A teenager with tetralogy of fallot becomes a soccer player

Similar documents
Surgical Management of TOF in Adults. Dr Flora Tsang Associate Consultant Department of Cardiothoracic Surgery Queen Mary Hospital

Research Presentation June 23, Nimish Muni Resident Internal Medicine

Candice Silversides, MD Toronto Congenital Cardiac Centre for Adults University of Toronto Toronto, Canada

Cardiac MRI in ACHD What We. ACHD Patients

Echocardiography in Adult Congenital Heart Disease

Index. cardiology.theclinics.com. Note: Page numbers of article titles are in boldface type.

S. Bruce Greenberg, MD FNASCI and President, NASCI Professor of Radiology and Pediatrics University of Arkansas for Medical Sciences

DECLARATION OF CONFLICT OF INTEREST

Adult Congenital Heart Disease: What All Echocardiographers Should Know Sharon L. Roble, MD, FACC Echo Hawaii 2016

Clinicians and Facilities: RESOURCES WHEN CARING FOR WOMEN WITH ADULT CONGENITAL HEART DISEASE OR OTHER FORMS OF CARDIOVASCULAR DISEASE!!

Surgical Treatment for Double Outlet Right Ventricle. Masakazu Nakao Consultant, Paediatric Cardiothoracic Surgery

Tetralogy of Fallot Latest data in risk stratification and replacement of pulmonic valve

MRI (AND CT) FOR REPAIRED TETRALOGY OF FALLOT

Repair of very severe tricuspid regurgitation following detachment of the tricuspid valve

ECHOCARDIOGRAPHIC APPROACH TO CONGENITAL HEART DISEASE: THE UNOPERATED ADULT

CONGENITAL HEART DISEASE (CHD)

Management of Heart Failure in Adult with Congenital Heart Disease

Adult Echocardiography Examination Content Outline

Implantation of Cardioverter Defibrillator After Percutaneous Closure of Atrial Septal Defect

Exercise Testing Interpretation in the Congenital Heart.

The need for right ventricular outflow tract reconstruction

RVOTO adult and post-op

ADULT CONGENITAL HEART DISEASE AN UPDATE FOR CARDIOLOGISTS AND PRIMARY CARE PHYSICIANS

Adults With Congenital Heart. Disease. An Expanding Population. In this article:

Congenital heart disease: When to act and what to do?

Mitral Valve Disease, When to Intervene

5.8 Congenital Heart Disease

A Unique Milieu for Perioperative Care of Adult Congenital Heart Disease Patients at a Single Institution

Congenital Heart Disease II: The Repaired Adult

Echocardiographic assessment in Adult Patients with Congenital Heart Diseases

Debate in CHD - When Should We

Pulmonary Valve Replacement

Evaluation of the Right Ventricle and Risk Stratification for Sudden Cardiac Death

Cardiovascular MRI of Adult Congenital Heart Disease

Perioperative Management of DORV Case

Tetralogy of Fallot is a common form of cyanotic heart

DEPARTMENT NAME PRE-PARTICIPATION SCREENING THE SPORTS PHYSICAL

Biventricular Enlargement/ Hypertrophy

The background of the Cardiac Sonographer Network News masthead is a diagnostic image:

Sports cardiology: Pre-competition screening

For Personal Use. Copyright HMP 2013

Heart and Lungs. LUNG Coronal section demonstrates relationship of pulmonary parenchyma to heart and chest wall.

CONGENITAL HEART DEFECTS IN ADULTS

"Giancarlo Rastelli Lecture"

Uptofate Study Summary

Pattern of Congenital Heart Disease A Hospital-Based Study *Sadiq Mohammed Al-Hamash MBChB, FICMS

Adults with Congenital Heart Disease. Michael E. McConnell MD, Wendy Book MD Teresa Lyle RN NNP

Congenitally Corrected Transposition of the Great Arteries (cctga or l-loop TGA)

TGA atrial vs arterial switch what do we need to look for and how to react

Shuichi Shiraishi, Masashi Takahashi, Ai Sugimoto, Masanori Tsuchida. Introduction

