IONIZING RADIATION, HEALTH EFFECTS AND PROTECTIVE MEASURES

Similar documents
What is the current risk of radiation-related health problems in Japan to those near the reactor at the time, and those in other parts of Japan?

Ionizing radiation. What is ionizing radiation?

Is there a risk of radioactive exposure from food contamination?

Radiation in Everyday Life

IAEA Safety Standards for Emergency Preparedness and Response: Focus on criteria for radionuclides in food, milk and drinking water

Radiation Health Effects

RADIOACTIVITY & RADIATION CHARACTERISTICS

Ionizing Radiation. Alpha Particles CHAPTER 1

Radiation Protection in Laboratory work. Mats Isaksson, prof. Department of radiation physics, GU

Radioactive Exposure. Abstract of Article:

Laboratory Safety 197/405. Types of Radiation 198/405

Principles of Radiation

Understanding Radiation and Its Effects

International Food Safety Authorities Network (INFOSAN) INFORMATION on Nuclear accidents and radioactive contamination of foods 30.

FUNDAMENTAL SAFETY OVERVIEW VOLUME 2: DESIGN AND SAFETY CHAPTER S: RISK REDUCTION CATEGORIES 3. RADIOLOGICAL CONSEQUENCES OF SEVERE ACCIDENTS

Special Topic: Radiological Dispersal Device or Dirty Bomb EXPLOSION AND BLAST INJURIES

Cancer Risk Factors in Ontario. Other Radiation

Effects of Radiation on Human In the Face of Fukushima Daiichi Nuclear Power Plant Accident

BIOLOGICAL EFFECTS OF

ACUTE RADIATION SYNDROME: Diagnosis and Treatment

Radiation Safety for New Medical Physics Graduate Students

1. The Accident of Chernobyl Unit 4 of 1,000 MWe Graphite-Moderated Boiling Water Pressure Tube Reactor in 1986

Annex V of Technical Volume 4 UNSCEAR ASSESSMENT OF THE DOSE TO THE PUBLIC

Nuclear Plant Emergency Response. NPP Function and Malfunction: Historical Overview. Why is this training program important to you?

Ionizing Radiation. Michael J. Vala, CHP. Bristol-Myers Squibb

CONTROLLABLE DOSE: A discussion on the control of individual doses from single sources. Roger H Clarke

Training Course on Medical Preparedness and Response for a Nuclear or Radiological Emergency Pre- Test - BASIC

DOSAGE AND DISTRIBUTION OF POTASSIUM IODIDE TABLETS (A THYROID BLOCKING AGENT) IN RADIATION EMERGENCIES REGULATORY GUIDE

An Open Letter To IAEA

Biological Effects of Ionizing Radiation & Commonly Used Radiation Units

PAGE 1 OF 5 HEALTH, SAFETY & ENVIROMENTAL MANUAL PROCEDURE: S560 Radiation Safety REV /14/2012

User's Guide for the Interactive RadioEpidemiological Program (NIOSH-IREP)

Application of the Commission's Recommendations for the Protection of People in

Radioactivity. Alpha particles (α) :

Biological Effects of Ionizing Radiation & Commonly Used Radiation Units

Radiopharmaceuticals. Radionuclides in NM. Radionuclides NUCLEAR MEDICINE. Modes of radioactive decays DIAGNOSTIC THERAPY CHEMICAL COMPOUND

ICRP 128 ICRP ICRP ICRP 1928

RELIANT HOLDINGS LTD AND ITS AFFILIATES Safety Management System. Preparation: Safety Mgr Authority: CEO Issuing Dept: Safety Page: Page 1 of 5

Radiobiology Hall 14: Radiologic Terrorism (Completed)

REVIEW Nuclear Disaster after the Earthquake and Tsunami of March 11

ICRP Recommendations Evolution or Revolution? John R Cooper Main Commission

Radiation Safety Information for Students in Courses given by the Nuclear Physics Group at KTH, Stockholm, Sweden

TESTIMONY OF John D. Boice, Jr., Sc.D.

Fukushima: What We All Should Know about Radiation

Genome Instability is Breathtaking

Nuclear Radiation Today

RADIATION RISK ASSESSMENT

The activity. Suggested Answers

Lecture 14 Exposure to Ionizing Radiation

Radionuclide Concentrations in Food and the Environment

Ernest Rutherford:

Core Concepts in Radiation Exposure 4/10/2015. Ionizing Radiation, Cancer, and. James Seward, MD MPP

Radiation Safety in the Workplace. v1.0

Biological Effects of Radiation KJ350.

