Cytochrome P450 2E1 RsaI/PstI and DraI Polymorphisms Are Risk Factors for Lung Cancer in Mongolian and Han Population in Inner Mongolia

Similar documents
CYP19 gene polymorphisms and the susceptibility to breast cancer in Xinjiang Uigur women

Myoglobin A79G polymorphism association with exercise-induced skeletal muscle damage

Department of Respiratory Medicine, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China

Original Article The programmed death-1 gene polymorphism (PD-1.5 C/T) is associated with non-small cell lung cancer risk in a Chinese Han population

Polymorphisms of XPC Gene And Susceptibility of Esophageal Cancer

Human leukocyte antigen-b27 alleles in Xinjiang Uygur patients with ankylosing spondylitis

Influence of the c.1517g>c genetic variant in the XRCC1 gene on pancreatic cancer susceptibility in a Chinese population

Influence of interleukin-18 gene polymorphisms on acute pancreatitis susceptibility in a Chinese population

Association between the -77T>C polymorphism in the DNA repair gene XRCC1 and lung cancer risk

IL10 rs polymorphism is associated with liver cirrhosis and chronic hepatitis B

mir-146a and mir-196a2 polymorphisms in ovarian cancer risk

RESEARCH ARTICLE. Jing-Wen Zhang 1&, Wan-Jia Yu 1&, Xiao-Min Sheng 1, Fu-Hou Chang 1 *, Tu-Ya Bai 1, Xiao-Li Lv 1, Guang Wang 2, Su-Zhen Liu 3

Lack of association between IL-6-174G>C polymorphism and lung cancer: a metaanalysis

Lack of association between ERCC5 gene polymorphisms and gastric cancer risk in a Chinese population

Association between ERCC1 and ERCC2 polymorphisms and breast cancer risk in a Chinese population

Influence of interleukin-17 gene polymorphisms on the development of pulmonary tuberculosis

Investigating the role of polymorphisms in mir-146a, -149, and -196a2 in the development of gastric cancer

Aldehyde Dehydrogenase-2 Genotype Detection in Fingernails among Non-alcoholic Northeastern Thai Population and Derived Gene Frequency

Association between IL-17A and IL-17F gene polymorphisms and risk of gastric cancer in a Chinese population

Association between the interleukin 4 gene -590C>T promoter polymorphism and asthma in Xinjiang Uighur children

Association between rs G<C gene polymorphism and susceptibility to pancreatic cancer in a Chinese population

Association between ERCC1 and ERCC2 gene polymorphisms and susceptibility to pancreatic cancer

Investigation of the role of XRCC1 genetic polymorphisms in the development of gliomas in a Chinese population

Polymorphisms of DNA repair-related genes with susceptibility and prognosis of prostate cancer

Genome-wide association study of esophageal squamous cell carcinoma in Chinese subjects identifies susceptibility loci at PLCE1 and C20orf54

Genetic variability of genes involved in DNA repair influence treatment outcome in osteosarcoma

Polymorphism of the PAI-1gene (4G/5G) may be linked with Polycystic Ovary Syndrome and associated pregnancy disorders in South Indian Women

Investigation on ERCC5 genetic polymorphisms and the development of gastric cancer in a Chinese population

Association between the CYP1A1 polymorphisms and hepatocellular carcinoma: a meta-analysis

Association between MTHFR 677C/T and 1298A/C gene polymorphisms and breast cancer risk

Original Article MiR-146a genetic polymorphism contributes to the susceptibility to hepatocellular carcinoma in a Chinese population

Original Article mir-124 rs polymorphism influences genetic susceptibility to cervical cancer

RESEARCH ARTICLE. Xue-Yan Jiang 1, Fu-Hou Chang 1 *, Tu-Ya Bai 1, Xiao-Li Lv 1, Min-Jie Wang 1, Guang Wang 2. Abstract.

