Symptom clusters using the Brief Pain Inventory in patients with breast cancer

Similar documents
Symptom clusters using the EORTC QLQ-C15-PAL in palliative radiotherapy

Re-analysis of symptom clusters in advanced cancer patients attending a palliative outpatient radiotherapy clinic

Re-irradiation for painful bone metastases: evidence-based approach

Management of radiation-induced nausea and vomiting with palonosetron in patients with pre-existing emesis: a pilot study

Original Article on Palliative Radiotherapy

Spinal cord compression as a first presentation of cancer: A case report

Symptom Clusters in Patients With Advanced Cancer: A Reanalysis Comparing Different Statistical Methods

Radiotherapy for patients with unresected locally advanced breast cancer

Incidence of taxane-induced pain and distress in patients receiving chemotherapy for early-stage breast cancer: a retrospective, outcomes-based survey

A pilot study with palonosetron in the prophylaxis of radiation-induced nausea and vomiting

The accuracy of clinicians predictions of survival in advanced cancer: a review

Initial assessment of patients without cognitive failure admitted to palliative care: a validation study

A novel prospective descriptive analysis of nausea and vomiting among patients receiving gastrointestinal radiation therapy

Quality of life in patients with brain metastases using the EORTC QLQ-BN20 and QLQ-C30

Psychometric validation of the functional assessment of cancer therapy brain (FACT-Br) for assessing quality of life in patients with brain metastases

Pelvic insufficiency fractures in women following radiation treatment: a case series

Managing chemotherapy-induced nausea and vomiting in head and neck cancer patients receiving cisplatin chemotherapy with concurrent radiation

Multidimensional fatigue and its correlates in hospitalized advanced cancer patients

Palliative treatment of metastatic phyllodes tumors: a case series

Computed Tomography Evaluation of Density Following Stereotactic Body Radiation Therapy of Nonspine Bone Metastases

Effects of circadian rhythms and treatment times on the response of radiotherapy for painful bone metastases

Prospective Assessment of Patient-Rated Symptoms Following Whole Brain Radiotherapy for Brain Metastases

The effect of early versus delayed radiation therapy on length of hospital stay in the palliative setting

Use of multimedia in patient and caregiver education for cancer pain management: a literature review

Outcome of rectal cancer after radiotherapy with a long or short waiting period before surgery, a descriptive clinical study

Radiological changes on CT after stereotactic body radiation therapy to non-spine bone metastases: a descriptive series

The Relationship of Pain, Uncertainty, and Hope in Taiwanese Lung Cancer Patients

Impact of pre-treatment symptoms on survival after palliative radiotherapy An improved model to predict prognosis?

Author Block M. Fisch, J. W. Lee, J. Manola, L. Wagner, V. Chang, P. Gilman, K. Lear, L. Baez, C. Cleeland University of Texas M.D. Anderson Cancer Ce

Psychometric Properties of the Brief Fatigue Inventory in Greek Patients with Advanced Cancer

Should dexamethasone be standard in the prophylaxis of pain flare after palliative radiotherapy for bone metastases? a debate

Objectives Primary Objectives:

European Journal of Oncology Nursing

A NEW METHOD FOR ASSESSING PAIN IN THE EMERGENCY DEPARTMENT: A PILOT STUDY

A Brief Cancer Pain Assessment Tool in Japanese: The Utility of the Japanese Brief Pain Inventory BPI-J

Has Pain Management in Cancer Patients with Bone Metastases Improved? A Seven-Year Review at An Outpatient Palliative Radiotherapy Clinic

Symptom Cluster Patterns During the First Year After Diagnosis with Cancer

A Quality Initiative of the Program in Evidence-based Care (PEBC), Cancer Care Ontario (CCO)

Background. 2 5/30/2017 Company Confidential 2015 Eli Lilly and Company

Anota et al. Health and Quality of Life Outcomes 2014, 12:32

A RANDOMISED CONTROLLED TRIAL OF CONQUER FEAR DELIVERED IN A GROUP FORMAT

A Phase II Study to Establish the Efficacy and Toxicity of Sodium Valproate in Patients With Cancer-Related Neuropathic Pain

Clinical Utility of the MDASI-BT in Patients with Brain Metastases

Ripamonti C, et al. ASCO 2012 (Abstract 9005)

CHAPTER 3 RESEARCH METHODOLOGY

The Danish Palliative Care Trial (DanPaCT), a randomised trial of early palliative care in cancer. Results of the primary analysis

