Safranal inhibits the migration and invasion of human oral squamous cell carcinoma cells by overcoming epithelial-mesenchymal transition.

Similar documents
IN VITRO ANTICANCER ACTIVITY OF FLOWER EXTRACTS OF COUROUPITA GUIANENSIS

HCC1937 is the HCC1937-pcDNA3 cell line, which was derived from a breast cancer with a mutation

Anti-cancer activity of Aya Thambira Chendooram (ATC) in in-vitro cell line against Breast Carcinoma

In vitro scratch assay: method for analysis of cell migration in vitro labeled fluorodeoxyglucose (FDG)

Cinnamomum Essential Oil Prevents DNA Damage- Induced by Doxorubicin on CHO-K1 Cells

8. CHAPTER IV. ANTICANCER ACTIVITY OF BIOSYNTHESIZED SILVER NANOPARTICLES

Journal of Chemical and Pharmaceutical Research, 2017, 9(12): Research Article

SUPPLEMENT. Materials and methods

Nimbolide inhibits pancreatic cancer growth and metastasis through ROS-mediated

Islet viability assay and Glucose Stimulated Insulin Secretion assay RT-PCR and Western Blot

In-vitro assay for Cytotoxicity activity in ethonolic extract of fruit rind of Couropita Guianensis aubl

Cell Migration and Invasion Assays INCUCYTE LIVE-CELL ANALYSIS SYSTEM. Real-time automated measurements of cell motility inside your incubator

Supporting Information

Supporting Information Nitric oxide releasing photoresponsive nanohybrids as excellent therapeutic agent for cervical cancer cell lines

An epithelial-to-mesenchymal transition-inducing potential of. granulocyte macrophage colony-stimulating factor in colon. cancer

B16-F10 (Mus musculus skin melanoma), NCI-H460 (human non-small cell lung cancer

Ginkgo biloba leaf extract induces DNA damage by inhibiting topoisomerase II activity in human hepatic cells

Protocol for A-549 VIM RFP (ATCC CCL-185EMT) TGFβ1 EMT Induction and Drug Screening

2,6,9-Triazabicyclo[3.3.1]nonanes as overlooked. amino-modification products by acrolein

International Journal Of Recent Scientific Research

Ethanolic Extract of Moringa oleifera L. Increases Sensitivity of WiDr Colon Cancer Cell Line Towards 5-Fluorouracil

Research on the inhibitory effect of metformin on human oral squamous cell carcinoma SCC-4 and CAL-27 cells and the relevant molecular mechanism.

Focus Application. Compound-Induced Cytotoxicity

Tea polyphenol decreased growth and invasion in human ovarian cancer cells

Focus Application. Compound-Induced Cytotoxicity

Effects of COX-2 Inhibitor on the Proliferation of MCF-7 and LTED MCF-7 Cells

The effect of insulin on chemotherapeutic drug sensitivity in human esophageal and lung cancer cells

Data Sheet TIGIT / NFAT Reporter - Jurkat Cell Line Catalog #60538

Anti-Aging Activity Of Cucurbita moschata Ethanolic Extract Towards NIH3T3 Fibroblast Cells Induced By Doxorubicin

Proteomic profiling of small-molecule inhibitors reveals dispensability of MTH1 for cancer cell survival

A549 and A549-fLuc cells were maintained in high glucose Dulbecco modified

HEK293 cells transfected with human MATE1, MATE2-K, or vector control were established by

Human Urokinase / PLAU / UPA ELISA Pair Set

Corning BioCoat Matrigel Invasion Chamber

Supplementary data Supplementary Figure 1 Supplementary Figure 2

MTS assay in A549 cells

LncRNA LET function as a tumor suppressor in breast cancer development

MTC-TT and TPC-1 cell lines were cultured in RPMI medium (Gibco, Breda, The Netherlands)

Supplementary Figure (OH) 22 nanoparticles did not affect cell viability and apoposis. MDA-MB-231, MCF-7, MCF-10A and BT549 cells were

Features & Benefits of the Oris Cell Migration Assay

TFEB-mediated increase in peripheral lysosomes regulates. Store Operated Calcium Entry

Cancer Research Techniques

Advances in Computer Science Research, volume 59 7th International Conference on Education, Management, Computer and Medicine (EMCM 2016)

Bakuchiol inhibits cell proliferation and induces apoptosis and cell cycle arrest in SGC-7901 human gastric cancer cells.

