Rates and Determinants of Site-Specific Progression of Carotid Artery Intima-Media Thickness. The Carotid Atherosclerosis Progression Study

Similar documents
Individuals of African and African Caribbean descent living

JMSCR Vol 04 Issue 10 Page October 2016

Is Carotid Intima-Media Thickness Useful in Cardiovascular Disease Risk Assessment? The Rotterdam Study

Clinical Investigation and Reports. Predictive Value of Noninvasive Measures of Atherosclerosis for Incident Myocardial Infarction

Intima-Media Thickness

The internal carotid artery (ICA) bulb is a predilection site

Asian J. Exp. Sci., Vol. 27, No. 1, 2013; 67-72

Role of imaging in risk assessment models: the example of CIMT

Carotid-Wall Intima Media Thickness and Cardiovascular Events

Corporate Medical Policy

Coronary artery disease (CAD) risk factors

Arterial blood pressure may be divided into 2 components:

CLINICAL STUDY. Yasser Khalil, MD; Bertrand Mukete, MD; Michael J. Durkin, MD; June Coccia, MS, RVT; Martin E. Matsumura, MD

ARIC Manuscript Proposal #1233. PC Reviewed: 4_/_10/07 Status: _A Priority: 2_ SC Reviewed: Status: Priority:

JMSCR Vol 4 Issue 06 Page June 2016

Which CVS risk reduction strategy fits better to carotid US findings?

Atherosclerosis is a complex cardiovascular disorder that

The New England Journal of Medicine CAROTID-ARTERY INTIMA AND MEDIA THICKNESS AS A RISK FACTOR FOR MYOCARDIAL INFARCTION AND STROKE IN OLDER ADULTS

Citation for published version (APA): Terpstra, W. F. (2003). Beyond blood pressure monitoring Groningen: s.n.

Subscriptions: Information about subscribing to Circulation is online at

CAROTID INTIMA-MEDIA THICKNESS. Dimitrios N. Nikas, MD, PhD, FESC Interventional Cardiologist Ioannina University Hospital

We have previously quantified associations of traditional

Imaging Biomarkers: utilisation for the purposes of registration. EMEA-EFPIA Workshop on Biomarkers 15 December 2006

Associations of blood pressure with carotid intima-media thickness in elderly Finns with diabetes mellitus or impaired glucose tolerance

Prevalence and Significance of Carotid Plaques in Patients With Coronary Atherosclerosis

SUPPLEMENTAL MATERIAL. Materials and Methods. Study design

Stroke. 2012;43: ; originally published online May 1, 2012; doi: /STROKEAHA

Correlation of Common Carotid Artery Intima Media Thickness, Intracranial Arterial Stenosis and Post-stroke Cognitive Impairment

Relations of Intimal-Medial Thickness Among Sites Within the Carotid Artery as Evaluated by B-Mode Ultrasound

ASSOCIATION BETWEEN COMMON CAROTID INTIMA-MEDIA THICKNESS (CAROTID IMT) AND CORONARY ARTERY DISEASE Srinivasa Rao Malladi 1

Night time blood pressure and cardiovascular structure in a middle-aged general population in northern Italy: the Vobarno Study

Age and sex differences in the relationship between inherited and lifestyle risk factors and subclinical carotid atherosclerosis: the Tromsø study

Objective Calcium score carotid IMT hs-crp

Edge-Detected Common Carotid Artery Intima Media Thickness and Incident Coronary Heart Disease in the Multi-Ethnic Study of Atherosclerosis

HDL and Arterial Wall

The development of atherosclerosis is now considered to

Associations between cardiovascular risk factors and

Is the Ankle-Brachial Index a Useful Screening Test for Subclinical Atherosclerosis in Asymptomatic, Middle-Aged Adults?

Cardiovascular disease and stroke remain one of the

JMSCR Vol 06 Issue 12 Page December 2018

The clinical significance of carotid intima-media thickness in cardiovascular diseases: a survey in Beijing

Intima Media Thickness Variability (IMTV) and its association with cerebrovascular events: a novel marker of carotid therosclerosis?

