OPEN ACCESS ATLAS OF OTOLARYNGOLOGY, HEAD & NECK OPERATIVE SURGERY

Similar documents
Congenital Nasal Pyriform Aperture Stenosis Is There a Role for Nasal Dilation?

T HERE is an unusual and interesting variety of craniosynostosis in

OPEN ACCESS ATLAS OF OTOLARYNGOLOGY, HEAD & NECK OPERATIVE SURGERY

OPEN ACCESS ATLAS OF OTOLARYNGOLOGY, HEAD & NECK OPERATIVE SURGERY

OPEN ACCESS ATLAS OF OTOLARYNGOLOGY, HEAD & NECK OPERATIVE SURGERY

Clinical course and implications of congenital nasal pyriform stenosis and solitary median maxillary central incisor in a newborn: a case report

Introduction Material & Methods Results Discussion Conclusion

Remember from the first year embryology Trilaminar disc has 3 layers: ectoderm, mesoderm, and endoderm

Cleft Lip and Palate: The Effects on Speech and Resonance

OPEN ACCESS ATLAS OF OTOLARYNGOLOGY, HEAD & NECK OPERATIVE SURGERY

Advanced Airway Management. University of Colorado Medical School Rural Track

OPEN ACCESS ATLAS OF OTOLARYNGOLOGY, HEAD & NECK OPERATIVE SURGERY

Nasotracheal Intubation for Head and Neck Surgery

Study of success rates in endoscopic dacryocystorhinostomy with and without stenting. dacryocystorhinostomy with and

Oral and Maxillofacial Surgeons and the seriously injured patient. Barts and The London NHS Trust

Upper Airway Obstruction

OPEN ACCESS ATLAS OF OTOLARYNGOLOGY, HEAD & NECK OPERATIVE SURGERY

Rhinology Products. Rhinology Products. Superior solutions for superior patient care.

TRAUMA TO THE FACE AND MOUTH

OPEN ACCESS ATLAS OF OTOLARYNGOLOGY, HEAD & NECK OPERATIVE SURGERY

Choanal Atresia - Corrective Surgery Using Hegar's Dilators

OPEN ACCESS ATLAS OF OTOLARYNGOLOGY, HEAD & NECK OPERATIVE SURGERY

MAXILLARY SWING APPROACH TO THE NASOPHARYNX

PUMANI bcpap GUIDELINES FOR CLINICIANS. An Overview of the Pumani bcpap, Indications for bcpap, and Instructions for Use

Management of Upper Airway Obstruction in Pierre Robin Sequence

Practical Application of CPAP

Dr.Bharghavi.M 2 nd year post graduate Dept of Anaesthesia

Plastic Surgeon, Middlesbrough General Hospital, Stockton Children's Hospital, Newcastle Regional Hospital Board

MAXILLARY INJECTION TECHNIQUE. Chinthamani Laser Dental Clinic

Nasopharyngeal airways for craniofacial conditions

SWISS SOCIETY OF NEONATOLOGY. Raine syndrome: clinical and radiological features of a case from the United Arab Emirates

NASAL OBSTRUCTION. Andy Whyte PERTH RADIOLOGICAL CLINIC UNIVERSITY OF MELBOURNE UNIVERSITY OF WA

Dr.ALI AL BAZZAZ PLASTIC SURGON CLEFT LIP AND PALATE

CLEFT LIP and PALATE. Sahlgrenska University Hospital Göteborg, Sweden. Information about Cleft Lip and Palate. English version

Neonatal Airway Disorders, Treatments, and Outcomes. Steven Goudy, MD Pediatric Otolaryngology Emory University Medical Center

Mammals. Dr. Olaf Oftedal - National Zoological Park. Dr. Peter Emily - Father of Veterinarian Dentistry.

Section 4.1 Paediatric Tracheostomy Introduction

DENTAL MANAGEMENT OF CLEFT LIP AND PALATE. J Harewood DDS MA MS

Pharyngeal Apparatus. Pouches Endoderm Grooves Ectoderm Arch Neural Crest Somitomeres Aortic Arch - Vessel

Figure 1. Basic anatomy of the palate

OPEN ACCESS ATLAS OF OTOLARYNGOLOGY, HEAD & NECK OPERATIVE SURGERY

Bilateral Complete Congenital Choanal Atresia in an Adult Managed Endoscopically with Mucosal Flaps without Stenting

October Paediatric Respiratory Workbook APCP RESPIRATORY COMMITTEE

OPEN ACCESS ATLAS OF OTOLARYNGOLOGY, HEAD & NECK OPERATIVE SURGERY

This PDF is available for free download from a site hosted by Medknow Publications

Impact of tongue size on occlusion.