Factor Analysis. MERMAID Series 12/11. Galen E. Switzer, PhD Rachel Hess, MD, MS

Inter-rater reliability in performance status assessment among health care professionals: a systematic review

A prospective study of gastrointestinal radiation therapy-induced nausea and vomiting

Validation Study of the Korean Version of the Brief Fatigue Inventory

ARIC STUDY MANUSCRIPT PROPOSAL # 714. PC Reviewed: 03/07/00 Status: Deferred Priority: SC Reviewed: Status: Priority:

Integrating Pain Metrics into Oncologic Clinical and Regulatory Decision-Making. Charles Cleeland MD Anderson Cancer Center

Performance of PROMIS and Legacy Measures Among Advanced Breast Cancer Patients and Their Caregivers

Clinical Trial Results with OROS Ò Hydromorphone

Radiotherapy Management of Breast Cancer Treated with Neoadjuvant Chemotherapy. Julia White MD Professor, Radiation Oncology

Fatigue and Quality of Life of Women Undergoing Chemotherapy or Radiotherapy for Breast Cancer

Women s Health Development Unit, School of Medical Science, Health Campus, Universiti Sains Malaysia b

Contemporary Chemotherapy-Based Strategies for First-Line Metastatic Breast Cancer

Comprehensive Assessment with Rapid Evaluation and Treatment: Integrating palliative care into the care of patients with advanced cancer Leslie J

pan-canadian Oncology Drug Review Final Economic Guidance Report Pertuzumab (Perjeta) Neoadjuvant Breast Cancer July 16, 2015

Edith A. Perez, Ahmad Awada, Joyce O Shaughnessy, Hope Rugo, Chris Twelves, Seock-Ah Im, Carol Zhao, Ute Hoch, Alison L. Hannah, Javier Cortes

Unmet supportive care needs in Asian women with breast cancer. Richard Fielding Division of Behavioural Sciences School of Pubic Health, HKU

JMSCR Vol 06 Issue 12 Page December 2018

Palliative Care: Expanding the Role Throughout the Patient s Journey. Dr. Robert Sauls Regional Lead for Palliative Care

Novel Chemotherapy Agents for Metastatic Breast Cancer. Joanne L. Blum, MD, PhD Baylor-Sammons Cancer Center Dallas, TX

Original Article. Keywords: Pain; quality of life; radiation oncology

Quality Of Life Of The Patients With Ovarian Cancer

Symptom clusters are groups of interrelated

Evidence for the use of exercise in patients with breast cancer to reduce cancer-related fatigue

Validation of the Russian version of the Quality of Life-Rheumatoid Arthritis Scale (QOL-RA Scale)

Quality of Life and Survivorship:

Validation Study of the Chinese Version of the Brief Fatigue Inventory (BFI-C)

Pertuzumab for the adjuvant treatment of HER2-positive breast cancer

Subescala D CULTURA ORGANIZACIONAL. Factor Analysis

Assessment of quality of life in patients with breast cancer receiving chemotherapy

Cross-cultural Psychometric Evaluation of the Dutch McGill- QoL Questionnaire for Breast Cancer Patients

Taxane-induced arthralgia and myalgia: A literature review

RESEARCH ARTICLE. Symptom Clusters and Quality of Life in Hospice Patients with Cancer. Suha Omran 1 *, Yousef Khader 2, Susan McMillan 3.

Validation of the German Version of the Brief Fatigue Inventory

Effectiveness of Progressive Muscle Relaxation on Inducing Sleep among Cancer Patients in Selected Hospitals of Pune City

Moving from the Means to the Standard Deviations in Symptom Management Research

Policy No: dru281. Medication Policy Manual. Date of Origin: September 24, Topic: Perjeta, pertuzumab. Next Review Date: May 2015

NEUROPATHIC PAIN MINDFULNESS FOR CANCER SURVIVOR LIVING WITH CHRONIC

Content validation of the EORTC QLQ-BN20+2 with patients and health care professionals to assess quality of life in brain metastases

Prophylaxis of radiation-induced nausea and vomiting: a systematic review and meta-analysis of randomized controlled trials

An Assessment of Current Palliative Care Beliefs and Knowledge: The Primary Palliative Care Providers' Perspective

What QLQ-C15-PAL Symptoms Matter Most for Overall Quality of Life in Patients With Advanced Cancer?