Society for Behavioral Medicine 33 rd Annual Meeting New Orleans, LA

Correlations between measures of atherosclerosis change using carotid ultrasonography and coronary angiography

Original Contributions. Inflammatory Gene Load Is Associated With Enhanced Inflammation and Early Carotid Atherosclerosis in Smokers

NIH Public Access Author Manuscript Am J Cardiol. Author manuscript; available in PMC 2008 January 24.

Carotid artery intima-media thickness is a marker for coronary artery disease

Correlation Between the Intima Media Thickness of the Proximal and Distal Common Carotids

atherosclerosis; carotid arteries; cohort studies; risk factors MATERIALS AND METHODS Cohort examination

ABSTRACT ORIGINAL ARTICLE INTRODUCTION. e-issn: p-issn: doi: /apjhs G. Vikas Naik 1 *, K. P.

Diagnostic Accuracy of Carotid Ultrasonography in Screening for Coronary Artery Disease

The Framingham Coronary Heart Disease Risk Score

Autonomic nervous system, inflammation and preclinical carotid atherosclerosis in depressed subjects with coronary risk factors

Subclinical atherosclerosis in CVD: Risk stratification & management Raul Santos, MD

The New England Journal of Medicine CUMULATIVE EFFECTS OF HIGH CHOLESTEROL LEVELS, HIGH BLOOD PRESSURE, AND CIGARETTE SMOKING ON CAROTID STENOSIS

Simvastatin With or Without Ezetimibe in Familial Hypercholesterolemia

Carotid Artery Plaque Burden, Stiffness, and Mortality Risk in Elderly Men. A Prospective, Population-Based Cohort Study.

Noninvasive ultrasonographic assessments of carotid

Original Research Article

Carotid Artery Plaque Burden, Stiffness, and Mortality Risk in Elderly Men. A Prospective, Population-Based Cohort Study

Carotid intima media thickness as an usefull tool in predicting cerebrovaskular events

Low fractional diastolic pressure in the ascending aorta increased the risk of coronary heart disease

Nomogram of the Relation of Brachial-Ankle Pulse Wave Velocity with Blood Pressure

HbA1c is associated with intima media thickness in individuals with normal glucose tolerance

CVD risk assessment using risk scores in primary and secondary prevention

Arterial hypertension is a major risk factor for cerebrovascular

Cardiac Computed Tomography (CT) and Coronary CT Angiography Coronary Heart Disease (CHD) - Assessment of Emerging Risk Factors

Received: March 2008; in final form May 2008.

Predictors of Carotid Thickness and Plaque Progression During a Decade The Multi-Ethnic Study of Atherosclerosis

Supplementary Online Content

Effects of Statins on Endothelial Function in Patients with Coronary Artery Disease

Association between pulse pressure, carotid intima media thickness and carotid and/or iliofemoral plaque in hypertensive patients

Abstract nr AHA, Chicago November European Heart Journal Cardiovascular Imaging, in press. Nr Peter Blomstrand

The Impact of Smoking on Acute Ischemic Stroke

Hypertension is a major risk factor for morbidity

Risk factors for coronary calcification in older subjects

Prognostic Value of Brachial Artery Endothelial Function and Wall Thickness

International Journal of Gerontology

Alcohol Consumption and Carotid Artery Structure in Older French Adults The Three-City Study

Intermediate Methods in Epidemiology Exercise No. 4 - Passive smoking and atherosclerosis

Marc Frerix 1*, Johannes Stegbauer 2, Alexander Kreuter 3 and Stefan Markus Weiner 4

Medical Policy An independent licensee of the Blue Cross Blue Shield Association

Optimizing risk assessment of total cardiovascular risk What are the tools? Lars Rydén Professor Karolinska Institutet Stockholm, Sweden

Assessing Cardiovascular Risk to Optimally Stratify Low- and Moderate- Risk Patients. Copyright. Not for Sale or Commercial Distribution

Name of Policy: Ultrasonographic Measurement of Carotid Intimal-Medial Thickness as an Assessment of Subclinical Atherosclerosis

Ezetimibe and SimvastatiN in Hypercholesterolemia EnhANces AtherosClerosis REgression (ENHANCE)

Predictors of progression and relationship with incident coronary heart disease. Diabetes Care 23: , 2000

Data Alert. Vascular Biology Working Group. Blunting the atherosclerotic process in patients with coronary artery disease.

