Evaluation of Intracranial Vasculatures in Healthy Subjects with Arterial-Spin-Labeling-Based 4D-MR Angiography at 3T

Similar documents
1Pulse sequences for non CE MRA

Essentials of Clinical MR, 2 nd edition. 99. MRA Principles and Carotid MRA

Magnetic resonance techniques to measure distribution of cerebral blood flow

MR Advance Techniques. Vascular Imaging. Class II

Anatomic Evaluation of the Circle of Willis: MR Angiography versus Intraarterial Digital Subtraction Angiography

Dynamic 3D MR Angiography of Intra- and Extracranial Vascular Malformations at 3T: A Technical Note

Field Strength. Regional Perfusion Imaging (RPI) matches cerebral arteries to flow territories

Methods. Yahya Paksoy, Bülent Oğuz Genç, and Emine Genç. AJNR Am J Neuroradiol 24: , August 2003

Magnetic Resonance Angiography

Additive Value of 3T 3D CISS Imaging to Conventional MRI for Assessing the Abnormal Vessels of Spinal Dural Arteriovenous Fistulae

Non Contrast MRA. Mayil Krishnam. Director, Cardiovascular and Thoracic Imaging University of California, Irvine

ASL BASICS II. Learning Objectives. Outline. Acquisition. M. A. Fernández-Seara, Ph. D. Arterial spin labeled perfusion MRI: basic theory

Non-Contrast MRA. How and When 1996! Why Non-Contrast MRA? Angiography: What are our goals? Inflow Techniques Differences in excitation hx

Contrast material enhanced threedimensional

Neuroradiology MR Protocols

Department of Radiology University of California San Diego. MR Angiography. Techniques & Applications. John R. Hesselink, M.D.

Postoperative Assessment of Extracranial Intracranial Bypass by Time- Resolved 3D Contrast-Enhanced MR Angiography Using Parallel Imaging

Surface Appearance of the Vertebrobasilar Artery Revealed on Basiparallel Anatomic Scanning (BPAS) MR Imaging: Its Role for Brain MR Examination

Non-Invasive Follow-up Evaluation of Post-Embolized AVM with Time-Resolved MRA: A Case Report

3D time-of-flight (3D TOF) MR angiography (MRA)

Advanced Vascular Imaging: Pulsatile Tinnitus. Disclosures. Pulsatile Tinnitus: Differential Diagnosis. Pulsatile Tinnitus

A free-breathing non-contrast-enhanced pulmonary magnetic resonance angiography at 3 Tesla

DAVFs and AVMs are cerebral vascular malformations

Flow Measurement Techniques from Medical Modalities for Computational Fluid Dynamics. Fukasaku K, Negoro M*

Imaging for Peripheral Vascular Disease

Magnetic Resonance Imaging. Basics of MRI in practice. Generation of MR signal. Generation of MR signal. Spin echo imaging. Generation of MR signal

MRI and MR Angiography Findings to Differentiate Jugular Venous Reflux From Cavernous Dural Arteriovenous Fistula

Endovascular treatment of intracranial aneurysms with detachable

非對比劑與對比劑增強 MRA. 血管攝影與對比劑 A Course of MRI. 本週課程內容 -MR Angiography (MRA) Unenhanced MRA

Detectability of unruptured intracranial aneurysms on thinslice non-contrast-enhanced CT

The Use and Pitfalls of Intracranial Vessel Wall Imaging: How We Do It 1

CT Versus MR for the Runoff

RECENT ADVANCES IN CLINICAL MR OF ARTICULAR CARTILAGE

Perforating arteries originating from the posterior communicating artery: a 7.0-Tesla MRI study

Assessment of longer post-labeling delays to measure CBF using pseudo-continuous ASL with background suppression

MR Angiography in the evaluation of Lower Extremity Arterial Disease

Localization and Treatment of Unruptured Paraclinoid Aneurysms: A Proton Density MRI-based Study

The study of local hemodynamics within anatomically complex

Functional Chest MRI in Children Hyun Woo Goo

How I do it: Non Contrast-Enhanced MR Angiography (syngo NATIVE)

Transcranial Doppler (Basic Step) Dae-il Chang, M.D., Sung Sang Yoon, M.D. Department of Neurology, College of Medicine, Kyunghee university

