Foundations in Microbiology Seventh Edition

Similar documents
Chapter 5 Microbial Metabolism: The Chemical Crossroads of Life

Foundations in Microbiology Seventh Edition

Chapter 8. An Introduction to Microbial Metabolism

Enzymes what are they?

Metabolism Energy Pathways Biosynthesis. Catabolism Anabolism Enzymes

Metabolism. Chapter 8 Microbial Metabolism. Metabolic balancing act. Catabolism Anabolism Enzymes. Topics. Metabolism Energy Pathways Biosynthesis

Chapter 5. Microbial Metabolism

Metabolism. Topic 11&12 (ch8) Microbial Metabolism. Metabolic Balancing Act. Topics. Catabolism Anabolism Enzymes

Chapter 8. Metabolism. Topics in lectures 15 and 16. Chemical foundations Catabolism Biosynthesis

7/5/2014. Microbial. Metabolism. Basic Chemical Reactions Underlying. Metabolism. Metabolism: Overview

Ch 07. Microbial Metabolism

Microbial Metabolism. PowerPoint Lecture Presentations prepared by Bradley W. Christian, McLennan Community College C H A P T E R

WHY IS THIS IMPORTANT?

Chapter 7 Cellular Respiration and Fermentation*

2/25/2013. The Mechanism of Enzymatic Action

3/19/2009. Ch. 5 Microbial metabolism. Metabolism basics (Fig. 5.1) Basic concepts of metabolic processes. Redox reactions (Fig. 5.

Chemical Energy. Valencia College

Microbial Metabolism

III. 6. Test. Respiració cel lular

AP Biology Review: Theme 3- Energy

Respiration. Respiration. How Cells Harvest Energy. Chapter 7

Chapter 8. Metabolism. Topics in lectures 15 and 16. Chemical foundations Catabolism Biosynthesis

3.7.1 Define cell respiration [Cell respiration is the controlled release of energy from organic compounds in cells to form ATP]

How Cells Release Chemical Energy. Chapter 7

How Cells Harvest Energy. Chapter 7. Respiration

Respiration. Respiration. Respiration. How Cells Harvest Energy. Chapter 7

Microbial Metabolism. Chapter 7. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

8.1 The Metabolism of Microbes. Enzymes: Catalyzing the Chemical Reactions of Life

Independent Study Guide Metabolism I. Principles of metabolism (section 6.1) a. Cells must: (figure 6.1) i. Synthesize new components

Cellular Respiration

Cellular Respiration: Harvesting Chemical Energy

Cellular Pathways That Harvest Chemical Energy. Cellular Pathways That Harvest Chemical Energy. Cellular Pathways In General

BIOLOGY 311C - Brand Spring 2010

10/25/2010 CHAPTER 9 CELLULAR RESPIRATION. Life is Work. Types of cellular respiration. Catabolic pathways = oxidizing fuels

Cellular Respiration

Reading Assignments. A. Energy and Energy Conversions. Lecture Series 9 Cellular Pathways That Harvest Chemical Energy. gasoline) or elevated mass.

Cellular Respiration and Fermentation

Ch. 9 Cell Respiration. Title: Oct 15 3:24 PM (1 of 53)

Biological Science 101 General Biology

Enzymes and Metabolism

Cellular Respiration. 3. In the figure, which step of the citric acid cycle requires both NAD+ and ADP as reactants? a. Step 1. c. Step 3 b.

AP Bio Photosynthesis & Respiration

Chapter 9 Notes. Cellular Respiration and Fermentation

Chapter 8 Microbial Metabolism: The Chemical Crossroads of Life

Cellular Respiration. Cellular Respiration. C 6 H 12 O 6 + 6O > 6CO 2 + 6H energy. Heat + ATP. You need to know this!

MULTIPLE CHOICE QUESTIONS

Structure of the Mitochondrion. Cell Respiration. Cellular Respiration. Catabolic Pathways. Photosynthesis vs. Cell Respiration ATP 10/14/2014

7 Pathways That Harvest Chemical Energy

Section B: The Process of Cellular Respiration

Energy Transformation: Cellular Respiration Outline 1. Sources of cellular ATP 2. Turning chemical energy of covalent bonds between C-C into energy

7 Cellular Respiration and Fermentation

Chapter Seven (Cellular Respiration)

Concept 9.1: Catabolic pathways yield energy by oxidizing organic fuels Several processes are central to cellular respiration and related pathways

BIOLOGY - CLUTCH CH.9 - RESPIRATION.

