. Although the LNT assumption is still widely accepted, it does not reflect reality, and its continued use is causing great social harm, particularly by constraining wider use of nuclear energy and CT diagnostic scans (Scott et al. 2008). Since the mid-1980s, the Central Research Institute of the Electric Power Industry in Japan has been carrying out remarkable studies on health effects of radiation. Their recent research has demonstrated a threshold at about 1 Gy for x-ray-induced DNA mutations in fruit flies and activation of repair by low-dose irradiation, which reduced background mutation (Koana et al. 2004, Koana et al. 2007). Gamma ray irradiation of fruit flies at a dose rate of 22.4 mgy per hour reduced lethal mutation frequency below that in the control flies (Ogura et al. 2009), as shown in Figure 1. The original basis for the LNT assumption has therefore been shown to be invalid. In selecting reports from scientific advisory bodies, the EPA appears to have omitted Scientific Annex B in UNSCEAR 1994, which assessed 192 scientific publications that provide evidence of beneficial health effects of low doses or low dose rates of radiation. The EPA also did not select the report of the French Academy of Science (Académie des sciences 1997), or the joint report of the French Academies of Medicine and Science (Tubiana et al. 2005) both of which raise doubts about the validity of the LNT hypothesis at low doses. A more recent publication in 1 Gy (joules/kg) = 100 rad = 100 rem for x rays 2

Commentary on using LNT for radiation protection and risk assessment FIGURE 2 Radiology points out that the LNT relationship is inconsistent with data (Tubiana et al, 2009). Lauriston Taylor, former president of the National Council on Radiation Protection and Measurements (Taylor 2010), denounced the use of a procedure to calculate the expected number of deaths per year resulting from x-ray diagnoses, as follows (Taylor 1980): These are deeply immoral uses of our scientific heritage. Unfortunately, this advice was ignored when scientists assessing the Chernobyl accident projected up to 28,000 excess cancer deaths using the LNT assumption and high-dose Hiroshima-Nagasaki data (Catlin et al. 1987). No one has been identifiably injured by radiation while working within the first numerical standards set by the ICRP in 1934 (safe dose limit: 0.2 rad per day) (Taylor 1980). Yet members of the U.S. public are limited to 0.5 rem per year. The LNT methodology, as it is generally applied by radiation protection organizations, was tested by a comprehensive study of radon levels in U.S. homes. It failed the test (Cohen 1995). Puskin cites the Howe and McLaughlin 1996 assessment of the Canadian breast cancer study of tuberculosis (TB) patients (Miller et al. 1989) as support for the LNT model, which has been fitted to the Hiroshima-Nagasaki life span study data. However, this assessment manipulated the breast cancer mortality data in a manner that concealed the evidence of protection by low doses that Edward Webster revealed in his Lauriston S. Taylor lecture to the NCRP (Webster 1992). Figure 2 shows 3

J. M. Cuttler FIGURE 3 the configuration for the fluoroscopy examinations. Figure 3 is Webster s graph of the Miller et al. data for patients treated for TB between 1930 and 1952. The Nova Scotia patients received a breast dose of 50 mgy (5 rad) per exposure. The patients in the other provinces received a dose of 2 mgy per exposure. Webster fitted straight lines to the high dose data points, and he extended the lines to the breast cancer death rate of the unexposed subjects. The number of exposed subjects in the other provinces is 12,094, while the number of unexposed subjects is 17,557. The graph suggests that women who received a total breast dose of 0.15 Gy (15 rad) have a death rate one-third lower than the breast cancer death rate for unexposed women. The Howe-McLaughlin study combined three low-dose data ranges, averaging risk over the wide dose interval 0.01 to 0.49 Gy, and thus obscured the evidence that low doses of radiation provide the benefit of reduced breast cancer mortality. This evidence is highly relevant to the risk of mammography performed repeatedly over a long period of time. This manipulation of low-dose data is one of several tricks that epidemiologists have been using over the years to obscure evidence of radiation hormesis (Scott et al. 2008, Scott 2008). A recent review of nuclear energy and health (Cuttler and Pollycove 2009) concludes: Based upon human data, a single whole body dose of 150 msv (15 rem) is safe. The high background of 700 msv/year (70 rem/year) in the city of Ramsar, Iran is also a safe dose limit for continuous chronic exposure. Both dose limits are also beneficial. 4