Type 2 diabetes is a significant risk factor for coronary

Atherosclerosis of the carotid artery is an important mechanism

EVALUATION OF CAROTID ARTERY STENOSIS IN STROKE/TRANSIENT ISCHAEMIC ATTACK Nambakam Tanuja Subramanyam 1, Naveen Kumar P 2, Girish P.

African Americans suffer disproportionately higher total

Atherosclerosis 220 (2012) Contents lists available at ScienceDirect. Atherosclerosis

How to detect early atherosclerosis ; focusing on techniques

Comparability of patient-reported health status: multi-country analysis of EQ-5D responses in patients with type 2 diabetes

Serum levels of galectin-1, galectin-3, and galectin-9 are associated with large artery atherosclerotic

ARBITER 6-HALTS HDL And LDL Treatment Strategies

Transcription:

Rates and Determinants of Site-Specific Progression of Carotid Artery Intima-Media Thickness The Carotid Atherosclerosis Progression Study Andrew D. Mackinnon, MRCP; Paula Jerrard-Dunne, MRCPI; Matthias Sitzer, MD; Alexandra Buehler, MD; Stefan von Kegler, MD; Hugh S. Markus, FRCP Background and Purpose Carotid intima-media thickness (IMT) progression rates are increasingly used as an intermediate outcome for vascular risk. The carotid bifurcation (BIF) and internal carotid artery (ICA) are predilection sites for atherosclerosis. IMT measures from these sites may be a better estimate of atherosclerosis than common carotid artery (CCA) IMT. The study aim was to evaluate site-specific IMT progression rates and their relationships to vascular risk factors compared with baseline IMT measurements. Methods In a community population (n 3383), ICA-IMT, BIF-IMT, CCA-IMT, and vascular risk factors were evaluated at baseline and at 3-year follow-up. Results Mean (SD) IMT progression was significantly greater at the ICA (0.032 [0.109] mm/year) compared with the BIF (0.023 [0.108] mm/year) and the CCA (0.001 [0.040] mm/year) (P 0.001). Only ICA-IMT progression significantly correlated with baseline vascular risk factors (age, male gender, hypertension, diabetes, and smoking). Change in risk factor profile over follow-up, estimated using the Framingham risk score, was a predictor of IMT progression only. For all arterial sites, correlations were stronger, by a factor of 2 to 3, for associations with baseline IMT compared with IMT progression. Conclusions Progression rates at the ICA rather than the CCA yield greater absolute changes in IMT and better correlations with vascular risk factors. Vascular risk factors correlate more strongly with baseline IMT than with IMT progression. Prospective data on IMT progression and incident vascular events are required to establish the true value of progression data as a surrogate measure of vascular risk. (Stroke. 2004;35:2150-2154.) Key Words: atherosclerosis carotid arteries disease progression ultrasonography Carotid artery intima-media thickness (IMT) can be estimated noninvasively using ultrasound and is now widely used as a marker for early carotid atherosclerosis. Crosssectional studies have shown that increased baseline carotid IMT correlates strongly with cardiovascular risk factors, 1,2 and in a number of prospective cohort studies, increased baseline IMT has been shown to be an independent predictor of future stroke and myocardial infarction risk. 3 Based on these outcome data, changes in carotid IMT over time (IMT progression or regression) are increasingly being used as intermediate outcome measures to evaluate the efficacy of therapeutic interventions. An important requirement of any intermediate outcome is that it should translate into clinical risk. To date there are limited data available on the relationships between IMT progression rates and vascular risk factors, and there is a lack of published data showing that the rate of IMT progression translates into an increased risk of vascular events. Furthermore, there is no consensus on which measures of IMT progression are best suited for use as intermediate outcome measures. A number of methods for measuring IMT have been described which vary in the arterial sites and number of points measured. Analysis can use either the mean or the maximum IMT, and measurements can be performed either manually or using automated edge-tracking software. There are marked differences reported in the progression rates for IMT in different population-based studies, with rates varying between 0.0038 and 0.060 mm per year. 4 6 It is likely that these variations mainly reflect methodological differences rather than biological differences between populations. There are very little data available on site-specific IMT progression rates and their relationships to vascular risk factors. The carotid bifurcation (BIF) and internal carotid artery are predilection sites for atherosclerotic plaque and IMT measures from these sites may be a better estimate of true atherosclerosis than measures from the common carotid Received March 26, 2004; final revision received May 24, 2004; accepted June 1, 2004. From the Department of Clinical Neurosciences (A.D.M., P.J.-D., H.S.M.), St. George s Hospital Medical School, London, UK; and the Department of Neurology (M.S., A.B., S.v.K.), Johann Wolfgang Goethe University, Frankfurt am Main, Germany. Correspondence to Prof Hugh Markus, Department of Clinical Neurosciences, St. George s Hospital Medical School, Cranmer Terrace, Tooting, London SW17 0RE, United Kingdom. E-mail hmarkus@sghms.ac.uk 2004 American Heart Association, Inc. Stroke is available at http://www.strokeaha.org DOI: 10.1161/01.STR.0000136720.21095.f3 2150