True or False: 1. Reactions are called endergonic if they occur spontaneously and release free energy.

7. The pentose phosphate pathway produces: a. CO2 b. Glyceraldehyde-3-phosphate c. NADPH d. All of the above e. A & C

4. Which step shows a split of one molecule into two smaller molecules? a. 2. d. 5

Metabolism. Metabolism. Energy. Metabolism. Energy. Energy 5/22/2016

Introduction. Living is work. To perform their many tasks, cells must bring in energy from outside sources.

CHAPTER 5 MICROBIAL METABOLISM

Growth. Principles of Metabolism. Principles of Metabolism 1/18/2011. The role of ATP energy currency. Adenosine triphosphate

A cell has enough ATP to last for about three seconds.

Microbiology AN INTRODUCTION

Cellular Respiration: Harvesting Chemical Energy

Chapter 9 Cellular Respiration Overview: Life Is Work Living cells require energy from outside sources

Cellular Respiration: Harvesting Chemical Energy CHAPTER 9

Ch 9: Cellular Respiration

An Introduction to Microbial Metabolism

Chapter 9. Cellular Respiration: Harvesting Chemical Energy

Coupled, interconnecting reactions

Chapter 9: Cellular Respiration: Harvesting Chemical Energy

Cellular Respiration Harvesting Chemical Energy ATP

ADP, ATP and Cellular Respiration

OAT Biology - Problem Drill 03: Cell Processes - Metabolism and Cellular Respiration

Cellular Respiration: Harvesting Chemical Energy

AP BIOLOGY Chapter 7 Cellular Respiration =

Biochemistry 7/11/ Bio-Energetics & ATP. 5.1) ADP, ATP and Cellular Respiration OVERVIEW OF ENERGY AND METABOLISM

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Releasing Food Energy

How Cells Harvest Chemical Energy. Chapter 9

Bio 103 Section A02 Summer 2003 Exam #2 Study Guide Dr. Largen

Cellular Respiration- -conversion of stored energy in glucose to usable energy for the cell -energy in cells is stored in the form of ATP

Class XI Chapter 14 Respiration in Plants Biology. 1. It is a biochemical process. 1. It is a physiochemical process.

14 BACTERIAL METABOLISM

OVERVIEW OF ENERGY AND METABOLISM

Chapter 7: How Cells Harvest Energy AP

In glycolysis, glucose is converted to pyruvate. If the pyruvate is reduced to lactate, the pathway does not require O 2 and is called anaerobic

Metabolism. Chapter 5. Catabolism Drives Anabolism 8/29/11. Complete Catabolism of Glucose

Energy Production In A Cell (Chapter 25 Metabolism)

Table of Contents. Section 1 Glycolysis and Fermentation. Section 2 Aerobic Respiration

cell respiration bi Biology Junction Everything you need in Biology Cellular Respiration All Materials Cmassengale

CELLULAR RESPIRATION. Chapter 7


Chapter 9. Cellular Respiration and Fermentation

CH 7: Cell Respiration and Fermentation Overview. Concept 7.1: Catabolic pathways yield energy by oxidizing organic fuels

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

2) The molecule that functions as the reducing agent (electron donor) in a redox or oxidationreduction

CELLULAR RESPIRATION. Xe - + Y X + Ye - CH 4 + 2O 2 CO 2 + H 2 O + energy. C 6 H 12 O 6 + 6O 2 6CO 2 + 6H 2 O + energy SUMMARY EQUATION

NOTES: Ch 9 Cellular Respiration: Harvesting Chemical Energy Part 1: The Overview

Releasing Chemical Energy

Transcription:

Lecture PowerPoint to accompany Foundations in Microbiology Seventh Edition Talaro Chapter 8 An Introduction to Microbial Metabolism Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

8.1 The Metabolism of Microbes Metabolism all chemical and physical workings of a cell Two types of chemical reactions: Catabolism degradative; breaks the bonds of larger molecules forming smaller molecules; releases energy Anabolism biosynthesis; process that forms larger macromolecules from smaller molecules; requires energy input 2

Figure 8.1 3

Enzymes Enzymes are biological catalysts that increase the rate of a chemical reaction by lowering the energy of activation The energy of activation is the resistance to a reaction The enzyme is not permanently altered in the reaction Enzyme promotes a reaction by serving as a physical site for specific substrate molecules to position 4