Commentary on using LNT for radiation protection and risk assessment REFERENCES Académie des sciences. 1997. Problems Associated with the Effects of Low Doses of Ionizing Radiation. French Academy of Sciences. Report No. 38 Catlin RJ, Goldman M and Anspaugh LR. 1987. Projected Global Health Impacts from Severe Nuclear Accidents: Conversion of Projected Doses to Risks on a Global Scale: Experience from Chernobyl Releases. U.S. DOE report UCRL-96542. IAEA report CN-48/273. Available at: http://www.osti.gov/bridge/product.biblio.jsp?query_id=3&page=0&osti_id=5720088 Cohen BL. 1995. Test of the Linear-No Threshold Theory of Radiation Carcinogenesis for Inhaled Radon Decay Products. Health Phys 68:157-174 Cuttler JM and Pollycove M. 2009. Nuclear Energy and Health: And the Benefits of Low-Dose Radiation Hormesis. Dose-Response 7:52-89. Available at: http://www.ncbi.nlm.nih.gov/pmc/ articles/pmc2664640/ Howe GR and McLaughlin J. 1996. Breast Cancer Mortality between 1950 and 1987 after Exposure to Fractionated Moderate-Dose-Rate Ionizing Radiation in the Canadian Fluoroscopy Cohort Study and a Comparison with Breast Cancer Mortality in the Atomic Bomb Survivors Study. Radiat Res 145:694-707 Jaworowski Z. 1999. Radiation Risk and Ethics. American Institute of Physics. Physics Today 52(9):24-29. Available at: http://www.riskworld.com/nreports/1999/jaworowski/nr99aa01.htm Koana T, Takashima Y, Okada MO, Ikehata M, Miyakoshi J and Sakai K. 2004. A Threshold Exists in the Dose-Response Relationship for Somatic Mutation Frequency Indicated by X Irradiation of Drosophila. Radiat Res 161:391-396 Koana T, Okada MO, Ogura K, Tsujimura H and Sakai K. 2007. Reduction of the Background Mutation by Low-Dose X Irradiation of Drosophila Spermatocytes at a Low Dose Rate. Radiat Res 167:217-221 Miller AB, Howe GR, Sherman GJ, Lindsay JP, Yaffe MJ, Dinner PJ, Risch HA and Preston DL. 1989. Mortality from Breast Cancer after Irradiation during Fluoroscopic Examinations in Patients being Treated for Tuberculosis. N Eng J Med 321:1285-1289 Muller HJ. 1954. The Manner of Production of Mutations by Radiation. Radiation Biology, Volume 1. Chap. 8:475-626. McGraw-Hill Book Co. Inc. Ogura K, Magae J, Kawakami Y and Koana T. 2009. Reduction in Mutation Frequency by Very Low- Dose Gamma Irradiation of Drosophila Melanogaster Germ Cells. Radiat Res 171:1-8 Puskin JS. 2009. Perspective on the use of LNT for radiation protection and risk assessment by the U.S. Environment Protection Agency. Dose-Response 7:284-291. Available at: http://www.ncbi. nlm.nih.gov/pmc/articles/pmc2790313/ Sanders CL. 2010. Radiation Hormesis and the Linear-No-Threshold Assumption. Springer Verlag Berlin Heidelberg Scott BR, Sanders CL, Mitchel REJ and Boreham DR. 2008. CT Scans May Reduce Rather than Increase the Risk of Cancer. J Am Phys & Surg 13:8-11. Available at: http://www.jpands.org/ vol13no1/scott.pdf Scott BR. 2008. It s Time for a New Low-Dose-Radiation Risk Assessment Paradigm One that Acknowledges Hormesis. Dose-Response 6:333-351. Available at: http://www.ncbi.nlm.nih.gov/ pmc/articles/pmc2592992/ Taylor LS. 1980. Some Non-Scientific Influences on Radiation Protection Standards and Practice in Radiation Protection: A Systematic Approach to Safety. Proc. 5th Congress of the International Radiation Society. Vol. I. Jerusalem. March. Pergamon Press. pp 3-15. See also Health Phys 39:851-874 Taylor LS. 2010. Health Physics Society testimonial. Available at: http://hps.org/aboutthesociety/ people/inmemoriam/lauristontaylor.html Tubiana M, Aurengo A, Averbeck D, Bonnin A, Le Guen B, Masse R, Monier R, Valleron A-J and de Vathaire F. eds. 2005. Dose-Effect Relationships and the Estimation of the Carcinogenic Effects of Low Doses of Ionizing Radiation. Academy of Medicine (Paris) and Academy of Science (Paris). Joint Report No. 2 Tubiana M, Feinendegen LE, Yang C and Kaminski JM. 2009. The Linear No-Threshold Relationship is Inconsistent with Radiation Biologic and Experimental Data. Radiology 251:13-22 5

J. M. Cuttler UNSCEAR. 1994. Annex B. Adaptive Response to Radiation in Cells and Organisms. United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and Effects of Ionizing Radiation. Report to the General Assembly with Scientific Annexes. New York, NY. Annex B:185-272 Webster EW. 1992. Dose and Risk in Diagnostic Radiology: How Big? How Little? National Council on Radiation Protection and Measurements. LS Taylor Lecture No. 16 6