Mackinnon et al Site-Specific IMT Progression 2151 artery (CCA). This is supported by data showing that baseline internal carotid IMT was a better predictor of incident vascular events than CCA-IMT. 7,8 Despite this, very little is known about the rates of IMT progression at these different arterial sites. The primary aim of this study was to evaluate and compare IMT progression rates at different carotid arterial sites. The secondary aim was to determine the relationships between site-specific IMT progression rates and vascular risk factors, compared with baseline IMT measurements. Patients and Methods Study Population The study sample was drawn from participants in the Carotid Atherosclerosis Progression Study (CAPS), details of which have been published elsewhere. 9 All members of a German primary health care service population (n 32 708) who lived within a radius of 50 kilometers from 5 study sites in Western Germany were invited to participate. Within a predefined time limit, 6975 (age range, 19 to 90 years) agreed to participate. Of these, 5056 (4 of the 5 study sites) were invited to follow-up examination and 3383 (67%) participated. Demographic and risk factor profiles of those invited and not invited for follow-up were very similar; 48 subjects died during the follow-up period. Risk factors determined included the following: current smoking status (defined as current/ex- or never-smoker), body mass index, low-density lipoprotein cholesterol level, mean systolic and diastolic blood pressure, and history of arterial hypertension (treatment with antihypertensive medication or blood pressure 160 systolic or 95 diastolic in previous measurements), diabetes mellitus, myocardial infarction, or stroke. Risk factor scores were also calculated using the Framingham coronary risk algorithm. 10 These risk scores were then used to measure the change in risk factor load from baseline to follow-up. The follow-up scores were calculated using the age at initial examination so that the follow-up score reflected only the differences in modifiable risk factor profile. The study was approved by the ethical review committee of the University Hospital of Frankfurt am Main. Ultrasound Imaging For ultrasonic examinations, a 7.5- to 10.0-MHz linear array transducer was used (P700SE; Phillips Medical System). Preprocessing configurations (log gain compensation [60 db] and image persistence) were held constant during all examinations. The gain was adjusted so that the least dense arterial wall interface was just visible. Using antero-oblique insonation, far-wall carotid IMT was visualized within the CCA (CCA-IMT, 20 to 60 mm proximally from the flow divider), the carotid bifurcation (BIF-IMT, 0 to 20 mm proximally from the flow divider), and the internal carotid artery bulb (BULB-IMT, 0 to 20 mm distally from the flow divider) on both sides. The images were digitally captured during the systole of a single heartbeat on a personal computer using S-VHS PC-EYE 2-frame grabber (ELTEC Elektronik GmbH) in 16-bit R-G-B packing mode (748 576 pixel) for off-line measurements. Vertical and horizontal calibration measurements were performed every 100th measurement using an ultrasound assurance phantom. Carotid IMT measurements were performed off-line using an automated imaging processing software (Matlab) as previously reported. 