NATIONAL INSTITUTE FOR HEALTH AND CARE EXCELLENCE

What is Craniosynostosis?

Essentials in Head and Neck Embryology. Part 3 Development of the head, face, and oral cavity

All bedside percutaneously placed tracheostomies

OPERATIVE CORRECTION BY OSTEOTOMY OF RECESSED MALAR MAXILLARY COMPOUND IN A CASE OF OXYCEPHALY

Snoring and Obstructive Sleep Apnea: Patient s Guide to Minimally Invasive Treatments Chapter 2

ONE out of every eight hundred children in the United States is born with

PEMSS PROTOCOLS INVASIVE PROCEDURES

General Medical Procedure. Emergency Airway Techniques (General Airway Protocol)

Alexander C Vlantis. Midline Step Mandibulotomy and Mandibulectomy 85

Airway/Breathing. Chapter 5

Trust Guideline for the Management of: A Neonate with Difficult Airway

The future of health is digital

CONTINUOUS POSITIVE AIRWAY PRESSURE (CPAP) DEFINITION

Lesson Plans and Objectives: Review material for article Prep work for article Picture recovery Review for placement on-line.

TREATMENT OF CLEFT PALATE ASSOCIATED WITH MICROGNATHIA. By RANDELL CHAMPION, F.R.C.S.(Ed.) From the Duchess of York Hospital for Babies, Manchester

BONE GRAFTING IN TREATMENT OF CLEFT LIP AND PALATE 337

Lawrence A. Kotlow, DDS

Minimally Invasive Technique of Dacryocystorhinostomy

Dundee Focused FRCS ENT Viva Course

Dr.Sepideh Falah-kooshki

EVALUATION AND MANAGEMENT OF PATIENTS WITH CLEFT LIP AND PALATE

MedStar Health considers Septoplasty-Rhinoplasty medically necessary for the following indications:

Basic Science Review Wound Healing

Head and neck cancer - patient information guide

Embryo#1. Mohammad Hisham Al-Mohtaseb باشق جهاد. 0 P a g e

Procedure No: Procedure Approved for Use By: WCCSS Divisional Quality Meeting. Date: May 2017

The Respiratory System

intracranial anomalies

Department of Neurosurgery. Differentiating Craniosynostosis from Positional Plagiocephaly

Core Curriculum Syllabus Emergencies in Otolaryngology-Head and Neck Surgery FACIAL FRACTURES

Other methods for maintaining the airway (not definitive airway as still unprotected):

The Prevention of Maxillary Collapse in

OPEN ACCESS ATLAS OF OTOLARYNGOLOGY, HEAD & NECK OPERATIVE SURGERY

Dr. Sami Zaqout Faculty of Medicine IUG

Maxillary Sinus Measurements in Different Age Groups of Human Cadavers

Airway Anatomy. Soft palate. Hard palate. Nasopharynx. Tongue. Oropharynx. Hypopharynx. Thyroid cartilage

Basic Airway Management

Normal fetal face and neck

Speech/Resonance Disorders due to Clefts and Craniofacial Anomalies

Case Report Mid Facial Degloving Procedure: Managing A Case of Multiple Mid Face Fractures with Significant External Deformity

Discussing feline tracheal disease


Sohit Paul Kanotra M.D. Director, Pediatric Aerodigestive Center

The Crooked Nose and its Functional Surgical Correction

Overview. The ENT Manifestations of Tongue and Lip Tie. Bone formation and stress. Facial Skeleton (adult)

Total Maxillectomy. A review. Dr T Balasubramanian

A METHOD OF INTERNAL SPLINTING FOR UNSTABLE NASAL FRACTURES. A. J. SEAR, M.B.,Ch.B., B.D.S., F.D.S.

Case Report Complete Obstruction of Endotracheal Tube in an Infant with a Retropharyngeal and Anterior Mediastinal Abscess

Transnasal Endoscopic Medial Maxillary Sinus Wall Transposition With Preservation of Structures

An important indication for imaging the anterior skull base

Subdivided into Vestibule & Oral cavity proper

Figure (2-6): Labial frenum and labial notch.