Normative data for adults referred for specialist pain management in Australia

Objectives for Instrument Validation

Breast Cancer: Weight and Exercise. Anne McTiernan, MD, PhD. Fred Hutchinson Cancer Research Center Seattle, WA

Postoperative pain often requires aggressive analgesia, especially

Qamar J. Khan Bruce F. Kimler Pavan S. Reddy Priyanka Sharma Jennifer R. Klemp Carol J. Fabian

Risk factors for the initiation and aggravation of lymphoedema after axillary lymph node dissection for breast cancer

The World Health Organization has developed and has widely accepted an algorithm for treatment of cancer pain. This is described as the three-step lad

Summary ID# Clinical Study Summary: Study B4Z-MC-LYCL

CBT in the Treatment of Persistent Insomnia in Patients with Cancer

Quality of Life Instrument - Breast Cancer Patient Version

Disclosure SBRT. SBRT for Spinal Metastases 5/2/2010. No conflicts of interest. Overview

Using a Simple Diary for Management of Nausea and Vomiting During Chemotherapy

Radiotherapy symptoms control in bone mets. Francesco Cellini GemelliART. Ernesto Maranzano,MD. Session 5: Symptoms management

Transcription:

Original Article Symptom clusters using the Brief Pain Inventory in patients with breast cancer Vithusha Ganesh, Leah Drost, Nicholas Chiu, Liying Zhang, Leonard Chiu, Ronald Chow, Nicholas Lao, Bo Angela Wan, Justin Lee, Edward Chow, Carlo DeAngelis Sunnybrook Odette Cancer Centre, University of Toronto, Toronto, ON, Canada Contributions: (I) Conception and design: V Ganesh, L Drost, BA Wan, E Chow; (II) Administrative support: V Ganesh; (III) Provision of study materials or patients: All authors; (IV) Collection and assembly of data: All authors; (V) Data analysis and interpretation: All authors; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. Correspondence to: Dr. Edward Chow, MBBS, MSc, PhD, FRCPC. Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario, Canada. Email: Edward.Chow@sunnybrook.ca. Background: The purpose of this study was to assess symptom clusters in functional interference using the brief pain inventory (BPI) in patients with non-metastatic breast cancer (BC) during and after chemotherapy. Methods: A principal component analysis with varimax rotation was conducted on data from 228 patients to identify two clusters at baseline and two intervals following treatment. Results: Physical (general activity, normal work, walking ability) and psychosocial (mood, relationships, sleep, enjoyment of life) interference clusters were present at baseline. Clusters were observed at 1-month (cluster 1: general activity, normal work, enjoyment of life; cluster 2: relationships, sleep) and 3-month (cluster 1: general activity, normal work, relationships; cluster 2: sleep, enjoyment of life) post-treatment. Conclusions: Results from our study suggest dynamic symptom clusters in this patient population, and encourage continued symptom management following completion of treatment. Keywords: Quality of life; chemotherapy; pain; functional interference Submitted May 27, 2017. Accepted for publication Sep 05, 2017. doi: 10.21037/apm.2017.09.05 View this article at: http://dx.doi.org/10.21037/apm.2017.09.05 Introduction Patients with cancer often experience several disease- and treatment- related symptoms, highlighting the importance of sensitivity and responsiveness to symptom identification and control in their care. Symptom clusters are groups of a minimum of two symptoms that co-occur in patients. Due to their implications on management of patient quality of life, they are of great clinical interest (1). Although symptom cluster research was recently named a priority in oncology nursing, there is limited data regarding symptom clusters in patients undergoing chemotherapy (2). The majority of research conducted on symptom management in patients with breast cancer (BC) is focused on isolated symptoms, with the most prevalent being fatigue, pain, anxiety and depression (3). A literature review conducted by Nguyen et al. amalgamated results from five relevant studies published from 2005 to 2009 on symptom clusters in BC patients (4). However, these studies differed in terms of the number of clusters and the composition of items across clusters. With great inter- and intra- patient variability cited in BC patients undergoing adjuvant chemotherapy, there are several challenges associated with the management of quality of life in these patients (5). Although currently limited, research on symptom cluster in women with BC undergoing chemotherapy may better illustrate the experiences of this patient population, and facilitate improved symptom identification and management. The aim of the present study is to investigate symptom clusters in patients with non-metastatic BC during and after chemotherapy.