11 Interobserver reliabilities were assessed in a separate sample of 15 subjects (54 arterial segments) in whom carotid IMT was independently depicted and measured by 4 blinded observers. Average intraclass correlation coefficient (Cronbach alpha) was 0.97 (95% CI, 0.96 to 0.98; P 0.001) and according to the method described by Bland and Altman, the 2SD of the difference between 2 observers varied between 0.03 and 0.06 mm. 12 Additionally, the intraobserver retest reliability was determined from repeated examinations of 35 subjects (102 arterial segments) by 3 independent observers (time TABLE 1. Demographic and Risk Factor Profile of the Study Population (N 3383) and Those Not Followed-Up Subjects Followed-Up (N 3383) Baseline Subjects Not Risk Factor At Baseline At Follow-Up Followed-Up (N 3592) Age, y 51.7 (12.1) 54.9 (12.1) 50.4 (13.6) Male, n 1670 (49.4) 1668 (49.3) 1747 (48.6) Hypertension, n 809 (23.9) 1041 (30.8) 839 (23.4) Mean SBP, mm Hg 128 (16.6) 127.9 (16.6) 130.4 (17.7) Mean DBP, mm Hg 77.6 (10.0) 77.9 (9.8) 77.9 (10.3) Diabetes mellitus, n 81 (2.4) 129 (3.8) 138 (3.9) BMI, kg/m 2 26.6 (4.0) 26.8 (4.0) 26.7 (4.2) LDL-C, mg/dl 131.2 (36.4) 140.3 (38.8) 132.5 (37.9) Current smoker, n 612 (18.1) 551 (16.3) 806 (22.5) Ex-smoker, n 1129 (33.5) 1190 (35.2) 1185 (33.1) History of stroke, n 28 (0.8) 40 (1.2) 38 (1.1) History of MI, n 70 (2.1) 82 (2.4) 106 (3.0) Framingham risk score 3.1 (5.8) 3.0 (5.8) 3.0 (6.8) Values are n (%) or mean SD. SBP indicates systolic blood pressure; DBP, diastolic blood pressure; BMI, body mass index; LDL-C, low-density lipoprotein cholesterol; MI, myocardial infarction. interval between both examinations ranged from 4 to 6 months). The average intraclass correlation coefficient was 0.93 (95% CI, 0.91 to 0.94; P 0.001) and the 2SD of the difference between the first and second examination varied between 0.04 and 0.06 mm. 12 Statistical Analysis Multivariate regression analysis was used to determine associations of risk factors with both baseline IMT and IMT progression. Including the baseline IMT as a covariate when assessing IMT progression has previously been shown to introduce bias because of measurement error. 13 Baseline IMT was therefore not included as a covariate in the regression model initially. However, when an association or correlation was found between a risk factor and IMT progression, baseline IMT was then also entered into the regression model as a covariate to see if the association persisted. All statistical analyses were performed using the SPSS (10.0.7) software package. Results Baseline demographic data for the study population at baseline and at follow-up are shown in Table 1. The risk factor profiles of subjects followed-up and not followed-up were very similar. The mean (SD) duration of follow-up was 38.53 (4.32) months. IMT Progression Rates According to Site Table 2 shows baseline and follow-up IMT (mm) and IMT progression rates in mm/year for the common carotid, BIF, and internal carotid arteries. Wilcoxon signed rank testing and paired samples t test (using log-transformed baseline and follow-up IMT data to normalize the distributions) confirmed that there was significant overall progression of CCA (P 0.001) bifurcation (P 0.001) and ICA-IMT (P 0.001) over time. The mean difference per year for each site approximated a normal distribution. The mean (SD) change in IMT per year of follow-up was 0.001 (0.040) mm (range