MR angiography. Extracranial MR angiography. Andrew G Clifton. Department of Neuroradiology, Atkinson Morley's Hospital, London, UK

Subclavian steal syndrome: an underdiagnosed disease

Radiologic Importance of a High- Resistive Vertebral Artery Doppler Waveform on Carotid Duplex Ultrasonography

NEURORADIOLOGY Part I

Intracranial dural arteriovenous fistulas (DAVF) have long

The Low Sensitivity of Fluid-Attenuated Inversion-Recovery MR in the Detection of Multiple Sclerosis of the Spinal Cord

Turbo ASL: Arterial Spin Labeling With Higher SNR and Temporal Resolution

Subtraction CT Angiography with Controlled- Orbit Helical Scanning for Detection of Intracranial Aneurysms

Cerebral MR Venography: Normal Anatomy and Potential Diagnostic Pitfalls

Territorial Arterial Spin Labeling in the Assessment of Collateral Circulation Comparison With Digital Subtraction Angiography

Can sufficient preoperative information of intracranial aneurysms be obtained by using 320-row detector CT angiography alone?

Index. cardiology.theclinics.com. Note: Page numbers of article titles are in boldface type.

Pre-and Post Procedure Non-Invasive Evaluation of the Patient with Carotid Disease

Diagnosis of Middle Cerebral Artery Occlusion with Transcranial Color-Coded Real-Time Sonography

Evaluation of Carotid Vessels and Vertebral Artery in Stroke Patients with Color Doppler Ultrasound and MR Angiography

Brain AVM with Accompanying Venous Aneurysm with Intracerebral and Intraventricular Hemorrhage

TR-3D-CE-MRA, a multiphase acquisition technique, enables

CARDIAC MRI. Cardiovascular Disease. Cardiovascular Disease. Cardiovascular Disease. Overview

TECHNICAL NOTE. Introduction

The ejournal of the European Society of Minimally Invasive Neurological Therapy

Cover Page. The handle holds various files of this Leiden University dissertation.

Basics of Quantification of ASL

A New Trend in Vascular Imaging: the Arterial Spin Labeling (ASL) Sequence

Half-Fourier Acquisition Single-Shot Turbo Spin-Echo (HASTE) MR: Comparison with Fast Spin-Echo MR in Diseases of the Brain

Time-resolved Magnetic Resonance Angiography for assessment of recanalization after coil embolization of visceral artery aneurysms

MR Flow Imaging in Vascular Malformations Using Gradient Recalled Acquisition

Transvenous Embolization of Cavernous Sinus Dural Arteriovenous Fistulas with Shunts Involving the Laterocavernous Sinus

Blunt Carotid Injury- CT Angiography is Adequate For Screening. Kelly Knudson, M.D. UCHSC April 3, 2006

Comparison of Five Major Recent Endovascular Treatment Trials

ORIGINAL CONTRIBUTION

Non-contrast-enhanced MR portography and hepatic venography with time-spatial labeling inversion pulses: comparison at 1.5 Tesla and 3 Tesla

NEUROVASCULAR ANATOMY

Anatomical and Functional MRI of the Pancreas

Int J Clin Exp Med 2018;11(6): /ISSN: /IJCEM

Original Research. Tadateru Sumi, DDS, 1 Misa Sumi, DDS, PhD, 1 Marc Van Cauteren, PhD, 2 Yasuo Kimura, DDS, PhD, 1 and Takashi Nakamura, DDS, PhD 1 *

Subtraction Helical CT Angiography of Intra- and Extracranial Vessels: Technical Considerations and Preliminary Experience

3D high-resolution MR imaging can provide reliable information

Spinal dural AV fistula: One stop shop imaging with MR?

Blood flow assessment in cerebral arteries with 4D flow magnetic resonance imaging

Policies and Statements D16. Intracranial Cerebrovascular Ultrasound

Table 1.Summary of 12 Patients with Brain Death and Deep Coma: Clinical Findings Patients No. Age/Sex Underlying Cause Study No.