Asian Journal of Research in Pharmaceutical Sciences and Biotechnology

Supporting Information

Long noncoding RNA CASC2 inhibits metastasis and epithelial to mesenchymal transition of lung adenocarcinoma via suppressing SOX4

Overview of methodology, tools and reagents for evaluating cell proliferation and invasion using multicellular tumor spheroids.

Comparison of Cytotoxic Activity of Anticancer Drugs against Various Human Tumor Cell Lines Using In Vitro Cell-Based Approach

Protocol for Gene Transfection & Western Blotting

(A) PCR primers (arrows) designed to distinguish wild type (P1+P2), targeted (P1+P2) and excised (P1+P3)14-

CytoSelect 24- Well Cell Invasion Assay (Basement Membrane, Fluorometric Format)

Original Article Ginkgo biloba extract induce cell apoptosis and G0/G1 cycle arrest in gastric cancer cells

Instructions for Use. APO-AB Annexin V-Biotin Apoptosis Detection Kit 100 tests

INSTRUCTIONS Pierce Primary Cardiomyocyte Isolation Kit

SUPPLEMENTARY MATERIAL

Long noncoding RNA linc-ubc1 promotes tumor invasion and metastasis by regulating EZH2 and repressing E-cadherin in esophageal squamous cell carcinoma

In Vitro Studies of the Aurora-Kinase Inhibitor MLN8237 in Prostate Cancer Cell Lines

NF-κB p65 (Phospho-Thr254)

Type of file: PDF Size of file: 0 KB Title of file for HTML: Supplementary Information Description: Supplementary Figures

Synthesis of Substituted 2H-Benzo[e]indazole-9-carboxylate as Potent Antihyperglycemic Agent that May Act through IRS-1, Akt and GSK-3β Pathways

Mesenchymal Stem Cells Reshape and Provoke Proliferation of Articular. State Key Laboratory of Bioreactor Engineering, East China University of

Berberine Sensitizes Human Ovarian Cancer Cells to Cisplatin Through mir-93/ PTEN/Akt Signaling Pathway

Electronic Supporting Information for

HIV-1 Virus-like Particle Budding Assay Nathan H Vande Burgt, Luis J Cocka * and Paul Bates

The crosstalk between p38 and Akt signaling pathways orchestrates EMT by regulating SATB2 expression in NSCLC cells

Apoptosis Mediated Cytotoxicity of Curcumin Analogues PGV-0 and PGV-1 in WiDr Cell Line

ACB Botanical Sugar Complex Moisturization + Antioxidant + Hair Nourishing. Tomorrow s Vision Today!

Tumor microenvironment Interactions and Lung Cancer Invasiveness. Pulmonary Grand Rounds Philippe Montgrain, M.D.

Key words: apoptosis, beta-amyrin, cell cycle, liver cancer, tritepenoids

Supplemental information

Effect and mechanism of laminaria japonica polysaccharide (LJP) on apoptosis and cycle of nasopharyngeal carcinoma cells.

Supplementary Information and Figure legends

HDAC1 Inhibitor Screening Assay Kit

The Schedule and the Manual of Basic Techniques for Cell Culture

PREPARATION OF IF- ENRICHED CYTOSKELETAL PROTEINS

Journal of Chemical and Pharmaceutical Research, 2013, 5(5): Research Article. Anticancer properties of Cissus quandrangularis

ab Adipogenesis Assay Kit (Cell-Based)

CytoSelect 96- Well Cell Invasion Assay (Collagen I, Fluorometric Format)

Department of General Surgery, The Third People s Hospital of Dalian, Dalian Medical University, Dalian, Liaoning, China,

Mitochondrial DNA Isolation Kit

CytoSelect Tumor Transendothelial Migration Assay

STAT1 (ps727) (Human/Mouse) ELISA Kit

EGFR (py1045)/ Pan EGFR (Human) ELISA Kit

EFFECTS OF NICOTINE ON HUMAN MESENCHYMAL STEM CELLS. Connor McNeil Central Catholic HS