2152 Stroke September 2004 TABLE 2. Baseline and Follow-Up IMT Absolute Values, and IMT Progression Rates for the CCA, BIF, and ICA IMT Measure Mean Median SD Min Max 95% CI Initial mean CCA-IMT, mm 0.74 0.71 0.15 0.36 2.13 0.73 0.74 Follow-up mean CCA-IMT, mm 0.74 0.73 0.15 0.40 3.80 0.74 0.75 Initial mean BIF-IMT, mm 0.92 0.84 0.33 0.34 3.60 0.91 0.93 Follow-up BIF-IMT, mm 1.00 0.89 0.39 0.43 4.08 0.99 1.01 Initial mean ICA-IMT, mm 0.77 0.71 0.31 0.32 3.70 0.76 0.79 Follow-up mean ICA-IMT, mm 0.87 0.75 0.43 0.37 4.41 0.86 0.89 Months of follow-up 38.53 37.00 4.32 17.00 61.00 38.38 38.67 Change in mean CCA-IMT, mm/y 0.001 0.002 0.040 0.382 0.722 0.000005 0.003 Change in mean BIF-IMT, mm/y 0.023 0.017 0.108 0.714 0.837 0.020 0.027 Change in mean ICA-IMT, mm/y 0.032 0.015 0.109 0.476 1.145 0.028 0.036 Min indicates minimum; Max, maximum. 0.382 to 0.722 mm) for CCA-IMT, 0.023 (0.108) mm (range 0.714 to 0.837 mm) for the bifurcation IMT, and 0.032 (0.109) mm (range 0.476 to 1.145 mm) for the ICA-IMT. Risk Factor Correlations With Baseline IMT Risk factors correlated more strongly with baseline IMT than with IMT progression, generally by a factor of 2- to 3-fold (Table 3). Baseline IMT at all 3 sites (CCA, bifurcation, and ICA) was positively correlated with age, male gender, smoking at baseline, and hypertension. History of diabetes was associated with bifurcation and ICA baseline IMT but not with baseline CCA-IMT. Risk Factor Correlations With IMT Progression Multivariate relationships between vascular risk factors and IMT progression rates are presented in Table 3. Age, male gender, hypertension, diabetes, and current smoking at baseline were all significant predictors of ICA-IMT progression. Age and current smoking were predictors of IMT progression at the BIF. In contrast, baseline vascular risk factors were not associated with CCA-IMT progression (except for a weak negative correlation with hypertension). Additional adjustment for baseline IMT did not significantly alter these associations. Changes in Risk Factors and IMT Progression To determine whether changes in risk factor profile during the follow-up period may have influenced the rate of IMT progression, the change in Framingham risk factor score over follow-up was then included in the regression model. An increase in Framingham risk factor score was a significant predictor for ICA-IMT progression (P 0.04 multivariate), but not for CCA-IMT (P 0.86) or bifurcation-imt (P 0.70) progression. Discussion This study demonstrates several important findings that may have implications for future studies using IMT progression as a surrogate outcome measure of vascular risk. Firstly, the rate of IMT progression varies significantly depending on the arterial site used for measurement. IMT progression was greater at the internal carotid compared with either the BIF or the CCAs (Figure 1). In addition, only ICA-IMT progression was correlated with the full range of baseline vascular risk factors. These findings suggest that ICA-IMT progression TABLE 3. Correlations (R) and Significance Values (P ) Between IMT Values and Risk Factors for Baseline IMT Values and IMT Progression Rates CCA-IMT BIF-IMT ICA-IMT Baseline Progression Baseline Progression Baseline Progression Risk Factor R P R P R P R P R P R P Age 0.490 0.000* 0.037 0.057 0.429 0.000* 0.039 0.047* 0.343 0.000* 0.130 0.000* Male 0.101 0.000* 0.001 0.973 0.176 0.000* 0.010 0.596 0.180 0.000* 0.040 0.042* Hypertension 0.075 0.000* 0.037 0.047* 0.077 0.000* 0.023 0.217 0.059 0.000* 0.040 0.033* Diabetes 0.015 0.304 0.015 0.400 0.052 0.001* 0.019 0.276 0.055 0.001* 0.038 0.035* BMI 0.071 0.000* 0.027 0.163 0.007 0.657 0.024 0.222 0.033 0.057 0.028 0.146 LDL 0.032 0.035* 0.008 0.681 0.032 0.040* 0.030 0.107 0.040 0.016* 0.021 0.257 HDL 0.019 0.255 0.023 0.250 0.010 0.565 0.010 0.618 0.015 0.414 0.001 0.980 Smoking at baseline 0.068 0.000* 0.001 0.960 0.068 0.000* 0.045 0.011* 0.052 0.001* 0.050 0.005* LDL indicates low-density lipoprotein; HDL, high-density lipoprotein.