Sources of ionizing radiation Atomic structure and radioactivity Radiation interaction with matter Radiation units and dose Biological effects

Accelerator Laboratory GENERAL EMPLOYEE RADIATION TRAINING

Lab & Rad Safety Newsletter

Q&A: Health effects of radiation exposure

Radiation Safety - Things You Need to Know

Environmental Health Physics

Medical Physics 4 I3 Radiation in Medicine

Radiologic Units: What You Need to Know

PRINCIPLES AND METHODS OF RADIATION PROTECTION

Prophylactic Use of Potassium Iodide (KI) in Radiological Emergencies*: Information for Physicians

Everyday Radiation. David D. Dixon HDT Rally Hutchinson, KS October 15, 2014

REPORT NO. 5. background material. for the development of. radiation protection. standards. July Staff Report of the FEDERAL RADIATION COUNCIL

CRACKCast E146 Radiation Injuries

Indoor emissions. foams) > CH 2 =O; plasticizers, especially dialkyl phthalates. Especially a problem with mobile homes. - Regulations in Sweden

White Paper. White Paper How Safe is X-ray Inspection of Food?

Radiation Safety Guide. Analytical X-Ray Equipment

Public and Worker Health Impacts from the Fukushima Nuclear Plant Accident Thomas McKone, PhD & James Seward, MD, MPP

White Paper. White Paper How Safe is X-ray Inspection of Food?

Environmental Impact of Potential Accidental Releases from Nuclear Energy Systems situation in Belarus

Radiation Effects. Radiobiology Steve Curtis Desert Research Institute

RADIATION SAFETY INFORMATION REGARDING BODIES CONTAINING RADIOACTIVE METASTRON

NUCLEARINSTALLATIONSAFETYTRAININGSUPPORTGROUP DISCLAIMER

1. Update on airborne iodine-131 measurements in France

Radioactivity. Lecture 8 Biological Effects of Radiation

Everyday Radiation. David D. Dixon HDT Rally Hutchinson, KS October 13, 2015

Chem 481 Lecture Material 3/11/09

Konstantin Kotenko and Sergey Shinkarev

Radiological Injuries

GUIDELINES ON IONISING RADIATION DOSE LIMITS AND ANNUAL LIMITS ON INTAKE OF RADIOACTIVE MATERIAL

Hiroshima / Fukushima: Gender Matters in the Atomic Age

In-Flight Radiation: Counseling Patients About Risk

nuclear science and technology

Exposure to Background Radiation In Australia

Malcolm Crick, Secretary of UNSCEAR

Nuclear Plant Emergency Response

Nuclear Plant Emergency Response

Radiological Injuries

REGULATION on the radiation protection in occupational exposure and public exposure. Article 1 (Subject)

Chapter 8. Ionizing and Non-Ionizing Radiation

Protection action levels for radionuclides in foodstuffs in the context of an emergency, based on Health Canada guidance.

WORKPLACE SAFETY AND INSURANCE APPEALS TRIBUNAL DECISION NO. 1100/13

ROUND TABLE 1: Health risk management Health examinations in different workplaces

The health risks of exposure to internal radiation. Korea National Assembly Seoul 22 nd August 2015

Fukushima Emergency Planning Zones, Use of Potassium Iodide, Health Effects

RERF s Views on Residual Radiation 8 December 2012 Radiation Effects Research Foundation. Introduction

Basic radiation protection & radiobiology

Transcription:

May 2011 IONIZING RADIATION, HEALTH EFFECTS AND PROTECTIVE MEASURES KEY FACTS Ionizing radiation is a type of energy released by atoms in the form of electromagnetic waves or particles. People are exposed on a daily basis to natural sources of ionizing radiation, as well as human-made ionizing radiation sources. Ionizing radiation has many beneficial applications, including uses in medicine, industry, agriculture and research. As the use of ionizing radiation increases, so does the potential for health hazards if not properly used or contained. Acute health effects such as skin burns or acute radiation syndrome can occur when radiation doses exceed certain levels. Low doses of ionizing radiation can increase the risk of longer term effects such as cancer. WHAT IS IONIZING RADIATION? Ionizing radiation is a type of energy released by atoms that travels in the form of electromagnetic waves (gamma or X-rays) or particles (neutrons, beta or alpha). The spontaneous disintegration of atoms is called radioactivity, and the excess energy emitted is a form of ionizing radiation. Unstable elements which disintegrate and emit ionizing radiation are called radionuclides. All radionuclides are uniquely identified by the type of radiation they emit, the energy of the radiation, and their half-life. The activity used as a measure of the amount of a radionuclide present is expressed in a unit called the becquerel (Bq): one becquerel is one disintegration per second. The half-life is the time required for the activity of a radionuclide to decrease by decay to half of its initial value. Half-lives for radionuclides range from tiny fractions of a second to millions of years (e.g. iodine-131 has a half-life of 8 days). RADIATION SOURCES People are exposed to natural radiation on a daily basis. Natural radiation comes from many sources including more than 60 naturally-occurring radioactive materials found in soil, water and air. Radon, a naturally-occurring radioactive gas, emanates from rock and soil and is the main source of natural radiation. Every day, people inhale and ingest radionuclides from air, food and water.