Transcription:

OPEN ACCESS ATLAS OF OTOLARYNGOLOGY, HEAD & NECK OPERATIVE SURGERY SURGERY FOR CONGENITAL NASAL PYRIFORM APERTURE STENOSIS (CNPAS) John Wood, Graeme Van Der Meer Congenital nasal pyriform aperture stenosis (CNPAS) is a very rare condition of the newborn, in which the nasal pyriform aperture is narrowed by bony overgrowth of the nasal process of the maxilla (Figure 1). As the narrowest point of the nasal airway, a small change in its diameter may significantly increase nasal airway resistance. As infants are obligate nose breathers for the first three months of life (or longer if premature), such an increased airway resistance causes functional airway obstruction and respiratory distress. While 1 in 5000 births has some form of congenital nasal airway obstruction, the majority is choanal atresia. The differential diagnosis includes nasal cavity masses, dacryocystocoeles, severe septal deviations and CNPAS. Embryology The palate develops from 3 structures: the primary palate that forms the hard palate anterior to the incisive fossa; and 2 lateral plates from outgrowths of the maxillary prominences. CNPAS can be explained by a deficiency of the fused medial nasal prominence, with subsequent faulty development of a small triangular primary palate, often abnormal incisors, and a narrow nasal cavity. During the 8 th week of gestation, maxillary ossification commences from the growth centres above the canine teeth. It has been suggested that over-ossification of the nasal process of the maxilla may be responsible, or it may be due to hypoplastic growth of the primary palate, suggesting that a local dysostosis of the maxilla with bony overgrowth is the abnormality, rather than failed recanalisation of the nasal cavity. Associated midline abnormalities can also occur, and may even be considered a minor form of holoprosencephaly (a spectrum of defects or malformations of the brain and face in which the forebrain fails to develop into 2 hemispheres). Abnormalities such as microcephaly, hypoplasia of the corpus callosum or olfactory bulbs can occur. Facial anomalies may include ocular abnormalities, hypotelorism and dental anomalies. Most serious is the occurrence of pituitary dysfunction, which occurs in 15 to 25% of patients. After initial blood testing, clinical monitoring for at least 12 months is recommended, with poor or slowing growth at one year a positive predictor requiring further investigation. Figure 1: Axial CT demonstrates pyriform aperture stenosis (top) in contrast to bilateral choanal atresia (below)

Diagnosis History and Examination CNPAS presents like other causes of nasal airway obstruction with cyclical cyanosis, respiratory distress, feeding difficulties and failure to thrive. Failure to pass a nasogastric tube suggests choanal atresia or CNPAS, the difference being the level of obstruction. Obstruction within the 1 st 1cm is typical of CNPAS, while obstruction beyond 3cm is more likely to signify choanal atresia. Bilateral choanal atresia is typically diagnosed very early, but the diagnosis of CNPAS may be delayed. Some craniofacial syndromes e.g. Crouzon syndrome may present with similar signs and symptoms, but have stenosis affecting the entire length of the nose. They are not amenable to surgical correction and a tracheostomy should be offered instead. Examination of the nasal cavity with a nasendoscope should generate a high degree of suspicion, especially when unable to pass the scope into the nose. Examination of the oral cavity may reveal an absent frenulum of the upper lip and may indicate the presence of a solitary median maxillary central incisor (SMMCI) syndrome. As a manifestation of holoprosencephaly, it should prompt investigation of other midline abnormalities of the brain, cranial bones and maxilla. Consequently, failure to pass a 5Fr catheter or 1.9mm endoscope through the anterior third of the nose should prompt further investigation. diagnostic of CNPAS (Figures 1, 2). This measurement however does not determine the need for surgical intervention, as this would depend on the clinical presentation. Figure 2: Axial CT scan demonstrating 5mm measurement of pyriform aperture stenosis Figure 3: Axial CT scan demonstrating solitary median maxillary central incisor Other radiological features should also be reviewed, including the presence of a midline bony ridge on the underside of the hard palate, and particularly the presence of a solitary median maxillary central incisor (Figures 3, 4). The presence of the latter is an indication for MRI scan and chromosomal analysis if available. Investigations When CNPAS is suspected, a craniofacial CT scan with 2mm slices will confirm the diagnosis. One study reported the average width of the pyriform aperture in CNPAS to be 8.5mm, compared to 16.9mm in a control group 1. A pyriform aperture of >11mm in a term infant is considered Figure 4: Median maxillary central incisor 2