5

Enzyme Structure Simple enzymes consist of protein alone Conjugated enzymes or holoenzymes contain protein and nonprotein molecules Apoenzyme protein portion Cofactors nonprotein portion Metallic cofactors: iron, copper, magnesium Coenzymes, organic molecules: vitamins 6

Figure 8.2 Conjugated enzyme structure 7

8

Apoenzymes: Specificity and the Active Site Exhibits primary, secondary, tertiary, and some, quaternary structure Site for substrate binding is active site, or catalytic site A temporary enzyme-substrate union occurs when substrate moves into active site induced fit Appropriate reaction occurs; product is formed and released 9

Figure 8.3 10

Figure 8.4 11

Figure 8.5 Carrier functions of coenzymes 12

Location and Regularity of Enzyme Action Exoenzymes transported extracellularly, where they break down large food molecules or harmful chemicals Cellulase, amylase, penicillinase Endoenzymes retained intracellularly and function there Most enzymes are endoenzymes 13

Figure 8.6 Types of enzymes 14

Constitutive enzymes always present, always produced in equal amounts or at equal rates, regardless of amount of substrate Enzymes involved in glucose metabolism Regulated enzymes not constantly present; production is turned on (induced) or turned off (repressed) in response to changes in concentration of the substrate 15

Figure 8.7 Constitutive and regulated enzymes 16

Synthesis and Hydrolysis Reactions Synthesis or condensation reactions anabolic reactions to form covalent bonds between smaller substrate molecules, require ATP, release one molecule of water for each bond formed Hydrolysis reactions catabolic reactions that break down substrates into small molecules; requires the input of water to break bonds 17

Figure 8.8 Enzyme-catalyzed synthesis and hydrolysis reactions 18

Sensitivity of Enzymes to Their Environment Activity of an enzyme is influenced by cell s environment Enzymes operate under temperature, ph, and osmotic pressure of organism s habitat When enzymes are subjected to changes in organism s habitat they become unstable Labile: chemically unstable enzymes Denaturation: weak bonds that maintain the shape of the apoenzyme are broken 19

Regulation of Enzymatic Activity and Metabolic Pathways 20

Direct Controls on the Actions of Enzymes 1. Competitive inhibition substance that resembles normal substrate competes with substrate for active site 2. Noncompetitive inhibition enzymes are regulated by the binding of molecules other than the substrate on the active site Enzyme repression inhibits at the genetic level by controlling synthesis of key enzymes Enzyme induction enzymes are made only when suitable substrates are present 21

Figure 8.10 Regulation of enzyme action 22

Figure 8.11 Enzyme repression 23

8.2 The Pursuit and Utilization of Energy Energy: the capacity to do work or to cause change Forms of energy include Thermal, radiant, electrical, mechanical, atomic, and chemical 24

Cell Energetics Cells manage energy in the form of chemical reactions that make or break bonds and transfer electrons Endergonic reactions consume energy Exergonic reactions release energy Energy present in chemical bonds of nutrients are trapped by specialized enzyme systems as the bonds of the nutrients are broken Energy released is temporarily stored in high energy phosphate molecules. The energy of these molecules is used in endergonic cell reactions. 25

Cell Energetics Exergonic Enzyme X + Y Z + Energy Endergonic Energy + Enzyme A + B C 26

Figure 8.12 27

Biological Oxidation and Reduction Redox reactions always occur in pairs There is an electron donor and electron acceptor which constitute a redox pair Process salvages electrons and their energy Released energy can be captured to phosphorylate ADP or another compound 28

Electron and Proton Carriers Repeatedly accept and release electrons and hydrogen to facilitate the transfer of redox energy Most carriers are coenzymes: NAD, FAD, NADP, coenzyme A, and compounds of the respiratory chain 29

Figure 8.13 Details of NAD reduction 30

Adenosine Triphosphate: ATP Metabolic currency Three part molecule consisting of: Adenine a nitrogenous base Ribose a 5-carbon sugar 3 phosphate groups ATP utilization and replenishment is a constant cycle in active cells Removal of the terminal phosphate releases energy 31

Figure 8.14 Structure of ATP 32

Figure 8.15 Phosphorylation of glucose by ATP 33

Formation of ATP ATP can be formed by three different mechanisms: 1. Substrate-level phosphorylation transfer of phosphate group from a phosphorylated compound (substrate) directly to ADP 2. Oxidative phosphorylation series of redox reactions occurring during respiratory pathway 3. Photophosphorylation ATP is formed utilizing the energy of sunlight 34