Page 2 People are also exposed to natural radiation from cosmic rays, particularly at high altitude. On average, 80% of the annual dose that a person receives from background radiation is due to these naturally occurring terrestrial and cosmic radiation sources. Background radiation levels vary due to geological differences; exposure in certain areas can be more than 200 times higher than the global average. Human exposure to radiation also comes from man-made sources ranging from nuclear power generation to medical uses of radiation diagnosis or treatment. Today, the most common manmade sources of ionizing radiation are X-ray machines and other medical devices. TYPES OF EXPOSURE Radiation exposure may be internal or external, and can be incurred by various exposure pathways. Internal exposure to ionizing radiation occurs when a radionuclide is inhaled, ingested or otherwise enters into the bloodstream (e.g. injection, wounds). Internal exposure stops when the radionuclide is eliminated from the body, either spontaneously (e.g. through excreta) or as a result of a treatment. External contamination may occur when airborne radioactive material (dust, liquid, aerosols) is deposited on skin or clothes. This type of radioactive material can often be removed from the body by simple washing. Exposure to ionizing radiation can also result from external irradiation (e.g. medical radiation exposure to X-rays). External irradiation stops when the radiation source is shielded or when the person moves outside the radiation field. HEALTH EFFECTS OF IONIZING RADIATION Radiation damage to tissue and/or organs depends on the dose of radiation received, or the absorbed dose which is expressed in a unit called the gray (Gy). The damage producing potential of an absorbed dose depends on the type of radiation and the sensitivity of different tissues and organs. To put all ionizing radiation on common ground with regard to potential for causing harm, a radiation weighted dose called the effective dose is introduced, the sievert (Sv). The Sv takes into account the type of radiation and sensitivity of tissues and organs. The Sv is a very large unit so it is more practical to use smaller units such as millisieverts (msv) or microsieverts (μsv). There are one thousand μsv in one msv, and one thousand msv in one Sv. In addition to the amount of radiation (dose), it is often useful to express the rate at which this dose is delivered (dose rate) e.g. μsv/hour or msv/year. Beyond certain thresholds, radiation can impair the functioning of tissues and/or organs and can produce acute effects such as skin redness, hair loss, radiation burns, or acute radiation syndrome. These effects are more severe at higher doses and higher dose rates. For instance, the dose threshold for acute radiation syndrome is about 1 Sv (1000 msv). If the dose is low or delivered over a long period of time (low dose rate), there is greater likelihood for damaged cells to successfully repair themselves. However, long-term effects may still occur if the cell damage is repaired but incorporates errors, transforming an irradiated cell that still retains its capacity for cell division. This transformation may lead to cancer after years or even decades have passed. Effects of this type will not always occur, but their likelihood is