Management Immediate The baby may present with varying degrees of respiratory distress. The patient should be admitted to a neonatal intensive care unit with continuous oxygen saturation monitoring. Significant distress may require an oral airway, as is used for newborns with bilateral choanal atresia (Figure 5). An oral airway is generally adequate to temporarily secure an airway. Other options include high flow oxygen administered via nasal prongs, a McGovern Nipple, a standard feeding bottle teat or dummy with the tip cut off (Figure 6), or a Guedel oropharyngeal airway (Figure 7). Feeding can be established via an orogastric tube until nasal patency is achieved. Neonatologists, geneticists, paediatric ENT and paediatricians should be consulted. Conservative Conservative management is the first line of treatment for CNPAS to allow the baby to grow beyond the 3 months age of obligate nasal breathing and to potentially avoid surgery. Measures may include nasal irrigation with saline, nasal decongestants, short-term xylometazoline drops, or intranasal dexamethasone drops. Children that respond to conservative treatment should be closely monitored following discharge from hospital for apnoeic episodes, cyanosis, sleep disordered breathing, respiratory infections and poor growth. Failed conservative management typically declares itself within the first 3 weeks of treatment. Such children require surgery by the end of the first month. Indications for surgery Figure 5: Oral airway secured with tape Figure 6: Standard dummy with the tip cut off Figure 7: Guedel oropharyngeal airway Surgery is indicated if conservative management fails. Indications for surgical intervention include apnoeic episodes cyanosis poor growth failure to thrive inability to wean from airway assistance Predicting failure of conservative management is difficult. One study found a pyriform aperture measurement of <5.7mm had an 88% sensitivity and specificity for predicting surgical intervention 2. It is important to note that studies have suggested that there may often be no correlation with the circumference of the nasal inlet, em- 3

phasising that every baby has a different ability to recover from airway obstruction. Surgical options A sublabial approach is most common used as it permits lateral drilling of the nasal process of the maxilla. This technique is described below. Postoperative nasal stenting is the norm, although the optimal duration for stenting is a matter of debate. Balloon dilatation has also been used 3. A 7mm airway balloon is inflated to a pressure of 10 atmospheres for 5min, with subsequent nasal stenting with a 14Fr nasopharyngeal airway. This provided a satisfactory nasal airway at 1, 2 and 12 months without further procedures being required. Although only a case report, this technique may provide at worst a temporising measure until further equipment and expertise is sought as required. Figure 8: Blanching of alveolar mucosa following infiltration of local anaesthetic Surgical technique A sublabial approach is used The procedure is done under general anaesthesia with the baby intubated transorally Secure the endotracheal tube in a position that allows good access to the oral cavity A head ring and shoulder roll can be used Drape to protect the eyes, leaving the nose, midface and mouth accessible Prepare the nose with neurosurgical pledgets soaked in nasal decongestant Using a dental syringe, infiltrate local anaesthetic (1% lidocaine with 1:100 000 adrenaline) into the upper gingival sulcus and pyriform aperture mucosa (Figure 8) Make a 1.5cm sublabial incision with a 15 blade down to bone, taking care not to damage the soft bone overlying the dental buds (Figure 9) Figure 9: Sublabial incision and elevation of periosteum over maxilla with Cottle s elevator Dissect subperiosteally to expose the anterior nasal spine and the floor of each nostril, remaining anterior to the inferior turbinates to avoid injury to the nasolacrimal system (Figures 9, 10) Use a 2mm coarse diamond drill to widen the pyriform aperture laterally (Figure 11) Avoid drilling inferiorly to avoid the tooth buds 4

Use the CT scan as a guide and the inferior turbinate as a surgical landmark to obtain an optimal depth of drilling Continue drilling until the nasal cavity can accommodate a 3.5 endotracheal tube bilaterally Liston dilators can be used once the anterior drilling is complete As in choanal atresia repair, while dilating it is important to keep a Liston dilator in the opposite nasal cavity to prevent the nasal septum from being displaced (Figure 12) Figure 12: Endotracheal tube and Liston dilator (16Fr) in opposing nostrils Figure 10: Identification of right pyriform aperture, the anterior nasal spine and the nasal process of the maxilla Figure 11: 2mm coarse diamond drill used to remove bone from nasal process of maxilla Replace the nasal mucosa Some surgeons recommend making a releasing incision in the mucosa along the floor of the nose Create stents by trimming size 3.5 endotracheal tubes Insert each stent into the nose Ensure the tips of the stents are in the oropharynx just below the soft palate To prevent the stents becoming dislodged, a suture is passed between the tips of the tubes as follows: o Pass a small suction catheter down each tube so that the catheters protrude into the oropharynx o Grasp the ends of the catheters and advance them out of the mouth o Tie a single 3.0 silk suture to the end of each catheter o Pull the catheters back along the endotracheal tubes and out of the nose, carrying the sutures with them (Figure 13) o This loops the 3.0 silk suture around posterior end of the nasal 5