Annals of Palliative Medicine, Vol 6, Suppl 2 December 2017 Methods This is a secondary analysis of a prospective study on docetaxel-associated pain syndrome, which accrued patients with non-metastatic BC commencing taxane chemotherapy at the Sunnybrook Odette Cancer Centre and North York General Hospital (6). Ethical approval for the study was obtained at the respective institutions, and all patients provided informed consent. Patients were followed for the first three consecutive cycles of docetaxel, paclitaxel or nabpaclitaxel chemotherapy. The brief pain inventory (BPI) is a multiple-item measure of pain used extensively in the cancer patient population (7). The sensory component measures intensity of pain on 4 different scales (worst, least, average, and current pain) wherein higher scores are indicative of worse pain. The affective component of the BPI assesses the effect of pain on 7 functional items at baseline: general activity, normal work, walking ability, mood, sleep, relationships and enjoyment of life. The BPI utilizes an 11-point scale, wherein higher scores are indicative of greater functional interference. In the present study, patients completed the BPI at baseline, throughout days 1 21 during all three cycles (acute phase), and again at 1, 3, 6, 9, and 12 months posttreatment (delayed phase). During the delayed phase, mood and walking ability were not assessed. Average BPI scores were calculated for cycles 1 3 and used in the analysis. Consent was provided by all patients. Ethical approval was obtained from the hospital research ethics board. Statistical analysis Descriptive analyses were performed on demographics and medication taken during treatment cycles, and were summarized as mean, standard deviation (SD), median, inter-quartiles and range for continuous variables, and proportions for categorical variables. BPI items were summarized at baseline, acute phase during treatment and delayed phase post-treatment. Spearman correlation was conducted at baseline, during and post-treatments. A principle component analysis (PCA) with varimax rotation was conducted on the BPI scores to delineate symptom clusters at baseline, at each cycle of the acute phase, and at 1, 3, 6, 9, and 12 months delayed phase. This statistical procedure transforms a number of observed variables into a smaller number of variables or principal components, 171 wherein the first component accounts for as much variability in the data as possible. The number of significant principal components was selected with an Eigenvalue higher than 0.6 and each component explained more than 10% of the variance. The highest factor loading score predicted the assignment of individual symptoms to an independent factor. Cronbach s alpha values were calculated to estimate the internal consistencies and reliabilities of symptom clusters. The varimax rotation is an orthogonal rotation, meaning that it results in uncorrelated components. Compared to other types of rotations, a varimax rotation tends to maximize the variance of a column of the factor pattern matrix. Robust relationships and correlations among symptoms were displayed with the biplot graphic. The longer the length and closer together the arrows were, the higher the correlation between symptoms. All analyses were conducted using Statistical Analysis Software (SAS version 9.4 for Windows). Results A total of 228 patients were accrued to the study. Patient characteristics are found in Table 1. The mean age was 52 years, with almost half of patients post-menopausal. Out of the three regimens, docetaxel was administered the most (88%). Most patients were chemotherapy naïve (92%). Medications taken during treatment are listed in Table 2. Descriptions of the BPI scores collected at the different phases of the study are provided in Table 3. Significant clusters were observed at baseline and during the delayed phase only. Baseline Spearman correlations between all BPI items were significant with P values <0.0001. Using the criterion of minimum eigenvalue of 0.60 and at least 10% of the total variance, the first two components accounted for 77% and 10% of the total variance respectively (Table 4). Cumulatively, 87% of the variance was accounted for. Cluster 1 was composed of mood, relationships, sleep and enjoyment of life. Cluster 2 consisted of general activity, walking ability and normal work. Final communality is the proportion of variance in an observed variable that is accounted for by the retained clusters. Values in this study showed that all variables were well accounted for by the two clusters, with final communalities ranging from 0.77 (sleep)