가천의대길병원소아심장과최덕영 PA C IVS THE EVALUATION AND PRINCIPLES OF TREATMENT STRATEGY

Surgical options for tetralogy of Fallot

Interventions in Adult Congenital Heart Disease: Role of CV Imaging. Associate Professor. ACHD mortality. Pillutla. Am Heart J 2009;158:874-9

Anatomy & Physiology

cctga patients need lifelong follow-up in an age-appropriate facility with expertise in

3/14/2011 MANAGEMENT OF NEWBORNS CARDIAC INTENSIVE CARE CONFERENCE FOR HEALTH PROFESSIONALS IRVINE, CA. MARCH 7, 2011 WITH HEART DEFECTS

Atrial Septal Defects

Debate in Management of native COA; Balloon Versus Surgery

Case 47 Clinical Presentation

Notes by Sandra Dankwa 2009 HF- Heart Failure DS- Down Syndrome IE- Infective Endocarditis ET- Exercise Tolerance. Small VSD Symptoms -asymptomatic

CYANOTIC CONGENITAL HEART DISEASES. PRESENTER: DR. Myra M. Koech Pediatric cardiologist MTRH/MU

Imaging of Repaired Tetralogy of Fallot in Adults

Pregnancy, Heart Disease and Imaging. Hemodynamics. Decreased systemic vascular resistance. Physiology anemia

Congenital Heart Defects

Pulmonary Regurgitation after TOF Repair. How to Assess and Options of Management? Worakan Promphan, MD.FSCAI.

Tetralogy of Fallot. Damien Bonnet

ADULT CONGENITAL HEART DISEASE. Stuart Lilley

Tetralogy of Fallot C A R D I O L O G Y C L I N I C A L M E E T I N G R A C H A E L H A T T O N 1 2 / 1 0 /

PREGNANCY AND CONGENITAL HEART DISEASE

Cardiac Catheterization Cases Primary Cardiac Diagnoses Facility 12 month period from to PRIMARY DIAGNOSES (one per patient)

Introduction. Pediatric Cardiology. General Appearance. Tools of Assessment. Auscultation. Vital Signs

Doppler-echocardiographic findings in a patient with persisting right ventricular sinusoids

Cardiovascular Nursing Practice: A Comprehensive Resource Manual and Study Guide for Clinical Nurses 2 nd Edition

HISTORY. Question: What type of heart disease is suggested by this history? CHIEF COMPLAINT: Decreasing exercise tolerance.

Management of complex CHD in adults

Index. Note: Page numbers of article titles are in boldface type.

Ascot Cardiology Symposium 2014 Adult Congenital Heart Disease What should GP s know? Boris Lowe, MB ChB, FRACP Green Lane Cardiovascular Service

Outline. Congenital Heart Disease. Special Considerations for Special Populations: Congenital Heart Disease

In 1980, Bex and associates 1 first introduced the initial

Complex Congenital Heart Disease in Adults

Cardiac Emergencies in Infants. Michael Luceri, DO

2) VSD & PDA - Dr. Aso

The Double Switch Using Bidirectional Glenn and Hemi-Mustard. Frank Hanley

M/3, cc-tga, PS, BCPC(+) Double Switch Operation

Quantitative Assessment of Pulmonary Regurgitation by Echocardiography in Patients After Repaired TOF

Anomalous muscle bundle of the right ventricle

How to Assess and Treat Obstructive Lesions

The Chest X-ray for Cardiologists

Double outlet right ventricle: navigation of surgeon to chose best treatment strategy

Follow-Up After Pulmonary Valve Replacement in Adults With Tetralogy of Fallot

Clinical significance of cardiac murmurs: Get the sound and rhythm!