MR coronary artery imaging with 3D motion adapted gating (MAG) in comparison to a standard prospective navigator technique

Supplementary Online Content

Speed, Comfort and Quality with NeuroDrive

MR Imaging with the CCSVI or Haacke protocol

Craniocervical artery dissection (CCAD) is the most common

Spinal dural arteriovenous fistulas (SDAVF) are the most commonly

Arteriovenous (AV) shunts of the spinal cord and its meninges

B-Flow, Power Doppler and Color Doppler Ultrasound in the Assessment of Carotid Stenosis: Comparison with 64-MD-CT Angiography

High Field MR of the Spine

A STUDY OF CIRCLE OF WILLIS BY MR ANGIOGRAPHY

Role of Three-Dimensional Rotational Angiography in the Treatment of Spinal Dural Arteriovenous Fistulas

Volume flow rates in the feeding arteries of the brain, such

Latest techniques in head and neck CT angiography

Three-dimensional FISP Imaging in the Evaluation of Carotid Cavernous Fistula: Comparison with Contrast-Enhanced CT and Spin-Echo MR

Posterior Cerebral Artery Aneurysms with Common Carotid Artery Occlusion: A Report of Two Cases

Supplementary information Detailed Materials and Methods

6/23/2009. Inversion Recovery (IR) Techniques and Applications. Variations of IR Technique. STIR, FLAIR, TI and TI Null. Applications of IR

Transcription:

Magn Reson Med Sci, Vol. 15, No. 3, pp. 335 339, 2016 doi:10.2463/mrms.tn.2015-0081 TECHNICAL NOTE Evaluation of Intracranial Vasculatures in Healthy Subjects with Arterial-Spin-Labeling-Based 4D-MR Angiography at 3T Yasuhiko Iryo 1*, Toshinori Hirai 2, Masanobu Nakamura 3, Machiko Tateishi 1, Eri Hayashida 1, Minako Azuma 1, Shinichiro Nishimura 1, Mika Kitajima 1, and Yasuyuki Yamashita 1 1 Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University 1-1-1, Honjo, Kumamoto 860-8556, Japan 2 Department of Radiology, University of Miyazaki 3 Philips Electronics Japan (Received December 15, 2014; Accepted October 28, 2015; published online December 22, 2015) Contrast inherent inflow-enhanced multi-phase angiography combining multiple-phase flow-alternating inversion-recovery (CINEMA-FAIR) is an arterial-spin-labeling-based fourdimensional magnetic resonance angiography (4D-MRA) technique. Two neuroradiologists independently evaluated the depiction of the intracranial vasculatures in healthy subjects with 3T 4D-MRA using CINEMA-FAIR. Our results indicated that this technique can provide good visualization of the cerebral arteries with a high spatial and temporal resolution. It appears to have sufficient resolution for identifying flow difference in the anterior and posterior circulation in healthy subjects. Keywords: arterial spin labeling, MR angiograpy, healthy subjects, intracranial vasculatures, 3T Introduction The evaluation of anatomic and hemodynamic characteristics of cerebral vascular disease, such as carotid artery steno-occlusive disease, intracranial arteriovenous malformations (AVMs), and intracranial dural arteriovenous fistulae (DAVF), are important for accurate diagnosis, effective treatment, and follow-up examination. 1,2 Intra-arterial digital subtraction angiography (DSA) remains the gold standard for the assessment of their cerebral vascular disease. However, DSA is invasive, exposes the patient to radiation, and requires the injection of iodinated contrast material. 3 Four-dimensional (4D) contrast-enhanced magnetic resonance angiography (MRA) at 3T appears to be reliable and provides hemodynamic information on cerebral vascular disease 4 However, it poses risks associated with contrast agents. 5 * Corresponding author, Phone: +81-96-373-5261, Fax: +81-96-362-4330, E-mail: yshkiryu@hotmail.com 2015 Japanese Society for Magnetic Resonance in Medicine This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives International License. Recently, one of the promising methods without using radiation and exogenous contrast agents for evaluating anatomic and hemodynamic characteristics of cerebral vascular diseases is arterial-spinlabeling (ASL)-based 4D-MRA. 6 8 Similar to DSA, this technique makes the sequential observation of hemodynamics possible and it facilitates large 3Dvolume acquisitions. Among the ASL-based 4D-MRA techniques, contrast inherent inflow- enhanced multiphase angiography combining multiple- phase flowalternating inversion-recovery (CINEMA-FAIR) can provide anatomic and hemodynamic information of intracranial vasculatures with high spatial and temporal resolution in clinical subjects, such as patients with dural arteriovenous fistulas 6 or carotid artery stenoocclusive disease. 9 To our knowledge, however, it has not been fully investigated how the intracranial arteries in healthy subjects are visualized on 4D-MRA using CINEMA-FAIR. It is important for evaluating various diseases with this technique to establish reference data obtained from healthy subjects. The aim of this study was to evaluate the visualization of the intracranial vasculature in healthy subjects with 3T 4D-MRA using CINEMA-FAIR. 335