Association between ERCC1 and XPF polymorphisms and risk of colorectal cancer

P450I I E 1 Gene : Dra I. Human Cytochrome Polymorphism and

a meta-analysis involving 10,947 subjects RETRACTED Ze-Tian Shen, Xin-Hu Wu, Bing Li, Jun-shu Shen, Zhen Wang, Jing Li, Xi-Xu Zhu *

CYP1A2-163C/A (rs762551) polymorphism and bladder cancer risk: a case-control study

Association of DNA Double strand Break Gene XRCC6 Genotypes and Lung Cancer in Taiwan

H.F. Liu, J.S. Liu, J.H. Deng and R.R. Wu. Corresponding author: J.S. Liu

Association between the CYP11B2 gene 344T>C polymorphism and coronary artery disease: a meta-analysis

Matrix metalloproteinase variants associated with risk and clinical outcome of esophageal cancer

Associations between matrix metalloproteinase gene polymorphisms and the development of cerebral infarction

New evidence of TERT rs polymorphism and cancer risk: an updated meta-analysis

RESEARCH COMMUNICATION

Multi-clonal origin of macrolide-resistant Mycoplasma pneumoniae isolates. determined by multiple-locus variable-number tandem-repeat analysis

Lack of association between an insertion/ deletion polymorphism in IL1A and risk of colorectal cancer

Association between GSTM1 polymorphisms and lung cancer: an updated meta-analysis

Role of IL-8 rs4073 and rs polymorphisms in the development of primary gouty arthritis in a Chinese population

Predictive potential role of glutathione S-transferase polymorphisms in the prognosis of breast cancer

Association between the pre-mir-196a2 rs polymorphism and gastric cancer susceptibility in a Chinese population

The association between methylenetetrahydrofolate reductase gene C677T polymorphisms and breast cancer risk in Chinese population

Association study of CYP3A5 genetic polymorphism with serum concentrations of carbamazepine in Chinese epilepsy patients

Role of Paired Box9 (PAX9) (rs ) and Muscle Segment Homeobox1 (MSX1) (581C>T) Gene Polymorphisms in Tooth Agenesis

Relationship Between GSTT1 Gene Polymorphism and Hepatocellular Carcinoma in Patients from China

Prospective study of MTHFR genetic polymorphisms as a possible etiology of male infertility

Lack of association of IL-2RA and IL-2RB polymorphisms with rheumatoid arthritis in a Han Chinese population

IL-17 rs genetic variation contributes to the development of gastric cancer in a Chinese population

Effect of variation of ABCB1 and GSTP1 on osteosarcoma survival after chemotherapy

Cancer incidence and patient survival rates among the residents in the Pudong New Area of Shanghai between 2002 and 2006

Association of polymorphisms of the xeroderma pigmentosum complementation group F gene with increased glioma risk

CYP1A2 polymorphism in Chinese patients with acute liver injury induced by Polygonum multiflorum

XRCC1 Polymorphisms and Pancreatic Cancer: A Meta-Analysis

Association between matrix metalloproteinase-9 rs polymorphism and development of coronary artery disease in a Chinese population

CYP2E1 rs , COMT rs4680 Polymorphisms, Cigarette Smoking, Alcohol Use and Lung Cancer Risk in a Japanese Population

Significant Association of Ku80 Single Nucleotide Polymorphisms with Bladder Cancer Susceptibility in Taiwan

Review Article The TP53 codon 72 Pro/Pro genotype may be associated with an increased lung cancer risk in North China: an updated meta-analysis

Bin Liu, Lei Yang, Binfang Huang, Mei Cheng, Hui Wang, Yinyan Li, Dongsheng Huang, Jian Zheng,

Predictive potential role of glutathione S-transferases polymorphisms in response to chemotherapy and breast cancer prognosis

Aberrant DNA methylation of MGMT and hmlh1 genes in prediction of gastric cancer

Effects of three common polymorphisms in micrornas on lung cancer risk: a meta-analysis

Influence of ERCC2 gene polymorphisms on the treatment outcome of osteosarcoma

Investigation of Programmed Cell Death-1 (PD-1) Gene Variations at Positions PD1.3 and PD1.5 in Iranian Patients with Non-small Cell Lung Cancer

Smoking, human papillomavirus infection, and p53 mutation as risk factors in oropharyngeal cancer: a case-control study

Association between interleukin-17a polymorphism and coronary artery disease susceptibility in the Chinese Han population

Investigation of ERCC1 and ERCC2 gene polymorphisms and response to chemotherapy and overall survival in osteosarcoma

Investigation on the role of XPG gene polymorphisms in breast cancer risk in a Chinese population

Association between interleukin gene polymorphisms and risk of recurrent oral ulceration

Supplementary Figure 1 Forest plots of genetic variants in GDM with all included studies. (A) IGF2BP2

NQO1 C609T polymorphism correlated to colon cancer risk in farmers from western region of Inner Mongolia

Original Article Role of IL-10 gene polymorphisms on the susceptibility for esophageal cancer and its association with environmental factors

Influence of glutathione S-transferase polymorphisms on type-2 diabetes mellitus risk

A single nucleotide polymorphism in the promoter region of let-7 family is associated with lung cancer risk in Chinese

Original Article Association between XRCC1 and ERCC2 gene. polymorphisms and development of osteosarcoma.