Mechanical Support in the Failing Fontan-Kreutzer

Congenital Heart Disease

Pediatric Echocardiography Examination Content Outline

Giovanni Di Salvo MD, PhD, FESC Second University of Naples Monaldi Hospital

Cases in Adult Congenital Heart Disease

Common Defects With Expected Adult Survival:

Indications for the Brock operation in current

Pacing in patients with congenital heart disease: part 1

By Dickens ATURWANAHO & ORIBA DAN LANGOYA MAKchs, MBchB CONGENTAL HEART DISEASE

Transcription:

ISSN 1507-6164 DOI: 10.12659/AJCR.889440 Received: 2013.06.06 Accepted: 2013.07.10 Published: 2013.09.23 A teenager with tetralogy of fallot becomes a soccer player Authors Contribution: Study Design A Data Collection B Statistical Analysis C Data Interpretation D Manuscript Preparation E Literature Search F Funds Collection G ACDE BF Massimo Bolognesi Diletta Bolognesi Sports Cardiology Center Medicine, Cesena Italy Corresponding Author: Massimo Bolognesi, e-mail: massbolo1@tin.it Patient: Male, 0 Final Diagnosis: Tetralogy of Fallot Symptoms: Medication: Clinical Procedure: Specialty: Cardiology Objective: Background: Case Report: Conclusions: Key words: Full-text PDF: Unusual or unexpected effect of treatment Tetralogy of Fallot (ToF) is the most common form of cyanotic congenital defect. Adult subjects with results of repair of tetralogy of Fallot may present post-surgical consequences that limit their physical capacity and thus their ability to compete in sports. Conversely, adults with excellent repair of congenital heart disease may have a chance to participate in competitive sports. This case report illustrates the clinical course of a teenager with an outcome of surgical repair for TOF and demonstrates the boy s excellent physical capacity that ensures his ability to play soccer. This case report raises the question of the possible revision of the criteria of the Italian COCIS protocol in terms of corrected congenital heart disease. tetralogy of fallot congenital heart disease sports/ pre-participation screening cardiorespiratory fitness teenager http://www.amjcaserep.com/download/index/idart/889440 1168 4 16 380

Background Tetralogy of Fallot (ToF) is the most common form of cyanotic congenital defect [1]. This anomaly has 4 anatomic features: 1) anterior and rightward displacement of the aortic root; 2) ventricular septal defect; 3) right ventricular outflow tract obstruction; and 4) right ventricular hypertrophy. Surgical repair is achieved by patch closure of the ventricular septal defect and by enlarging the RV outflow tract through an infundibular patch [2]. This leads to 3 important long-term consequences of repaired ToF: the presence of significant RV outflow tract restenosis and/or significant pulmonary regurgitation, as well as the occurrence of cardiac arrhythmias, predominantly of ventricular origin related to re-entry in the area of the infundibular patch. Several reports have assessed the exercise capacity in ToF patients [3]. These reports emphasize that several residual lesions can cause a reduced exercise tolerance in patients with repaired ToF. Residual PS after direct or conduit repair of ToF has been associated with reduced exercise capacity and increased ventilatory response to exercise, as a consequence of increased afterload to the RV with abnormal cardiac output response to exercise [4]. Presence of residual pulmonary artery branch stenosis and presence of aortopulmonary collateral vessels have also been associated with abnormal ventilatory response to exercise, as a consequence of ventilation/ perfusion mismatch [5,6]. There is evidence that, in the presence of normal RV systolic function, the effect of isolated significant pulmonary regurgitation on exercise capacity is limited [7]. However, patients with significant pulmonary regurgitation who also have a reduced RV systolic function have the lowest exercise capacity, particularly if they also have a reduced LV systolic function. Recent observations also confirm the predominant impact of reduced RV function of exercise capacity in repaired ToF [8]. Finally, a subgroup of patients with repaired ToF will present, or will be at risk of, sustained potentially lifethreatening ventricular arrhythmias. Factors known to be associated with an increased risk of ventricular arrhythmias are: older age at repair, increased RV systolic pressure, the presence of RV dilation and dysfunction (usually as a consequence of significant pulmonary regurgitation), the presence of LV systolic dysfunction, and the presence of a broad QRS (duration >180 msec) [9,10]. Patients with an excellent repair who have a normal or near-normal RV pressure, no or only mild RV volume overload, no significant residual shunt, and no atrial or ventricular arrhythmias on ambulatory ECG monitoring or exercise testing can participate in all sports of any intensity [11]. Case Report This case report describes the history of a 13-year-old soccer player, born with a congenital heart malformation complex without cyanosis (Fallot Tetralogy of Fallot-Pink). This congenital heart disease was surgically corrected at the age of 10 months by the classic repair in Tetralogy of Fallot an outflow patch of pericardium was used to relieve subpulmonic obstruction, and the VSD was closed with a pericardial or Dacron patch. The cardiac surgery led to an excellent result. After the radical heart surgery, the child had normal development, showing a natural inclination to physical activity. Since birth, he was followed by our pediatric cardiology unit,, where he performed a regular clinical and instrumental follow-up, from which it is documented that he never showed any kind of cardiac complication. He always practiced in recreational sports activity, but at Figure 1. The athlete undergoes cardiorespiratory exercise treadmill testing for estimate VO2 max and anaerobic threshold. 381