172 Ganesh et al. Symptom clusters in breast cancer Table 1 Patient characteristics Characteristic Non-metastatic patients (N=228) can also be observed in the biplot (Figure 1). Age (year) N 228 Mean ± SD 52.0±11.0 Median [Inter-quartiles] 52 [44,60] Range 27 86 BMI N 228 Mean ± SD 26.35±4.85 Median (Inter-quartiles) 25.5 (22.8 28.5) Range 17.5 45.0 Treatment intent Adjuvant 198 (86.88%) Neoadjuvant 30 (13.16%) Menopausal status Premenopausal 80 (35.09%) Early perimenopausal 18 (7.89%) Late perimenopausal 17 (7.46%) Postmenopausal 113 (49.56%) Co-morbidities 152 (66.67%) SD, standard deviation; BMI, Body Mass Index. Delayed phase In delayed phase, clusters were identified at 1 and 3 months post-treatment. BPI scores for mood and walking ability were not collected during delayed phase. Spearman correlations at months 1 and 3 between the remaining 5 BPI items were all significant, with P values <0.0001. At 1 month post-treatment, 2 clusters were identified, respectively accounting for 75% and 12% of the total variance (Table 6). Cumulatively, the clusters explained 87% of the variance. Cluster 1 was composed of general activity, normal work and enjoyment of life. Cluster 2 was composed of relationships and sleep. Final communality values ranged from 0.79 (relationships) to 0.93 (normal work) (Table 7). Cronbach s alpha values for the two clusters were 0.94 and 0.79 respectively, indicating good internal consistencies. At 3 months post-treatment, 2 clusters were identified, respectively accounting for 76% and 12% of the total variance (Table 8). Cumulatively, they accounted for 88% of the total variance. Cluster 1 was composed of general activity, normal work and relationships. Cluster 2 was composed of sleep and enjoyment of life. Final communalities ranged from 0.81 (relationships) to 0.95 (sleep) (Table 9). Cronbach s alpha values for the two clusters were 0.94 and 0.82 respectively, indicating good internal consistencies. Table 2 Medication taken during treatment cycles Medication Dexamethasone Non-metastatic patients (N=228) Standard 19 (86.64%) IV 30 (13.16%) GCSF 81 (35.53%) NSAIDS 155 (67.99%) Opioids 54 (23.68%) Gabapentin 3 (1.32%) GCSF, granulocyte colony-stimulating factor; NSAIDS, nonsteroidal anti-inflammatory drugs. to 0.92 (general activity) (Table 5). Cronbach s alpha values demonstrated good internal consistency with values of 0.93 and 0.94 for the two clusters respectively. The two clusters Discussion Two functional interference clusters were found in three different stages in the study, at baseline and at 1- and 3-month post-treatment. General activity and normal work consistently clustered together. At baseline, we observed two clusters: physical interference (general working, normal work, walking ability) and psychosocial interference (mood, relationships, sleep and enjoyment of life). These clusters are identical to those observed by Klepstad et al. in their study sample of cancer patients (8). Emergence of psychosocial-/mood- and activity-related clusters using the BPI in cancer patients have been noted elsewhere in the literature (9-10). A previous analysis conducted by Chiu et al. reported that BPI interference scores correlated best with the average pain scale for patients experiencing taxaneinduced arthralgia and myalgia, such as those in the present study sample (11). In contrasting the more stable nature