Figure 8.16 Formation of ATP by substrate-level phosphorylation 35

8.3 Pathways of Bioenergetics Bioenergetics study of the mechanisms of cellular energy release Includes catabolic and anabolic reactions Primary catabolism of fuels (glucose) proceeds through a series of three coupled pathways: 1. Glycolysis 2. Kreb s cycle 3. Respiratory chain, electron transport 36

Major Interconnections of the Pathways in Aerobic Respiration 37

Metabolic Strategies Nutrient processing is varied, yet in many cases is based on three catabolic pathways that convert glucose to CO 2 and gives off energy Aerobic respiration glycolysis, the Kreb s cycle, respiratory chain Anaerobic respiration glycolysis, the TCA cycle, respiratory chain; molecular oxygen is not final electron acceptor Fermentation glycolysis, organic compounds are the final electron acceptors 38

Figure 8.17 39

40

Aerobic Respiration Series or enzyme-catalyzed reactions in which electrons are transferred from fuel molecules (glucose) to oxygen as a final electron acceptor Glycolysis glucose (6C) is oxidized and split into 2 molecules of pyruvic acid (3C), NADH is generated TCA processes pyruvic acid and generates 3 CO 2 molecules, NADH and FADH 2 are generated Electron transport chain accepts electrons from NADH and FADH; generates energy through sequential redox reactions called oxidative phosphorylation 41

Figure 8.18 42

Figure 8.19 43

Figure 8.20 44

Electron Transport and Oxidative Phosphorylation Final processing of electrons and hydrogen and the major generator of ATP Chain of redox carriers that receive electrons from reduced carriers (NADH and FADH 2 ) ETS shuttles electrons down the chain, energy is released and subsequently captured and used by ATP synthase complexes to produce ATP Oxidative phosphorylation 45

Figure 8.21 46

47

The Formation of ATP and Chemiosmosis Chemiosmosis as the electron transport carriers shuttle electrons, they actively pump hydrogen ions (protons) across the membrane setting up a gradient of hydrogen ions proton motive force Hydrogen ions diffuse back through the ATP synthase complex causing it to rotate, causing a 3- dimensional change resulting in the production of ATP 48

Chemical and Charge Gradient between the Outer and Inner Compartments 49

Figure 8.22b 50

Electron Transport and ATP Synthesis in Bacterial Cell Envelope 51

The Terminal Step Oxygen accepts 2 electrons from the ETS and then picks up 2 hydrogen ions from the solution to form a molecule of water. Oxygen is the final electron acceptor 2H + + 2e - + ½O 2 H 2 O 52

Figure 8.23 53

Anaerobic Respiration Functions like aerobic respiration except it utilizes oxygen containing ions, rather than free oxygen, as the final electron acceptor Nitrate (NO 3 - ) and nitrite (NO 2 - ) Most obligate anaerobes use the H + generated during glycolysis and the Kreb s cycle to reduce some compound other than O 2 54

Fermentation Incomplete oxidation of glucose or other carbohydrates in the absence of oxygen Uses organic compounds as terminal electron acceptors Yields a small amount of ATP Production of ethyl alcohol by yeasts acting on glucose Formation of acid, gas, and other products by the action of various bacteria on pyruvic acid 55

Figure 8.24 56

Figure 8.25 Products of pyruvate fermentation 57

8.4 Biosynthesis and the Crossing Pathways of Metabolism Many pathways of metabolism are bi-directional or amphibolic Catabolic pathways contain molecular intermediates (metabolites) that can be diverted into anabolic pathways Pyruvic acid can be converted into amino acids through amination Amino acids can be converted into energy sources through deamination Glyceraldehyde-3-phosphate can be converted into precursors for amino acids, carbohydrates, and fats 58

Figure 8.26 59

Figure 8.27 Reactions that produce and convert amino acids 60

8.5 Photosynthesis: The Earth s Lifeline The ultimate source of all the chemical energy in cells comes from the sun light 6CO 2 + 6H 2 O C 6 H 12 O 6 + 6O 2 61

Figure 8.28 Overview of photosynthesis 62

Photosynthesis Occurs in 2 stages Light-dependent photons are absorbed by chlorophyll, carotenoid, and phycobilin pigments Water split by photolysis, releasing O 2 gas and provide electrons to drive photophosphorylation Released light energy used to synthesize ATP and NADPH Light-independent reaction dark reactions Calvin cycle uses ATP to fix CO 2 to ribulose-1,5- bisphosphate and convert it to glucose 63

Figure 8.29 64

Figure 8.29c 65

Figure 8.30 66