336 Materials and Methods Study population Our study was approved by our institutional review board; prior informed consent for the imaging studies was obtained from all volunteers. All studies were performed on a 3T MR imaging system (Achieva, Philips Medical Systems, Best, The Netherlands). Thirteen healthy volunteers (2 women, 11 men; age 24 82 years, mean 51.9 years) underwent the ASL-based 4D-MRA study. Inclusion criteria were no past history of cardiovascular disorders, and no contraindications, such as claustrophobia or pregnancy, for MR examination. ASL-based 4D-MRA technique All MR studies were performed on a 3T MRI scanner (Achieva, Philips Medical Systems) using a commercially available 32-channel head coil. The MRI unit featured a gradient system with maximal achievable gradient amplitude of 40 mt/m and a slew rate of 200 T/m/s. For ASL-based 4D-MRA imaging, we used CINEMA-FAIR; details on the sequence are available elsewhere. 6 This MR technique combines ASL with a 3D segmented T 1 -weighted turbo field echo sequence (3D-T 1 TFE). The FAIR preparation scheme with look- locker sampling was used for CINEMA-FAIR. Each sequence used for the measurements consisted of two acquisitions with identical readouts and different magnetization preparation schemes. Imaging data were from two consecutive acquisitions preceded by nonselective- and spatially selective inversion pulses. After completion of the two acquisitions, the corresponding temporal phases from two acquisitions with identical inversion delays were subtracted. The parameters for the CINEMA-FAIR sequence were (repetition time) TR, 4.5 ms; (echo time) TE, 2.2 ms; flip angle, 10 ; field of view (FOV), 200 200 mm 2 ; matrix, 192 192; slice thickness, 1 mm; slab thickness, 100 mm; reconstructed spatial resolution, 0.5 0.5 0.6 mm 3 ; sensitivity encoding (SENSE) factor, 3.0; and acquisition time, 8 m 26 s. Images of dynamic inflow were obtained with successive acquisitions with labeling delay times of 80, 380, 680, 980, 1280, 1580, and 1880 ms. Image analysis Two readers (M.A. and T.H. with 7 and 24 years of experience in neuroradiologic imaging, respectively) independently evaluated the ASL-based 4D-MRA images on a picture-archiving and communication system (PACS) workstation. The 4D data were displayed with all regions visible. The software allowed the enlargement of regions of special interest in any given spatial orientation. ASL-based 4D-MRA data were assessed with respect to overall image quality, arterial/venous separation, arterial vascular visualization, and differences in the visualization of the internal carotid artery (ICA) and Y. Iryo et al. vertebrobasilar artery (VBA). With regard to arterial vascular visualization, they evaluated the following nine arterial segments on ASL-based 4D-MRA images: the ICA, middle cerebral artery (MCA: M1, M2 M3, and M4 segments), anterior cerebral artery (ACA: A1 A2 and A3 A4 segments), posterior cerebral artery (PCA: P1 P2 and P3 P4 segments), and basilar artery (BA). Using a 4-point grading system, they first scored the overall image quality, where grade 1 = nondiagnostic due to severe artifacts, grade 2 = artifacts that may interfere with the diagnosis, grade 3 = artifacts that do not interfere with the diagnosis, and grade 4 = diagnostic without artifacts. Then they scored arterial/venous separation, where grade 1 = extensive mixing of venous and arterial signal intensity (SI), grades 2 and 3 = moderate and slight contamination of venous SI, respectively, and grade 4 = arterial SI only. They also scored the arterial vascular visualization, where grade 1 = insufficient vessel depiction or blurring of the vessel contours, grade 2 = suboptimal arterial depiction for confident diagnosis, grade 3 = relatively adequate depiction for confident diagnosis, and grade 4 = sufficient vessel depiction with confident diagnosis. Finally, they recorded differences in the early visualization of the top portion of the ICA and VBA, where grade 1 = visualization of the top portion of the ICA precedes that of the VBA by about 2 phases (600 ms), grade 2 = visualization of the top portion of the ICA precedes that of the VBA by about 1 phase (300 ms), grade 3 = visualization of the top portion of the ICA precedes that of the VBA by less than 1 phase (300 ms), and grade 4 = no apparent difference. In addition, with regard to the differences in the visualization of the ICA and VBA on ASL-based 4D-MRA images, volunteer subjects were divided into two groups including 20 50 year olds and 51 80 year olds to understand the effect of age, and they were also evaluated. Statistical analysis Interobserver agreement for ASL-based 4D-MRA images with respect to overall image quality, arterial/ venous separation, arterial vascular visualization, and differences in the visualization of the ICA and VBA was determined by calculating the κ coefficient (κ < 0.20, poor-; κ = 0.21 0.40, fair-; κ = 0.40 0.60, moderate-; κ = 0.61 0.80, good-; κ = 0.81 0.90, very good-; and κ > 0.90, excellent agreement) including the 95% confidence interval (CI). A statistical package, Med- Calc for Windows (MedCalc Software, Mariakerke, Belgium), was used for all analyses. Results Both readers judged the overall image quality on ASL-based 4D-MRA images of all the 13 volunteers as diagnostic without artifacts (grade 4) (Fig. 1). Arterial/ Magnetic Resonance in Medical Sciences