Genetic variants on 17q21 are associated with asthma in a Han Chinese population

Interaction between CYP 2C19*3 polymorphism and smoking in relation to laryngeal carcinoma in the Chinese Han population

Original Article Correlation between 1082G/A gene polymorphism of interleukin 10 promoter and cervical carcinoma

Allelic and Haplotype Frequencies of the p53 Polymorphisms in Brain Tumor Patients

Association of XRCC1 gene polymorphisms and pancreatic cancer risk in a Chinese population

Selection Bias in the Assessment of Gene-Environment Interaction in Case-Control Studies

European Journal of Medical Research. Open Access RESEARCH. Weiming Hao 1,2, Xia Xu 3, Haifeng Shi 1, Chiyu Zhang 2 and Xiaoxiang Chen 4*

Original Article Single nucleotide polymorphisms in VEGF gene are associated with an increased risk of osteosarcoma

Cancer Incidence and Mortality in China, 2007

Association between polymorphisms in the promoter region of pri-mir-34b/c and risk of hepatocellular carcinoma

Review Article Association between HLA-DQ Gene Polymorphisms and HBV-Related Hepatocellular Carcinoma

Mitochondrial DNA (T/C) Polymorphism, Variants and Heteroplasmy among Filipinos with Type 2 Diabetes Mellitus

A common genetic variant of 5p15.33 is associated with risk for prostate cancer in the Chinese population

2) Cases and controls were genotyped on different platforms. The comparability of the platforms should be discussed.

Relationship between SPOP mutation and breast cancer in Chinese population

ZHANG Qin, YANG Yun-mei, LV Xue-ying

696 Biomed Environ Sci, 2015; 28(9):

Transcription:

www.springerlink.com Chin J Cancer Res 23(2): 107-111, 2011 107 Original Article Cytochrome 450 2E1 RsaI/stI and DraI olymorphisms Are Risk Factors for Lung Cancer in Mongolian and Han opulation in Inner Mongolia Xiu-lan Su 1, Ba Bin 2, Hong-wei Cui 1, Mei-rong Ran 1 1 Clinical Medical Center, Affiliated Hospital, Inner Mongolian Medical College, Hohhot 010050, China; 2 Department of Internal Medicine, Medical Emergency Center of Kangbashi New Direct, Erdos City, Inner Mongolia, China DOI: 10.1007/s11670-011-0107-2 Chinese Anti-Cancer Association and Springer-Verlag Berlin Heidelberg 2011 ABSTRACT Objective: To explore the relationship between cytochrome 450 2E1 (CY2E1) RsaI/stI and DraI polymorphism and lung cancer susceptibility in Mongolian and Han population in Inner Mongolia of China. Methods: CY2E1 RsaI/stI and DraI polymorphisms were detected by polymerase chain reaction-restriction fragment length polymorphism in 64 lung cancer patients, 150 healthy Mongolian and 150 healthy Han individuals. The distribution of genotype and allele frequencies of CY2E1 RsaI/stI and DraI polymorphisms were studied. Results: The risk of lung cancer was increased in individuals with CY2E1 (cl/cl) and CY2E1 (DD) with OR values of 2.431 (95%CI=1.082-5.460) and 2.778 (95%CI=1.358-5.683) respectively (<0.05). When CY2E1 RsaI/stI and DraI polymorphisms were combined, the risk of lung cancer was reduced in individuals with CY2E1 (cl/c2+c2/c2 and DD+CC) with OR values of 0.233 (95%CI=0.088-0.615, <0.05). In smokers, the susceptibility to lung cancer was higher in the individuals with CY2E1 (c1/c1) and CY2E1 (DD) than in the individuals with c2 and C allele (<0.05, OR =2.643 and 4.308 respectively). There was no significant difference in distribution of CY2E1 genotype frequency between healthy Mongolian, Han population and lung cancer patients, healthy controls in Inner Mongolia. Conclusion: CY2E1 (c1/c1) and CY2E1 (DD) are predisposing factors of lung cancer in population in Inner Mongolia. CY2E1 (c2 + C) co-mutation may decrease the risk of lung cancer. Smoking exerts synergetic effect with CY2E1 (c1/c1) and CY2E1 (DD) on the occurrence of lung cancer. Key words: Cytochrome p450 2E1; Gene polymorphism; Lung cancer; Susceptivity INTRODUCTION Great improvement has been made in the prevention and treatment of lung cancer, however, the incidence of lung cancer is still high and prognosis is poor. Lung cancer is still the first cause of cancer-related death worldwide [1]. Smoking and environmental carcinogens is one of the triggers for lung cancer, but only 10% of smokers eventually suffer from lung cancer, indicating that there is difference in individual susceptibility to lung cancer. Of all the main enzymes involved in metabolism of carcinogens, cytochrome 450 superfamily plays an important role in detoxification of reactive intermediates of chemicals [2]. Cytochrome 450 2E1 (CY2E1) is a main 1111111 Received 2010-10-09; Accepted 2011-02-16 This work was supported by the Chunhui lan from Ministry of Eduction of China and Fund for Academy Leaders and Innovative Team from Inner Mongolian Autonomous Region of china. Contributed equally to this work Corresponding author E-mail: xlsu@hotmail.com member of CY450 family. CY2E1 RsaI/stI (c2) polymorphism has G C substitution at 1293bp in 5 -untranslated region of CY2E1 gene and introduces sti restriction enzyme site, CTGCAǁG [3] which causes a decrease in enzymatic activity. CY2E1 DraI (C) polymorphism has a T A substitution at 7632bp in sixth intron and destroys the DraI restriction enzyme site [3]. The RsaI/stI and DraI mutations of CY2E1 can reduce effects on the metabolism of precarcinogens in tobacco, showing a protective effect on the body. It has been reported that CY2E1 polymorphism is involved in several types of diseases [4-7], including smoking-induced lung carcinogenesis, and it is related to genetic susceptibility of lung cancer [8-10]. Therefore, studying the relationship between CY2E1 polymorphism and lung cancer susceptibility may provide information for pathogenesis and early diagnosis of lung cancer. However, the findings about the relationship between CY2E1 polymorphism and lung cancer susceptibility are different [11-12], and research about the relationship between CY2E1 polymorphism and lung cancer susceptibility in Inner Mongolia has not been done. In present study, we detected CY2E1 polymorphism and