Annals of Palliative Medicine, Vol 6, Suppl 2 December 2017 173 Table 3 BPI at baseline, acute phase and delayed phase BPI Baseline Acute phase Delayed phase Cycle 1 Cycle 2 Cycle 3 Month 1 Month 3 Month 6 Month 9 Month 12 General activity 228 208 191 166 158 120 110 102 93 Mean ± SD 0.53±1.82 2.10±2.03 1.66±1.95 1.74±2.16 1.39±2.53 1.32±2.47 0.87±1.94 1.21±2.43 1.17±2.22 Median (inter-quartiles) 0.0 (0.0, 0.0) 1.4 (0.1, 3.3) 1.0 (0.0, 2.8) 0.8 (0.0, 2.8) 0.0 (0.0, 2.0) 0.0 (0.0, 2.0) 0.0 (0.0, 0.0) 0.0 (0.0, 1.0) 0.0 (0.0, 1.0) Range 0, 10 0, 10 0, 9 0, 10 0, 10 0, 10 0, 8 0, 10 0, 10 Mood 228 208 191 166 NA NA NA NA NA Mean ± SD 0.43±1.65 2.00±1.91 1.48±1.81 1.51±1.97 Median (inter-quartiles) 0.0 (0.0, 0.0) 1.6 (0.2, 3.4) 0.8 (0.0, 2.3) 0.8 (0.0, 2.2) Range 0, 9 0, 8 0, 9 0, 10 Walking ability 228 208 191 166 NA NA NA NA NA Mean ± SD 0.46±1.76 1.88±2.02 1.46±1.88 1.60±2.12 Median (inter-quartiles) 0.0 (0.0, 0.0) 1.3 (0.1, 3.0) 0.7 (0.0, 2.4) 0.7 (0.0, 2.6) Range 0, 10 0, 10 0, 9 0, 10 Normal work 228 208 191 166 158 120 110 102 93 Mean ± SD 0.58±1.98 2.11±2.10 1.67±2.01 1.81±2.25 1.47±2.60 1.35±2.58 1.05±2.26 1.45±2.69 1.23±2.36 Median (inter-quartiles) 0.0 (0.0, 0.0) 1.6 (0.1, 3.3) 0.9 (0.0, 2.8) 0.9 (0.0, 3.0) 0.0 (0.0, 2.0) 0.0 (0.0, 1.5) 0.0 (0.0, 0.0) 0.0 (0.0, 1.0) 0.0 (0.0, 1.0) Range 0, 10 0, 10 0, 9 0, 10 0, 10 0, 10 0, 10 0, 10 0, 10 Relationships 228 208 191 166 158 120 110 102 93 Mean ± SD 0.41±1.67 1.74±1.89 1.27±1.76 1.37±1.96 0.59±1.67 0.83±2.06 0.60±1.87 0.65±1.93 0.58±1.58 Median (inter-quartiles) 0.0 (0.0, 0.0) 1.1 (0.0, 3.0) 0.4 (0.0, 1.8) 0.4 (0.0, 2.1) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) Range 0, 10 0, 9 0, 9 0, 10 0, 10 0, 10 0, 10 0, 10 0, 7 Sleep 228 208 191 166 158 120 110 102 93 Mean ± SD 0.73±2.25 2.12±2.00 1.66±1.99 1.67±2.19 0.97±2.23 1.58±2.89 1.36±2.79 1.62±2.82 1.47±2.76 Median (inter-quartiles) 0.0 (0.0, 0.0) 1.7 (0.2, 3.4) 1.0 (0.0, 2.9) 0.9 (0.0, 2.7) 0.0 (0.0, 0.0) 0.0 (0.0, 2.0) 0.0 (0.0, 0.0) 0.0 (0.0, 2.0) 0.0 (0.0, 2.0) Range 0, 10 0, 9 0, 9 0, 10 0, 10 0, 10 0, 10 0, 10 0, 10 Enjoyment of life 228 208 191 166 158 120 110 102 93 Mean ± SD 0.55±1.85 2.15±2.07 1.60±1.99 1.67±2.23 1.28±2.52 1.40±2.69 0.95±2.12 1.17±2.40 1.08±2.24 Median (inter-quartiles) 0.0 (0.0, 0.0) 1.7 (0.3, 3.6) 0.9 (0.0, 2.8) 0.8 (0.0, 2.4) 0.0 (0.0, 1.0) 0.0 (0.0, 1.5) 0.0 (0.0, 0.0) 0.0 (0.0, 1.0) 0.0 (0.0, 1.0) Range 0, 9 0, 10 0, 10 0, 10 0, 10 0, 10 0, 9 0, 10 0, 10 SD, standard deviation; BPI, brief pain inventory; NA, not available;

174 Ganesh et al. Symptom clusters in breast cancer Table 4 Eigenvalues and proportions of variance for components at baseline Component Eigenvalue Proportion Cumulative 1 5.37 0.77 0.77 2 0.66 0.10 0.87 3 0.34 0.05 0.92 4 0.26 0.03 0.95 5 0.15 0.02 0.97 Table 6 Eigenvalues and proportions of variance for components at 1 month Component Eigenvalue Proportion Cumulative 1 3.73 0.75 0.75 2 0.61 0.12 0.87 3 0.34 0.07 0.94 4 0.20 0.04 0.98 5 0.12 0.02 1.00 6 0.14 0.02 0.99 7 0.08 0.01 1.00 Table 5 Factor loadings and final communality of BPI items at baseline BPI items Component 1 Component 2 Final communality Mood 0.71 0.57 0.831 Relationship 0.78 0.50 0.852 Sleep 0.81 0.34 0.770 Enjoyment of life 0.89 0.32 0.894 General activity 0.35 0.89 0.918 Walking ability 0.39 0.85 0.880 Table 7 Factor loadings and final communality of BPI items at 1 month BPI items Component 1 Component 2 Final communality General activity 0.87 0.36 0.885 Normal work 0.91 0.30 0.926 Enjoyment of life 0.83 0.43 0.866 Relationship 0.41 0.79 0.793 Sleep 0.29 0.89 0.867 % of variance 75% 12% Cronbach s alpha BPI, brief pain inventory. 0.94 0.79 Principal component 2 0.2 0.1 0.0 0.1 0.2 15 10 5 0 5 Enjoyment of life Sleeping problem Relationship with others Mood Normal work Walking ability General activity 0.3 0.2 0.1 0.0 0.1 Principal component 1 Figure 1 Biplot for clusters at baseline. 10 5 0 5 10 of pain of non-metastatic compared to metastatic patients, the authors recommended use of this BPI scale in future evaluations of the symptom in this particular population. Studies conducted in BC patients during and after treatment have used other symptom assessment tools. Implementing four different questionnaires across the span of chemotherapy and radiotherapy, Kim et al. observed a psychoneurological cluster in BC patients composed of cognitive disturbances, depressed mood, fatigue, insomnia and pain (12). This remained stable throughout treatment, with the exception of hot flashes appearing and disappearing after the initiation of treatment. Using the Profile of Mood States, EORTC-QLQ-C30 and -BR23, Evangelista and Santos observed physical (dyspnea, pain, arm symptoms, insomnia) and psychoemotional (depression, confusion, anger, tension, fatigue, breast symptoms) symptom clusters in their study of 138 BC patients following completion of adjuvant chemotherapy with curative intent (13). Bender et al. conducted a pooled analysis of results from three independent studies with women at different phases of