Sorghumol triterpene inhibits the gro

ab Cell Invasion Assay (Basement Membrane), 24-well, 8 µm

Supporting Information

FOCUS SubCell. For the Enrichment of Subcellular Fractions. (Cat. # ) think proteins! think G-Biosciences

20X Buffer (Tube1) 96-well microplate (12 strips) 1

IN VITRO HORMESIS EFFECTS OF SODIUM FLUORIDE ON KIDNEY CELLS OF THREE-DAY-OLD MALE RATS

Supplementary Figure 1. HOPX is hypermethylated in NPC. (a) Methylation levels of HOPX in Normal (n = 24) and NPC (n = 24) tissues from the

Original Article Sunitinib treatment inhibited human breast cancer cell migration through regulation furin interaction with substrates

Chemical Chaperones Mitigate Experimental Asthma By Attenuating Endoplasmic

Cellular Physiology and Biochemistry

mir-509-5p and mir-1243 increase the sensitivity to gemcitabine by inhibiting

Supplementary Information

TECHNICAL BULLETIN. Catalog Number RAB0447 Storage Temperature 20 C

Quantitative Data Analysis Assignment Sample Newessays.co.uk

Chloroquine inhibits cell growth and induces cell death in A549 lung cancer cells

Transcription:

Biomedical Research 2017; 28 (2): 817-821 ISSN 0970-938X www.biomedres.info Safranal inhibits the migration and invasion of human oral squamous cell carcinoma cells by overcoming epithelial-mesenchymal transition. Shu-Ping Zhang 1#, Jiu-Ning Huang 1#, Nuo Jin 2, Xue-Lei Wang 1, Chao-Chao Jin 3* 1 Department of Radiation oncology, Yantai Affiliated Hospital of Binzhou Medical University, Shandong, 264100, PR China 2 Department of General Surgery,Huangshi Central Hospital, Huangshi, 435000, Hubei, PR China 3 Department of Oncology, Huangshi Central Hospital, Huangshi, 435000, Hubei, PR China # These authors contribute equally to this work. Abstract Safranal, a bioactive component of a traditionally used spice and condiment saffron possesses a wide spectrum of biological properties, including antitumor activities. It has been shown to inhibit the proliferation and growth of prostate cancer cells by inducing apoptosis. However, the ability of safranal to modulate the Epithelial-Mesenchymal Transition (EMT) which is indispensible to the invasiveness and metastasis of oral squamous cell carcinoma remains to be elucidated. The aim of this study was to determine whether safranal affects EMT in oral. The results showed that safranal not only inhibited oral squamous cell carcinoma cell proliferation, migration and invasion in a dose-dependent manner but also modulated the expression of EMT-related proteins E-cadherin and vimentin which are indespensible to cellular motility, invasiveness and metastasis. Taken together, our results indicate that safranal suppresses oral squamous cell carcinoma cell migration and invasion by modulating the expression of EMT proteins. The study thus suggests that safranal may serve as a potential anticancer agent for oral squamous cell carcinoma. Keywords: Oral squamous cell carcinoma, Safranal, Epithelial-mesenchymal Transition, Migration and invasion. Accepted on June 30, 2016 Introduction Epithelial-mesenchymal transition (EMT) is a fundamental developmental program associated with the progression of various cancer types [1,2]. During cancer pathogenesis, this process leads to the loss of epithelial characters by cells, which acquire a mesenchymal phenotype. At molecular level, EMT is associated with the downregulation of epithelial markers like E-cadherin and up-regulation of mesenchymal markers like vimentin and N-cadherin [3]. Thus cells lose their defined cellcell and cell-extracellular matrix contacts which potentiates their migration and invasion [4]. Therefore, EMT may serve as a promising therapeutic target to overcome the invasion and metastasis of cancer cells. Natural products as chemopreventive agents may serve as alternative and safe cancer treatments [5] when compared to current anti-cancer therapies, which only offer modest benefits with a wide variety of side effects [6]. Saffron (Crocus sativus, L.), a traditionally used spice and condiment has been shown to possess potential health benefits. Safranal is a characteristic constituent of saffron which exhibits various biological properties including in vitro and in vivo anticarcinogenic and antitumor activities [7,8]. Recently safranal has been shown to inhibit the proliferation and growth of prostate cancer cells by inducing apoptosis [9]. However, little is known about the action of safranal on the migration and invasion of oral squamous cell carcinoma cell cancer cells which needs to be explored. In the present study, we demonstrated that the migration and invasion of oral could be inhibited by safranal. It was observed that safranal mediates such effects by overcoming Epithelial-mesenchymal transition of oral. Materials and Methods Materials DMEM and FBS were procured from Gibco, USA. Penicillin was obtained from Invitrogen, USA. MTT, DMSO and Safranal were purchased from Sigma Aldrich (St. Louis, MO, USA). Epithelial-Mesenchymal Transition antibody sampler kit was procured from Cell Signalling and Technology (Beverly, MA, USA) whereas as anti-rabbit goat secondary antibody was purchased from Sigma Aldrich (St. Louis, MO, USA). Biomed Res- India 2017 Volume 28 Issue 2 817