Mackinnon et al Site-Specific IMT Progression 2153 IMT progression rates according to arterial site. Bars represent means and error bars represent 95% confidence intervals. ICA indicates internal carotid artery; BIF, carotid bifurcation, CCA, common carotid artery. may be a more robust surrogate measure of vascular risk than the more commonly used CCA-IMT. IMT progression was greatest at the ICA, followed by bifurcation and then CCA. The progression rate was more than 30 times greater at the ICA compared with the CCA. Carotid artery IMT is known to be an intermediate phenotype for atherosclerosis. This finding is consistent with what is known about the natural history of the disease, with plaque formation having a predilection for the BIF and ICA. A number of previous population-based studies have reported on IMT progression rates, but these have largely been limited to measurements from the CCA. The ARIC investigators and the Cardiovascular Health Study looked exclusively at progression of the CCA-IMT. 13,14 Consistent with the findings of the current study, the Insulin Resistance Atherosclerosis Study (IRAS) reported higher progression rates at the ICA compared with the CCA-IMT. 5 The Kuopio study reported significantly higher progression rates than any of these other studies (in the region of 0.06 mm/year), 4 and this might relate to the site of measurement and the use of maximum rather than mean IMT. 15 In this study, only ICA-IMT progression was significantly correlated with baseline vascular risk factors. A small number of the larger population based studies have evaluated the relationship between baseline risk factors and carotid artery IMT. 14 Consistent with the findings of our study, the Cardiovascular Health Study (CHS) found no relationship between CCA-IMT progression and baseline vascular risk factors. 16 In the ARIC study, diabetes and current smoking were significant predictors of CCA-IMT progression. 14 One explanation for this discrepancy may be the longer duration of follow-up of the ARIC cohort, which was followed-up 9 years. However, most clinical trials evaluating IMT progression involve much shorter follow-up periods, and our data suggest that measuring progression rates at the ICA rather that the CCA may yield greater absolute changes in IMT and better correlations with vascular risk factors. Another important finding of this study is that for all arterial sites, risk factor correlations were stronger, generally by a factor of 2 to 3, for associations with baseline IMT as compared with IMT progression. One possible explanation for the weaker associations may relate to the reduced precision of the IMT progression measurements, which show substantially higher within-subject variance than baseline IMT measures. It has also been suggested that a single baseline measurement of IMT is likely to reflect past longterm exposure to risk vascular factors whereas IMT progression may be influenced more by short-term changes in risk factor burden. 17 To test this hypothesis, Framingham risk factor scores were calculated at baseline and then at followup. The baseline score was associated with both bifurcation and ICA progression, but changes of risk profile only correlated with ICA-IMT changes. This finding underlies that short-term risk profile changes are most reliably reflected in the ICA-IMT. The stronger associations with baseline values have important implications for the use of IMT to identify associations between novel genetic and other risk factors and atherosclerosis. The use of progression data will be less powerful and require much larger sample sizes. A further difficulty with using IMT progression measures is that in contrast to the wealth of outcome data available for baseline IMT measures, there is very little data to correlate IMT progression with incident vascular events. In one small study of subjects who had undergone coronary artery bypass grafting, Hodis et al found that IMT progression was predictive of clinical events, 18 but data from the large populationbased cohorts are lacking. There are also some methodological issues that need to be considered when analyzing progression data. In particular, it has been demonstrated that measurement error in the baseline IMT may introduce a considerable bias. 16 Thus, although IMT progression is attractive because it offers the possibility of a prospective, longitudinal, short-term measure of vascular risk, the current evidence for IMT progression as a surrogate outcome is not as robust as that available for baseline, cross-sectionally measured IMT values. In summary, the data suggest that measuring progression rates at the ICA rather than the CCA may yield greater absolute changes in IMT and better correlations with vascular risk factors. Baseline vascular risk factors correlate more strongly with baseline IMT than with IMT progression. Prospective data on IMT progression and incident vascular events are required to establish the true value of progression data as a surrogate measure of vascular risk. Acknowledgments This work was supported by a grant from the Stiftung Deutsche Schlaganfall-Hilfe (German Stroke Foundation). A. Mackinnon was supported by a grant from the British Heart Foundation and P. Jerrard-Dunne was supported by a grant from the Stroke Association (UK). References 1. Heiss G, Sharrett AR, Barnes R, Chambless LE, Szklo M, Alzola C. Carotid atherosclerosis measured by B-mode ultrasound in populations:

2154 Stroke September 2004 associations with cardiovascular risk factors in the ARIC Study. Am J Epidemiol. 1991;134:250 256. 2. Salonen R, Salonen JT. Determinants of carotid intima-media thickness: a population-based ultrasonography study in eastern Finnish men. J Intern Med. 1991;229:225 231. 3. Salonen JT, Salonen R. Ultrasonographically assessed carotid morphology and the risk of coronary heart disease. Arterioscler Thromb. 1991;11:1245 1249. 4. Lynch J, Kaplan GA, Salonen R, Salonen JT. Socioeconomic status and progression of carotid atherosclerosis. Prospective evidence from the Kuopio Ischemic Heart Disease Risk Factor Study. Arterioscler Thromb Vasc Biol. 1997;17:513 519. 5. Wagenknecht LE, Zaccaro DF, Espeland MA, Karter AJ, O Leary DH, Haffner SM. Diabetes and progression of carotid atherosclerosis: the Insulin Resistance Atherosclerosis Study. Arterioscler Thromb Vasc Biol. 2003;23:1035 1041. 6. Zureik M, Touboul PJ, Bonithon-Kopp C, Courbon D, Berr C, Leroux C, Ducimetiere P. Cross-sectional and 4-year longitudinal associations between brachial pulse pressure and common carotid intima-media thickness in a general population. The EVA study. Stroke. 1999;30: 550 555. 7. O Leary DH, Polak JF, Kronmal RA, Manolio TA, Burke GL, Wolfson SK Jr. Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. Cardiovascular Health Study Collaborative Research Group. N Engl J Med. 1999;340:14 22. 8. Iglesias DS, Bots ML, Grobbee DE, Hofman A, Witteman JC. Carotid intima-media thickness at different sites: relation to incident myocardial infarction. The Rotterdam Study. Eur Heart J. 2002;23:934 940. 9. Sitzer M, Skutta M, Siebler M, Sitzer G, Siegrist J, Steinmetz H. Modifiable stroke risk factors in volunteers willing to participate in a prevention program. Neuroepidemiology. 1998;17:179 187. 10. Wilson PW, D Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB. Prediction of coronary heart disease using risk factor categories. Circulation. 1998;97:1837 1847. 11. Sitzer M, Markus HS, Mendall MA, Liehr R, Knorr U, Steinmetz H. C-reactive protein and carotid intimal medial thickness in a community population. J Cardiovasc Risk. 2002;9:97 103. 12. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1:307 310. 13. Yanez ND 3rd, Kronmal RA, Shemanski LR. The effects of measurement error in response variables and tests of association of explanatory variables in change models. Stat Med. 1998;17:2597 2606. 14. Chambless LE, Folsom AR, Davis V, Sharrett R, Heiss G, Sorlie P, Szklo M, Howard G, Evans GW. Risk factors for progression of common carotid atherosclerosis: the Atherosclerosis Risk in Communities Study, 1987 1998. Am J Epidemiol. 2002;155:38 47. 15. Bots ML, Evans GW, Riley WA, Grobbee DE. Carotid intima-media thickness measurements in intervention studies: design options, progression rates, and sample size considerations: a point of view. Stroke. 2003;34:2985 2994. 16. Yanez ND 3rd, Kronmal RA, Shemanski LR, Psaty BM, Cardiovascular HS. A regression model for longitudinal change in the presence of measurement error. Ann Epidemiol. 2002;12:34 38. 17. Crouse JR 3rd. Predictive value of carotid 2-dimensional ultrasound. Am J Cardiol. 2001;88:27E 30E. 18. Hodis HN, Mack WJ, LaBree L, Selzer RH, Liu CR, Liu CH, Azen SP. The role of carotid arterial intima-media thickness in predicting clinical coronary events. Ann Intern Med. 1998;128:262 269.