Annals of Palliative Medicine, Vol 6, Suppl 2 December 2017 Table 8 Eigenvalues and proportions of variance for components at 3 months Component Eigenvalue Proportion Cumulative 1 3.81 0.76 0.76 2 0.62 0.12 0.88 3 0.28 0.06 0.94 4 0.20 0.04 0.98 5 0.09 0.02 1.00 Table 9 Factor loadings and final communality of BPI items at 3 months BPI items Component 1 Component 2 Final communality General activity 0.92 0.26 0.917 Normal work 0.91 0.32 0.931 Relationship 0.82 0.37 0.805 Sleep 0.25 0.94 0.954 Enjoyment of life 0.62 0.66 0.825 % of variance 76 12 Cronbach s alpha BPI, brief pain inventory. 0.94 0.82 BC, following primary resection, adjuvant chemotherapy and metastatic development. Their analysis identified 3 symptom clusters corresponding to different phases, composed of symptoms relating to fatigue, perceived cognitive impairment and mood (14). So et al. investigated the symptoms reported to be the most prevalent in BC patients (fatigue, pain, anxiety and depression) and observed significant correlations between them (15). In addition to confirming the existence of this symptom cluster, the authors remarked on the adverse effect of increased symptomatology in this group on patient quality of life. Like our present study, an analysis conducted by Albusoul et al. used a sample of solely BC patients undergoing adjuvant chemotherapy (16). Their results departed from those of previous studies in this patient population, reporting that clusters were dynamic rather than stable (12,17-19). This was also observed in our study, with no two identical clusters emerging across the span of the study. Albusoul et al. reported a treatment-related cluster 175 which at baseline, was composed of anxiety, appearance, concentration and sleep disturbance. At the third cycle of chemotherapy, bowel pattern, fatigue, pain and depression joined the cluster. At the fourth cycle, the cluster contained appetite, depression, fatigue, anxiety, appearance and concentration. At the 1-month mark post-treatment, the cluster divided into two: cluster 1, consisting of fatigue, pain and sleep disturbance; and cluster 2, containing anxiety, appearance and concentration. There are several limitations to the present study. Since assessment of mood and walking ability were not assessed in the delayed phase in the primary study, the possible inclusion of these items in delayed phase symptom clusters could not be evaluated in this secondary analysis. Another limitation in our study is the low minimum Eigenvalue (0.60) used for cluster inclusion. Using the principal component analysis on average BPI scores, we were unable to identify significant clusters during the acute phase. Therefore, further research is required using the same patient population to assess the validity of the symptom clusters identified. Conclusions BC patients may present with symptom clusters in physical and psychological interference. Symptom clusters were identified in the delayed phase and were different at the assessed stages, indicating dynamic behavior. Given the demonstration of clusters and a lack of functional recovery to baseline levels, symptoms should be continuously managed following completion of chemotherapy. Acknowledgements We thank the generous support of Bratty Family Fund, Michael and Karyn Goldstein Cancer Research Fund, Joey and Mary Furfari Cancer Research Fund, Pulenzas Cancer Research Fund, Joseph and Silvana Melara Cancer Research Fund, and Ofelia Cancer Research Fund. Footnote Conflicts of Interest: The authors have no conflicts of interest to declare. Ethical Statement: Ethical approval for the study was obtained at the respective institutions and written informed consent was obtained from all patients.