Zhang/Huang/Jin/Wang/Jin Cell culture HSC-3 oral were cultured in DMEM (Gibco), supplemented with 10% fetal bovine serum (Gibco), 250 IU/ml penicillin (Invitrogen) under standard culture conditions at 37 C in 5% CO 2 humidified incubator. The medium was changed regularly and the cells were subcultured every 3-4 days. Cell proliferation assay MTT assay is a standard test to measure the cell viability and is based on the conversion of MTT to formazan crystals by active mitochondrial dehydrogenases. Briefly, cell suspension containing about 2 10 4 cells was seeded into each well of a 96 well plate and allowed to attach for 24 h. Safranal, prepared in DMEM was added to the wells at a concentration of (10, 20, 40, and 60, 80 and 100 μm) for 48 h. After treatment, 100 μl of MTT (Sigma Aldrich) solution was added to each well at a concentration of 0.1 mg/ml (dissolved in PBS). After 4 h of incubation at 37 C in dark, the solution was removed and 100 µl of DMSO was added to solubilize the produced formazan. Absorbance was measured at 570 nm using an automated microplate reader (Bio-Rad 550). The results were depicted as the percentages relative to the controls. The percentage proliferation inhibition rate was calculated as = (1 OD sample/od control) 100%. Western blotting Cells were lysed using ice cold RIPA buffer consisting of 50 mm Tris-HCl (ph 7.6), 150 mm NaCl, 1 mm EDTA, 1% NP-40, 0.5% Na-deoxycholate and supplemented with protease inhibitor cocktail (Roche). The protein concentration was determined by BCA method (Thermo pierce) and thirty micrograms was loaded on a polyacrylamide gel (10%-12%) followed by transfer to PVDF membrane. The membrane was then blocked with 5% non-fat dried milk in PBS at room temperature for 2 h, incubated with primary antibodies against E-cadherin, vimentin and GAPDH at 4 C overnight. Finally, the blots were hybridized with secondary goat anti-rabbit antibodies for 1 h at room temperature and developed using an enhanced chemiluminescence detection system (Amersham). Wound healing assay HSC-3 cells were platted in 24-well plates and grown to confluence. The media was then removed and a scratch was made using 100 µl pipette tip. This was followed by washing with PBS and treatment with sub-toxic concentrations of safanal for 24 h. Wounds were observed and photographed before (0 h) and after treatment (48 h) using a phase contrast microscope fitted with digital camera. Wound healing was calculated as the percentage of the initial wound until total wound closure at 48 time point. The assay was repeated three independent times. Transwell invasion assay 10 4 HSC-3 cells in 0.5 ml of serum-free medium containing safranal at the indicated concentration were seeded in matrigel coated transwell chambers which were placed in 24 well plates containing 10% FBS-supplemented DMEM. After 48 h, unmigrated cells that remained in the upper chamber were removed by wiping the top of the insert with a cotton swab and the cells on the underside of the membrane were fixed with 100% methanol and stained with crystal voilet. The membranes were mounted on glass slides, and numbers of cells in three randomly chosen high-power fields were counted. The assay was repeated three independent times. Results Safranal inhibits the proliferation of HSC-3 oral The effect of safranal on the proliferation was investigated on human oral. HSC-3 cells were cultured in presence of different concentrations of safranal (10100 μm) for 48 h, and the viability was measured by MTT assay. The results demonstrated that all the tested concentrations of safranal exhibited a significant growth inhibition. The proliferative abilities of HSC-3 cells decreased in presence of safranal in a dosedependent manner with IC50 value of 56.24 µm after 48 h of incubation. Furthermore, the results showed that treatment with safranal at concentrations such as 10, 20 and 40 µm exhibited least cytotoxic effects on HSC-3 cells (Figure 1). Therefore, lower concentrations of safranal, without cytotoxic effects on HSC-3 cells, were used in subsequent experiments. Figure 1. Safranal inhibits the proliferation of oral squamous cell carcinoma cells. HSC-3 cells were treated with increasing concentrations of safranal (10, 20, 40, 60, 80, 100 µm) for 48 h to analyze the inhibition on cell proliferation. 818 Biomed Res- India 2017 Volume 28 Issue 2