Figure 2. Resting ECG and during exercise testing show normal pattern. Figure 3. 2D Trans-thoracic echocardiography show mild right ventricular enlargement and mild tricuspid regurgitation. some point he asked to engage in competitive soccer. Indeed, the aspiring young footballer has come into our medical center to undergo pre-participation screening and showed a better cardiorespiratory fitness than many of his peers with indices of optimal recovery. During the cardiorespiratory exercise testing, the athlete has achieved a maximum heart rate of 195 bpm at the height of the effort to a VO2 max >50 ml/min/kg and a ventilatory anaerobic threshold corresponding to 82% of VO2 max (Figure 1). Resting ECG showed sinus rhythm, normal AV and intraventricular conduction (QRS <100 ms), with normal repolarization. ECG during exercise testing did not detect arrhythmias (Figure 2). Subsequent transthoracic bidimensional echocardiography (Figure 3) showed excellent repair of the VSD and normal size and normal morphology of the left ventricle, with preserved systolic and diastolic function. Mild right ventricular enlargement and mild tricuspid regurgitation were present; no abnormalities of the RV outflow tract were found other than a trivial pulmonary regurgitation. The aortic root was 382

Figure 4. Cardiac MRI reveals slight dilation with hypertrophy of the right ventricle and shows the infundibular region of the right ventricular outflow tract. normal size, without aortic valve regurgitation. Cardiac MRI was also performed, showing a slight dilatation and mild hypertrophy of the right ventricle, with normal biventricular contractile function and normal size of the aortic root and the pulmonary arteries, and without significant alterations of diameter at the level of the pulmonary valve (trivial regurgitation <5%) (Figure 4). In light of this evidence, in agreement with the pediatric cardiologist referent, he has been qualified as a competitive player, overcoming the restrictions of Italian Protocol COCIS 2009. Discussion In TOF, early surgical intervention is recommended. It has been suggested that sudden cardiac death is related to right ventricular hypertrophy or dilatation. The risk of sudden cardiac death increases with time, suggesting that long-term follow-up by specialized cardiologists or pediatricians should be intensified [12]. In Italy, the eligibility criteria in competitive sports are set by Protocol COCIS 2009, which recommendations that adult competitive athletes with TOF corrected surgically only participate in sports of low cardiorespiratory commitment, mainly neurogenic type, with the exception of soccer. However, some authors suggest that patients who have good surgical results can generally participate in athletic competition without restriction [13]. Others have stated that more athletes with excellent repair should be allowed to participate in all sports, providing that the following criteria are met: normal or near-normal right heart pressure; no or only mild right ventricular volume overload; no evidence of a significant residual shunt; and no atrial or ventricular tachyarrhythmia abnormality on ambulatory ECG monitoring or exercise testing [14]. Statistical analysis demonstrated a significant relationship between reduced work performance and residual disease, notably cardiac enlargement, increased peak systolic right ventricular pressure, pulmonic valve incompetence, residual ventricular septal defect, pulmonary hypertension, and cardiac rhythm disturbances [15]. This case raises possibility of revising the criteria of the COCIS 2009 [16] in terms of corrected congenital heart disease. In light of these findings, and in agreement with the pediatric 383