4D-MRA using CINEMA-FAIR 337 Fig. 1. Arterial-spin-labeling (ASL)-based four-dimensional magnetic resonance angiography (4D-MRA) images in a 30-yearold healthy male volunteer. Anteroposterior (left), lateral (middle), and axial (right) projections of maximum intensity projection images acquired at 300 ms temporal- and 0.5 0.5 0.5 mm 3 spatial res olution. ASL-based 4D-MRA images show intracranial arteries without contamination of venous structures as well as distal cerebral arteries with uniform signal intensity. Depiction of the top portion of the internal carotid arteries (ICAs) precedes that of the vertebrobasilar arteries (VBAs) by about 1 phase (300 ms). On the basis of these findings, both observers judged that the overall image quality, the arterial/venous separations were grade 4 and that the difference in the early visualization between the top portions of the ICA and the VBA was grade 2. Both readers assigned grade 4 for visualization of all arterial vascular segments. TI, inversion time venous separation was scored as grade 4 in 12- and grade 3 in 1 volunteer for both readers, respectively. Interobserver agreement was excellent (κ = 1.0). In the M1, M2 3, A1 2, P1 2, and BA segments, the arterial vascular visualization were scored as grade 4 in all the 13 volunteers for both readers. Although the mean score of arterial vascular visualization tended to slightly lower in the ICA, M4, A3 4, and P3 4 segments than previously mentioned segments, the mean score of their segments were more than 3.7 for both readers (ICA: 3.76 [both readers]; M4: 3.92 [reader 1], 3.76 [reader 2]; A3 4: 3.76 [both readers]; P3 4: 3.92 [both readers]). Interobserver agreement was good (κ = 0.76; 95% CI, 0.528 1.0) (Table 1). Differences in the early visualization of the top portion of the ICA and VBA were assigned a score of grade 2 in 9- and of grade 3 in 4 volunteers by reader 1; reader 2 was assigned grade 2 in 7- and grade 3 in 6 volunteers (Fig. 1). Interobserver agreement was good (κ = 0.683; 95% CI, 0.279 1.0) (Table 2). When volunteer subjects were divided into two groups including 20 50 year olds and 51 80 year olds, the difference in the visualization of the ICA and VBA for the elder groups tended to be greater than for the younger groups (Table 3). Discussion 4D-MRA using CINEMA-FAIR covered the whole brain with a high spatial (0.5 0.5 0.6 mm 3 ) and temporal resolution (300 ms) with diagnostic quality in all healthy subjects. Intracranial arteries were visualized without contamination of venous structures in almost cases. ASL-based 4D-MRA images were able to depict Table 1. Interobserver agreement for the arterial vascular visualization 4D-ASL MRA Interobserver Observer 1 Observer 2 agreement* Grade 1 0 0 Grade 2 0 0 0.76 Grade 3 8 10 (0.528 1.0) Grade 4 109 107 4D-ASL MRA, four-dimensional arterial spin labeling magnetic resonance angiography; Grade 1, insufficient vessel depiction or blurring of the vessel contours; Grade 2, suboptimal arterial depiction for confident diagnosis; Grade 3, relatively adequate depiction for confident diagnosis; Grade 4, sufficient vessel depiction with confident diagnosis *Data are k statistics, and numbers in parentheses are 95% confidence intervals. Vol. 15 No. 3, 2016