Safranal inhibits the migration and invasion of human oral by overcoming epithelialmesenchymal transition Safranal suppresses the migration of HSC-3 oral To determine whether safranal can inhibit human prostate cancer metastasis, we first evaluated its effect on the migration of HSC-3 cells. A wound-healing assay was performed in which HSC-3 cells were grown to confluency and a line was made by scratching the cell monolayer with a pipette tip. This was followed by the growth of cells in sub-toxic concentrations of safranal for 48 h. Results were presented as the distance covered by the cells in the wound relative to initial time point when the scratch was made and expressed as percentage wound closure. It was observed that safranal significantly overcame migratory abilities of HSC-3 cells in comparison to control, with 40 μm and 20 μm concentrations, being slightly potent than 10 μm concentration (Figure 2). Taken together, these results suggest that safranal significantly inhibited migration of HSC-3 cells which was reflected as reduced closure of the wound with safranal treatment. Figure 2. Safranal inhibits the migration of oral. HSC-3 cells were either treated with different concentrations of safranal (10 μm, 20 μm and 40 μm) or treated with DMSO (vehicle control) and the wound healing was observed after 48 h. Safranal inhibits the invasiveness of HSC-3 oral Invasiveness is the inherent capability of the tumor cells and constitutes an important process necessary for cancer metastasis. To evaluate the effect of safranal on the invasion of oral, HSC-3 cells were treated with safranal at the indicated concentration in transwell chambers coated with matrigel for 48 h. As shown in (Figure 3), it was observed that the treatment of HSC-3 cells with safranal significantly reduced their invasiveness. The effect was found to be dose dependent with 40 μm and 20 μm concentrations showing better inhibition than 10 μm concentration of safranal. Biomed Res- India 2017 Volume 28 Issue 2 819