cardiologist referent, this athlete has been considered as qualified and suitable for competitive soccer, overcoming the restrictions of COCIS 2009. Conclusions Individuals with congenital heart disease are relatively rare but are valuable members of society, thanks in part to the progress of medicine and cardiac surgery over the past 50 years. The increased survival of this population and their progressive integration into social life, work, and sports requires collaboration between clinics in the suburbs and centers of excellence in the assessment of a patient s ability to safely participate in sports. This presents an exciting challenge for modern sports medicine. Consent Informed consent was obtained from the patient for the procedures performed. Consent for data publication was also obtained from the patient. Written informed consent was obtained from the patient for publication of this manuscript and accompanying images. Competing interests The authors declare that they have no competing interests. References: 1. Breitbart R, Fyler D: Tetralogy of Fallot. In Nadas Pediatric Cardiology, 2 nd, ed. Keane, Locke, & Fyler, Philadelphia: Saunders-Elsevier, 2006; 559 2. Fraser CD Jr, McKenzie ED, Cooley DA: Tetralogy of Fallot: surgical management individualized to the patient. Ann Thorac Surg, 2001; 71: 1556 63 3. Sarubbi B, Pacileo G, Pisacane C et al: Exercise capacity in young patients after total repair of Tetralogy of Fallot. Pediatr Cardiol, 2000; 21(3): 211 15 4. Lurz P, Giardini A, Taylor AM et al: Effect of altering pathologic right ventricular loading conditions by percutaneous pulmonary valve implantation on exercise capacity. Am J Cardiol, 2010; 105(5): 721 26 5. Rhodes J, Dave A, Pulling MC et al: Effect of pulmonary artery stenoses on the cardiopulmonary response to exercise following repair of tetralogy of Fallot. Am J Cardiol, 1998; 81(10): 1217 19 6. Sutton NJ, Peng L, Lock JE et al: Effect of pulmonary artery angioplasty on exercise function after repair of tetralogy of Fallot. Am Heart J, 2008; 155(1): 182 86 7. Giardini A, Specchia S, Coutsoumbas G et al: Impact of pulmonary regurgitation and right ventricular dysfunction on oxygen uptake recovery kinetics in repaired tetralogy of Fallot. Eur J Heart Fail, 2006; 8(7): 736 43 8. Meadows J, Powell AJ, Geva T et al: Cardiac magnetic resonance imaging correlates of exercise capacity in patients with surgically repaired tetralogy of Fallot. Am J Cardiol, 2007; 100(9): 1446 50 9. Gatzoulis MA, Balaji S, Webber SA et al: Risk factors for arrhythmia and sudden cardiac death late after repair of tetralogy of Fallot: a multicentre study. Lancet, 2000; 356(9234): 975 81 10. Knauth AL, Gauvreau K, Powell AJ et al: Ventricular size and function assessed by cardiac MRI predict major adverse clinical outcomes late after tetralogy of Fallot repair. Heart, 2008; 94(2): 211 16 11. Graham J, Thomas P, Driscoll DJ et al: 36 th Bethesda conference: recommendations for determining eligibility for competition in athletes with cardiovascular abnormalities. Task Force 2: Congenital heart disease. J Am Coll Cardiol, 2005; 45(8): 1326 33 12. Nollert GD, Däbritz SH, Schmoeckel M: Risk factors for sudden death after repair of tetralogy of Fallot. Ann Thorac Surg, 2003; 76(6): 1901 5 13. Bashore TM: Adult Congenital Heart Disease: Right Ventricular Outflow Tract Lesion.Circulation, 2007; 115: 1933 47 14. Graham TP Jr, Driscoll DJ, Gersony WM et al: Task Force 2: Congenital Heart Disease. JACC, 2005; 45(8): 1326 33 15. Wessel HU, Cunningham WJ, Paul MH et al: Exercise performance in tetralogy of Fallot after intracardiac repair. J Thorac Cardiovasc Surg, 1980; 80(4): 582 93 16. COCIS (Italian Cardiovascular Guidelines for eligibility in competitive sports). 2009; 53 54 384