338 Table 2. Interobserver agreement for the differences in the early visualization of the interanal carotid artery (ICA) and vertebrobasilar artery (VBA) 4D-ASL MRA Interobserver Observer 1 Observer 2 agreement* Grade 1 0 0 Grade 2 9 7 0.683 Grade 3 4 6 (0.279 1.0) Grade 4 0 0 4D-ASL MRA, four-dimensional arterial spin labeling magnetic resonance angiography; Grade 1, visualization of the ICA precedes that of the VBA by about 2 phases (600 ms); Grade 2, visualization of the ICA precedes that of the VBA by about 1 phase (300 ms); Grade 3, visualization of the ICA precedes that of the VBA by less than 1 phase (300 ms); Grade 4, no apparent difference *Data are k statistics, and numbers in parentheses are 95% confidence intervals. Table 3. Differences in the early visualization of the interanal carotid artery (ICA) and vertebrobasilar artery (VBA) of different age groups Observer 1 Observer 2 (Age range, years) 21 50 51 80 21 50 51 80 Grade 1 0 0 0 0 Grade 2 4 5 2 5 Grade 3 3 1 5 1 Grade 4 0 0 0 0 4D-ASL MRA, four-dimensional arterial spin labeling magnetic resonance angiography; Grade 1, visualization of the ICA precedes that of the VBA by about 2 phases (600 ms); Grade 2, visualization of the ICA precedes that of the VBA by about 1 phase (300 ms); Grade 3, visualization of the ICA precedes that of the VBA by less than 1 phase (300 ms); Grade 4, no apparent difference not only the proximal cerebral arteries but also the distal cerebral arteries. These results may be attributed to a high signal-to-noise ratio (SNR) from use of a 3T MR unit and a 32-channel head coil. Arterial/venous separation was scored as slight contamination of venous SI (grade 3) in one case. In this case, the left sigmoid to inferior petrous sinus was depicted on ASL-based 4D-MRA image. On a previous study on 3T time-of-flight (TOF) MRA, 10 this finding may be the result of flow reversal. The other venous structures including the superior sagittal sinus were not depicted on ASL-based 4D-MRA images. We think that this result attributes to the use of a saturation pulse in the cranial region of the FOV. In a few cases, the arterial vascular visualization was not scored as sufficient vessel depiction Y. Iryo et al. with confident diagnosis (grade 4) but relatively adequate depiction for confident diagnosis (grade 3) in proximal arterial segment, such as ICA. These results may be attributed to atherosclerosis in aged subjects. In our study, the visualization of the intracranial arteries was earlier for the top portion of the ICA than the VBA. A previous ultrasound study on the blood flow velocity in extracranial arteries 11 showed a flow difference between the ICA and vertebral artery (VA). The peak systolic velocity (PSV) in the ICA was 76 ± 14 cm/s in individuals aged between 20 and 50 years and 65 ± 14 cm/s in those aged between 51 and 80 years. On the other hand, PSV in the VA was 53 ± 10 cm/s in the former and 48 ± 12 cm/s in the latter age group. In both age groups, PSV was approximately 20 cm/s faster for the ICA than the VA. 11 In addition, a previous study using an ASL-based MRA technique show different blood arrival times of each intracranial vascular segment in volunteers. 12 The mean relative transit time of the blood (rtt) was 173.7 ± 51 ms for the ICA and 469.4 ± 129 ms for the VA. The mean rtt was about 300 ms earlier for the ICA than the VA. Our study showed 4D-MRA with CINEMA-FAIR appears to have sufficient resolution for detecting the flow difference in the anterior and posterior circulation. In addition, the difference in the visualization of the ICA and VBA for the elder groups tended to be greater than for the younger groups. A previous study 11 stated that there were significant decrease in blood flow velocity in the ICA and VA related to increased age. Other time-resolved ASL-based MRA techniques using FAIR at 3T (e.g., true fast imaging with steady-state precession-based spin tagging with alternating radiofrequency [True STAR] technique) have been reported. 7 This True STAR technique uses the balanced steady-state free precession (bssfp) for data acquisition. Compared to CINEMA-FAIR using T 1 -TFE sequences such as the fast low angle shot, the bssfp readout is generally more prone to off-resonance artifacts. Such artifacts may be more prevalent when imaging at higher field strength. In addition, CINEMA-FAIR technique has wide labeling area, theoretically resulting in an increase of the signal from flowing blood on the slice. Our study has some limitations. First, we did not compare ASL-based 4D-MRA and DSA findings. As DSA is an invasive technique, it could not be applied for volunteers. Second, ours was a single-center study and the study population was small. Third, we did not evaluate the PSV with ultrasound examination. Conclusion On 3T 4D-MRA images using CINEMA-FAIR the intracranial arteries in healthy volunteers were visualized Magnetic Resonance in Medical Sciences