176 Ganesh et al. Symptom clusters in breast cancer References 1. Chow E, Fan G, Hadi S, et al. Symptom clusters in cancer patients with bone metastases. Support Care Cancer 2007;15:1035-43. 2. Oncology Nursing Society. Oncology Nursing Society 2014-2018 Research Agenda. 2014. Available online: https://www.ons.org/sites/default/files/2014-2018%20 ONS%20Research%20Agenda%20Executive%20 Summary.pdf 3. National Institutes of Health. State-of-the-Science Conference Statement on symptom management in cancer: Pain, depression, and fatigue. JNCI Monographs 2004;32:9-16. 4. Nguyen J, Cramarossa G, Bruner D, et al. A literature review of symptom clusters in a patients with breast cancer. Expert Rev Pharmacoecon Outcomes Res 2011;11:533-9. 5. Miakowski C, Cooper BA, Paul SM, et al. Subgroups of patients with cancer with different symptom experiences and quality-of-life outcomes: a cluster analysis. Oncol Nurs Forum 2006;33:E79-89. 6. Chiu N, Zhang L, Dent R, et al. A prospective study of docetaxel-associated pain syndrome. Support Care Cancer. 2018;26:203-11. 7. Cleeland CS, Ryan KM. Pain assessment: global use of the Brief Pain Inventory. Ann Acad Med Singapore 1994;23:129-38. 8. Klepstad P, Loge JH, Borchgrevink PC, et al. The Norwegian Brief Pain Inventory questionnaire: Translation and validation in cancer pain patients. J Pain Symptom Manage 2002;24:517-25. 9. Saxena A, Mendoza T, Cleeland CS. The assessment of cancer pain in North India: The validation of the Hindi Brief Pain Inventory BPI-H. J Pain Symptom Manage 1999;17:27-41. 10. Chow E, James J, Barsevick A, et al. Functional interference clusters in cancer patients with bone metastases: A secondary analysis of RTOG 9714. Int J Radiat Oncol Biol Phys 2010;76:1507-11. 11. Chiu N, Zhang L, Gallo-Hershberg D, et al. Which pain intensity scale from the Brief Pain Inventory correlates most highly with functional interference scores in patients experiencing taxane-induced arthralgia and myalgia? Support Care Cancer 2016;24:2979-88. 12. Kim HJ, Barsevick A, Tulman L, et al. Treatment-related symptom clusters in breast cancer: a secondary analysis. J Pain Symptom Manage 2008;36:468-79. 13. Evangelista AL, Santos EM. Cluster of symptoms in women with breast cancer treated with curative intent. Support Care Cancer 2012;20:1499-506. 14. Bender CM, Ergyn FS, Rosenzweig MQ, et al. Symptom clusters in breast cancer across 3 phases of the disease. Cancer Nurs 2005;28:219-25. 15. So WK, Marsh G, Ling WM, et al. The symptom cluster of fatigue, pain, anxiety, and depression and the effect on the quality of life of women receiving treatment for breast cancer: a multicenter study. Oncol Nurs Forum 2009;36:E205-14. 16. Albusoul RM, Berger AM, Gay CL, et al. Symptom clusters change over time in women receiving adjuvant chemotherapy for breast cancer. J Pain Symptom Manage 2017;53:880-6. 17. Molassiotis A, Farrell C, Bourne K, et al. An exploratory study to clarify the cluster of symptoms predictive of chemotherapy-related nausea using random forest modeling. J Pain Symptom Manage 2012;44:692-703. 18. Phligbua W, Pongthavornkamol K, Knobl T, et al. Symptom cluster and quality of life in women with breast cancer receiving adjuvant chemotherapy. Pac Rim Int J Nurs Res 2013;17:249-66. 19. Kim E, Jahan T, Aouizerat B, et al. Changes in symptom clusters in patients undergoing radiation therapy. Support Care Cancer 2009;17:1383-91. Cite this article as: Ganesh V, Drost L, Chiu N, Zhang L, Chiu L, Chow R, Lao N, Wan BA, Lee J, Chow E, DeAngelis C. Symptom clusters using the Brief Pain Inventory in patients with breast cancer. Ann Palliat Med 2017;6(Suppl 2):S170-S176. doi: 10.21037/apm.2017.09.05