Zhang/Huang/Jin/Wang/Jin Figure 3. Safranal inhibits the invasion of oral. HSC-3 cells were either treated with different concentrations of safranal (10 μm, 20 μm and 40 μm) or treated with DMSO (vehicle control) and the number of invaded cells were counted after 48 h. Safranal limits the Epithelial-mesenchymal transition of HSC-3 oral The role of safranal in regulating the migration and invasion of HSC-3 cells was further evidenced by evaluating the expression of mediators of EMT including E-cadherin, vimentin and Snail. As shown in Figure 4, treatment of HSC-3 cells with different concentrations of safranal for 48 h had a considerable effect on the expression of the EMT markers. Figure 4. Safranal limits the EMT transition of oral squamous cell carcinoma cells. HSC-3 cells were treated with different sub-toxic concentrations of safranal (10 µm, 20 µm, 40 µm) for 48 h and the protein expression levels of E-cadherin and Vimentin were detected by western blotting. It was observed that there was an increase in the expression of E-cadherin (epithelial marker) with corresponing decrease in expression of vimentin (a mesenchymal marker). Taken together these results indicate that the safranal inhibits the metastatic potential of HSC-3 cells by overcoming their EMT. Discussion Compounds isolated from natural sources or their ingredients constitute over 50% of the drugs reported for anticancer activity in clinical trials [10,11]. Dietary factors such as spices represent an attractive source of these agents, which have shown remarkable anti-carcinogenic properties both on tissue culture and on tumor cells in vivo [12,13]. Safranal, an active constituent of Saffron has been shown to exhibit inhibitory effects on the proliferation and growth of various cancer cells [7,8]. However studies evaluating the effect of safranal on the metastasis of cancer cells particularly oral squamous cell carcinoma have rarely been done. Therefore the present study was carried out to evaluate the potential of safranal in overcoming the migration and invasiveness of human oral squamous cell carcinoma. In present study we observed that safranal was highly potent in inhibiting the proliferation of HSC-3 cells. This effect on the growth of cells was found to be dose dependent with IC50 value of 56.24 µm. The essence of safranal as an agent that could disrupt the metastatic process in the oral squamous cell carcinoma progression was tested by migration and invasion 820 Biomed Res- India 2017 Volume 28 Issue 2

Safranal inhibits the migration and invasion of human oral by overcoming epithelialmesenchymal transition assays using HSC-3 cells. It was observed that safranal could efficiently overcome the migration and invasiveness of HSC-3 cells when used at sub-toxic concentrations. These data was further substantiated by evaluating the expression of EMT markers, E-cadherin and vimentin under treatment with safranal by western blotting. We found that safranal increased the expression of the epithelial marker, E-cadherin in HSC-3 cells in a dose dependent manner with corresponding decrease in the expression of a mesenchymal marker, vimentin by safranal treatment. The finding points at the role of safranal in impeding the EMT in HSC-3 cells and thus provides an evidence for the potential use of safranal against oral squamous cell carcinoma progression. References 1. Franco-Chuaire ML, Magda Carolina CS and Chuaire- Noack L: Epithelial-mesenchymal transition (EMT): principles and clinical impact in cancer therapy. Invest Clin 2013; 54: 186 205. 2. De Craene B, Berx G: Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer 2013; 13: 97-110. 3. Borthwick LA, Parker SM, Brougham KA. Epithelial to Mesenchymal Transition (EMT) and airway remodelling after human lung transplantation. Thorax 2009; 64: 770-777. 4. Evdokimova V, Tognon CE, Sorensen PH: On translational regulation and EMT. Semin Cancer Biol 2012; 222: 437-445. 5. Surh YJ. Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer 2003; 3: 768-780. 6. Fryer RA, Galustian C, Dalgleish AG and Dalgelish AG. Recent advances and developments in treatment strategies against pancreatic cancer. Curr Clin Pharmacol 2009; 4: 102-112. 7. Abdullaev FI. Cancer chemopreventive and tumoricidal properties of saffron (Crocus sativus L.). Exp Biol Med 2002; 247: 20-25. 8. Samarghandian S, Tavakkol Afshari J, Davoodi S. Suppression of pulmonary tumor promotion and induction of apoptosis by Crocus sativus L. extraction. Appl Biochem Biotechnol 2011; 164: 238-247. 9. Saeed Samarghandian, Mahmoud M. Shabestari DNA fragmentation and apoptosis induced by safranal in human prostate cancer cell line Indian Journal of Urology 2013; 29 :177-183 10. Cragg GM, Newman DJ. Antineoplastic agents from natural sources: Achievements and future directions. Expert Opin Investig Drugs 2000; 9: 2783-97. 11. Cragg GM, Newman DJ. Plants as a source of anti-cancer agents. J Ethnopharmacol 2005; 100: 72-79. 12. Tsao AS, Kim ES, Hong WK. Chemoprevention of cancer. CA Cancer J Clin 2004; 54: 150-180. 13. Winterhalter P, Staudinger M. Saffron- renewed interest in an ancient spice. Food Rev Int 2000; 16:39-59. * Correspondence to: Chao-Chao Jin Department of Oncology Huangshi Central Hospital Hubei China Biomed Res- India 2017 Volume 28 Issue 2 821