Page 3 proportional to the radiation dose. This risk is higher for children and adolescents, as they are significantly more sensitive to radiation exposure than adults. Epidemiological studies on populations exposed to radiation (atomic bomb survivors, radiotherapy patients, occupationally exposed cohorts) showed a significant increase of cancer risk at doses above 100 msv. Prenatal exposure to ionizing radiation may induce brain damage in foetuses following an acute dose exceeding 100 msv between weeks 8-15 of pregnancy and 200 msv between weeks 16-25 of pregnancy. Before week 8 or after week 25 of pregnancy human studies have not shown radiation risk to fetal brain development. Fetal exposure to radiation can increase the risk of cancer in childhood. Studies have shown this effect with doses above 100 msv. RADIATION EXPOSURE IN NUCLEAR EMERGENCIES Radioactive material may be released into the environment during an emergency in a nuclear power plant (NPP). The radionuclides of greatest concern to human health are iodine and caesium. Occupational exposure, either internally or externally, of rescuers, first responders, and NPP workers is likely to occur during the emergency response. It may result in radiation doses high enough to cause acute effects such as skin burns or acute radiation syndrome. Those living in closer vicinity to a NPP can be externally exposed to radionuclides present in a radioactive cloud or deposited on the ground. They can also be externally contaminated by radioactive particles deposited on skin or clothes. Internal exposure may take place if radionuclides are inhaled, ingested, or enter an open wound. The general population is not likely to be exposed to doses high enough to cause acute effects, but they may be exposed to low doses which could result in increased risk of long-term effects like cancer. Consumption of contaminated food and/or water contributes to overall radiation exposure. If radioactive iodine is released into the environment and enters the body through inhalation or ingestion, it will concentrate in the thyroid gland increasing the risk of thyroid cancer. The risk of thyroid cancer is higher in children than adults, particularly those under 5 years, and those whose diets are generally deficient in iodine. PROTECTIVE HEALTH ACTIONS IN NUCLEAR EMERGENCIES During nuclear emergencies, public health protective actions may be implemented to prevent radiation exposure and associated health risks. In the early phase of an emergency (within the first few hours/days), urgent protective actions may be implemented to prevent radiation exposure, taking into account projected doses that people may received in the short-term (e.g. effective dose within 2-7 days, thyroid dose within one week). Decisions are based on NPP conditions, amount of radioactivity actually or potentially released into the atmosphere, prevailing meteorological conditions (e.g. wind speed and direction, precipitation), and other factors. The potential urgent actions which might be announced by local authorities include evacuation, sheltering indoors, and the administration of non-radioactive iodine. Evacuation is the urgent removal of populations within a radius around the event site. It is most effective when used as a precautionary action before an airborne release takes place. Sheltering

Page 4 indoors (e.g. homes, schools, office buildings) can also significantly reduce exposure to the radioactive material released and dispersed. The administration of non-radioactive iodine can prevent the uptake of radioactive iodine by the thyroid gland. When potassium iodide (KI) pills are taken before or shortly after exposure, they saturate the thyroid gland to reduce the dose and risk of thyroid cancer. KI pills do not protect against external radiation, or against any other radioactive substances apart from radioactive iodine. Potassium iodide pills should be taken only when instructed by competent authorities. It is important to follow dosage recommendations, especially for children. Pregnant women should take KI pills when instructed by competent authorities to protect their thyroid and the thyroid of the fetus. When instructed, breastfeeding woman should also take KI pills to protect themselves, and give KI to the breastfed baby following recommended dosages. Food, water and agricultural countermeasures may be implemented to reduce radiation exposure during the early phase of an emergency (e.g. restricting consumption of water, and locally produced food and dairy products). Mental health support for the early management of acute stress after a nuclear event can speed recovery and prevent long-term consequences such as post-traumatic stress disorder or other persistent mental health disorders. Reactions may be intense and prolonged with profound emotional impact, particularly in children. As environmental and human monitoring data increases, other protective actions may be implemented, including relocation of people to temporary housing or in some cases, permanent resettlement. These protective actions are implemented taking into account the doses that a population may receive over the long-term (e.g. effective dose during one year). Food and water monitoring programs should be established to inform longer term decisions on food restriction, water consumption, and the control of internationally traded foodstuffs. The recovery phase may extend for a considerable period. Cessation of protective measures should be linked to environmental, food and human health monitoring and based on a risk-benefit analysis. Appropriate long-term follow-up programmes should be established to assess public health consequences and the need for any subsequent actions. WHO'S RESPONSE In accordance with its Constitution and the International Health Regulations (2005), WHO is mandated to assess public health risks and provide technical consultation and assistance in association with public health events, including those associated with radiation events. In doing so, WHO is working with independent experts and other UN agencies. WHO's work is supported by a global network comprising more than 40 specialized institutions in radiation emergency medicine. The network, the Radiation Emergency Medical Preparedness and Assistance Network (REMPAN), provides technical assistance for radiation emergency preparedness and response.

Page 5 Technical background information Potassium iodide for thyroid blocking: http://www.who.int/ionizing_radiation/pub_meet/tech_briefings/potassium_iodide/en/ind ex.html Ionizing radiation: http://www.who.int/ionizing_radiation/en/index.html Food safety in nuclear emergencies: http://www.who.int/foodsafety/en/