septum and secures the stents in each nasal cavity o It also obviates the need for posterior suturing of the tubes and allows for removal of the tubes in outpatients by simply cutting the anterior knot and pulling out the suture o Separate the anterior ends of the stents by using a piece of endotracheal tube as a bridge and passing the suture through small holes made in the sides of the stents (Figure 14) o Trim the stents to facilitate feeding (especially if breastfeeding) o It is important to measure the length of each stent to allow for accurate suctioning to maintain patency of the stents There is no consensus regarding the duration of stenting and varies from a few days to > 4 weeks. If removed too early, tissue dehiscence or restenosis may occur while longer durations are associated with a higher risk of pressure injury to the anterior nose and septum and formation of granulation tissue Postoperative care Figure 13: Stent secured in each nasal cavity by a 3.0 silk suture looped around posterior end of the nasal septum Monitoring in an intensive care unit for 24-48 hours is recommended to ensure nasal airway patency Care of the stents is critical with regular irrigation with saline and suctioning to maintain patency Suctioning should be done to the ends of the tubes (measured) to ensure no trauma to the posterior pharyngeal wall occurs Use a suction catheter twice the size of the ETT e.g. 7Fr catheter for a 3.5 ETT Once the stents have been removed, use nasal decongestants in conjunction with normal saline drops to minimise oedema and crusting. Intranasal corticosteroids such as fluticasone can be used over the ensuing weeks Complications Figure 14: Middle bridge formed from ETT to keep the stents from migrating and the suture from injuring the columella Take care intraoperatively to prevent injury to the nasal mucosa, tooth buds, nasolacrimal ducts and inferior turbinates Inspect the nostril daily for signs of pressure areas from the stents Feeding difficulties are not uncommon, even with adequate nasal patency 6

Restenosis of the pyriform aperture is not uncommon and should be checked for if symptoms recur Long term follow-up Long term care should involve a general paediatrician. Consider airway and feeding difficulties, particularly requiring hospital readmission. If signs of restenosis do occur and are symptomatic, then re-expansion may be required e.g. with a balloon or Liston dilator as it is mostly a soft tissue stenosis. If pituitary deficiency has been noted, then long-term endocrinology follow-up is required. References 1. Belden CJ, Mancuso AA, Schmalfuss I M. CT features of congenital nasal pyriform aperture stenosis: initial experience. Radiology 213, 1999; 495-501 2. Wormald R, Hinton-Bayre A, Bumbak P et al. Congenital nasal pyriform aperture stenosis 5.7mm or less is associated with surgical intervention: A pooled case series. Int J Ped Otorhinolaryngol. 2015;79(11) 1802-5 3. Gungor AA, Reiersen DA. Balloon dilatation for congenital nasal piriform aperture stenosis (CNPAS): a novel conservative technique. Am J Otolaryngol. 2014; 35(3) 439-42 Authors Graeme Van Der Meer MBChB MMed(ENT) Paediatric ORL Consultant Starship Children s Health Grafton, Auckland, New Zealand graemevdm@gmail.com Paediatric Section Editor Nico Jonas MBChB, FCORL, MMed Paediatric ENT Consultant Addenbrookes Hospital Cambridge University Hospital NHS Foundation Trust Cambridge, United Kingdom nicojonas@gmail.com Editor Johan Fagan MBChB, FCORL, MMed Professor and Chairman Division of Otolaryngology University of Cape Town Cape Town, South Africa johannes.fagan@uct.ac.za THE OPEN ACCESS ATLAS OF OTOLARYNGOLOGY, HEAD & NECK OPERATIVE SURGERY www.entdev.uct.ac.za The Open Access Atlas of Otolaryngology, Head & Neck Operative Surgery by Johan Fagan (Editor) johannes.fagan@uct.ac.za is licensed under a Creative Commons Attribution - Non-Commercial 3.0 Unported License John Wood FRACS, MBBS, MSurg, BSocSci (Hons) BA(Hons) Paediatric ORL Fellow Starship Children s Health Grafton, Auckland, New Zealand drjmwood@gmail.com 7

8