4D-MRA using CINEMA-FAIR 339 at a high spatial and temporal resolution without exogenous contrast agents. This technique appears to have sufficient temporal resolution for the identification of flow difference in the anterior and posterior circulation. The flow difference in the anterior and posterior circulation should not be considered abnormal for assessing various intracranial vascular diseases. Acknowledgments This study was supported by the Japanese Society for the Promotion of Science (KAKENHI 26461800). References 1. Hadizadeh DR, von Falkenhausen M, Gieseke J, et al. Cerebral arteriovenous malformation: Spetzler-Martin classification at subsecond-temporal-resolution fourdimensional MR angiography compared with that at DSA. Radiology 2008; 246:205 213. 2. Lee JH, Choi CG, Kim DK, Kim GE, Lee HK, Suh DC. Relationship between circle of Willis morphology on 3D time-of-flight MR angiograms and transient ischemia during vascular clamping of the internal carotid artery during carotid endarterectomy. Am J Neuroradiol 2004; 25:558 564. 3. Willinsky RA, Taylor SM, TerBrugge K, Farb RI, Tomlinson G, Montanera W. Neurologic complications of cerebral angiography: prospective analysis of 2,899 procedures and review of the literature. Radiology 2003; 227:522 528. 4. Nishimura S, Hirai T, Sasao A, et al. Evaluation of dural arteriovenous fistulas with 4D contrast-enhanced MR angiography at 3T. AJNR Am J Neuroradiol 2010; 31:80 85. 5. Yang L, Krefting I, Gorovets A, et al. Nephrogenic systemic fibrosis and class labeling of gadolinium-based contrast agents by the Food and Drug Administration. Radiology 2012; 265:248 253. 6. Iryo Y, Hirai T, Kai Y, et al. Intracranial dural arteriovenous fistulas: Evaluation with 3-T four-dimensional MR angiography using arterial spin labeling. Radiology 2014; 271:193 199. 7. Xu J, Shi D, Chen C, et al. Noncontrast-enhanced four-dimensional MR angiography for the evaluation of cerebral arteriovenous malformation: a preliminary trial. J Magn Reson Imaging 2011; 34:1199 1205. 8. Wu H, Block WF, Turski PA, et al. Noncontrast dynamic 3D intracranial MR angiography using pseudo-continuous arterial spin labeling (PCASL) and accelerated 3D radial acquisition. J Magn Reson Imaging 2014; 39:1320 1326. 9. Iryo Y, Hirai T, Nakamura M, et al. Collateral circulation via the circle of Willis in patients with carotid artery steno-occlusive disease: evaluation on 3-T 4D MRA using arterial spin labeling. Clin Radiol 2015; 70:960 965. 10. Watanabe K, Kakeda S, Watanabe R, Ohnari N, Korogi Y. Normal flow signal of the pterygoid plexus on 3T MRA in patients without DAVF of the cavernous sinus. AJNR Am J Neuroradiol 2013; 34:1232 1236. 11. Yazici B, Erdoğmuş B, Tugay A. Cerebral blood flow measurements of the extracranial carotid and vertebral arteries with Doppler ultrasonography in healthy adults. Diagn Interv Radiol 2005; 11:195 198. 12. Kopeinigg D, Bammer R. Time-resolved angiography using inflow subtraction (TRAILS). Magn Reson Med 2014; 72:669 678. Vol. 15 No. 3, 2016