108 Chin J Cancer Res 23(2): 107-111, 2011 www.springerlink.com explored the relationship between CY2E1 polymorphism and lung cancer susceptibility in Inner Mongolia of China. MATERIALS AND METHODS Subjects Sixty four patients with primary lung cancer diagnosed by histopathological examination were enrolled in the study. Of the 64 patients, 47 were male and 17 were female, with a mean age of 58.28±9.596 (range 34-78 years). The 64 patients with lung cancer were from our hospital and Baotou Central Hospital, and did not undergo anti-cancer treatment. All the patients did not have history of familial lung cancer and exposure to carcinogens. Sixty four healthy individuals who matched the age, sex of the lung cancer patients were selected from 300 healthy people (150 Mongolian and 150 Han people, respectively). The healthy controls did not have either tumors, tumor related diseases detected by physical examination, or history of familial lung cancer, exposure to carcinogens. The following data were recorded for each subject: name, age, gender, ethnicity, occupation, smoking, history of familial tumor and exposure to carcinogens. There was no significant difference in age and sex between the two groups. All the subjects gave informed consent. DNA Extraction and CR-RFL Two milliliter peripheral venous blood was drawn from overnight fast subjects into sodium citrate solution, and then stored at -80oC. Genomic DNA was extracted by kit (blood DNAzol Reagent kit, TaKaRa). The polymorphism of CY2E1 gene was analyzed using polymerase chain reaction-restriction fragment length polymorphism (CR-RFL). CR was performed in a volume of 25 µl including 8 µl of ddh2o, 12.5 µl of Go Taq Green Master Mix (romege), 0.25 µl (5 µmol/l) of primer RasI/stI (sense 5 -TCTCCACCCTGATGCTTCC T-3 and antisense 5 -TCTGTCTTCTAACTGGCAATA-3 ) and primer DraI (sense 5 -AGTCGACATGTGATGGAT CCA-3 and antisense 5 -GACAGGGTTTCATCATGTT GG-3 ) respectively, and 4µl of template DNA. The reaction conditions were as follows: initial denaturation at 95 C for 10min, followed by 45 cycles of degeneration at 94 C for 30s, reannealing at 60 C (primer DraI at 62 C) for 30s, and extension at 72 C for 45s; with a final extension at 72 C for 10 min. CR products were digested with sti and DraI (TaKaRa), respectively, in 37 C water bath for 2 h. Digestion products (10µl) were electrophoresed using 3% agarose gel under 80 V for 30 min and analyzed by Gel-ro imaging instrument. Statistical Analysis Statistical analysis was performed with SSS13.0 software. Chi square test was used to compare frequencies of genotype and allele between each group and to identify whether individual variants accord with Hardy-Weinberg equilibrium. Measurement data were expressed as x s deviation. Logistic regression was used to investigate the correlations of CY2E1 RsaI/stI and DraI polymorphism with disease. Statistical significance was established at <0.05. RESULTS The DNA fragment of the CY2E1 gene was 698bp after CR amplification with primer RasI/stI. The expected sizes of the products after digestion with RasI/stI were the following: homozygous wild-type (c1/c1) without a restriction site and an electrophoresis band of 698bp; mutant homozygote (c2/c2) with a restriction site in each DNA chain, resulting in electrophoresis bands of 420bp and 278bp; and heterozygote (c1/c2) with restriction sites in one of the DNA chains, resulting in 3 electrophoresis bands at 698bp, 420bp, and 278bp (Figure 1a). The DNA fragment of the CY2E1 gene was 376bp after CR amplification with primer DraI. Homozygous wild type (DD) containing restriction site in each DNA chain become into two fragments of 251bp and 125bp fragment after being digested with DraI. Homozygotic mutant (CC) without a restriction site only had a fragment of 376bp. Heterozygote (DC) containing restriction sites in one of the DNA chains become into 3 fragments of 376bp, 251bp and 125bp (Figure 1b). 70 78mm (300 300DI) Figure 1. Agarose gel electrophoresis of CR-RFL products of CY2E1 RasI/stI and DraI polymorphisms. A: CR-RFL products of CY2E1 RasI/stI polymorphism. M: Marker. Lane 1, 3, 6 and 7: homozygous wild-type (cl/cl); Lane 2: mutant homosygote (c2/c2); Lane 4 and 5: heterozygote (c1/c2). B: CR-RFL products of CY2E1 DraI polymorphisms. M: Marker. Lane 2: homozygous wild type (DD); Lane 4: homozygotic mutant (CC);Lane1 and 3: heterozygote (DC). We observed that the RsaI/stI and DraI polymorphism genotype distribution was in accordance with Hardy-Weinberg expectations in Mongolian and Han population in Inner Mongolia (>0.05). It showed

www.springerlink.com Chin J Cancer Res 23(2): 107-111, 2011 109 that the study groups were representative. There was no significant difference in distribution of CY2E1 genotype frequency between healthy Mongolian and Han population in Inner Mongolia (Table 1-2). Table 1. Frequencies of genotype and allele distribution of CY2E1 RsaI/stI olymorphism in healthy Mongolian and Han population c1/c1 c2/c2 c1/c2 150 100(66.67) 5(3.33) 45(30.00) 245(81.67) 55(18.33) mongolian 150 102(68.00) 5(3.33) 43(28.67) 0.065 0.968 247(82.33) 53(17.67) 0.045 0.832 Compared with Han population, >0.05 c1 c2 Table 2. Frequencies of genotype and allle distribution of CY2E1 DraI olymorphism in healthy Mongolian and han population DD CC DC Han 150 76(50.67) 9(6.00) 65(43.33) 217(72.33) 83(27.67) mongolian 150 59(39.33) 11(7.34) 80(53.33) 3.892 0.143 198(66.00) 102(34.00) 2.821 0.093 Compared with Han population, >0.05 D C The CY2E1 gene c1/c1, c1/c2, and c2/c2 genotype distributions were 72.66%, 25.00%, and 2.34%, respectively. The c1 allele frequency in our study population was 85.16% and the c2 allele frequency was 14.84%. There was no significant difference in frequencies of CY2E1 RasI/stI genotype and allele between lung cancer patients and healthy controls (Table 3). Lung cancer risk was higher in individuals with c1/c1 genotype than in individuals with c2 allele (c1/c2 and c2/c2; OR=2.431, 95%CI=1.082-5.460, =0.029; Table 4). χ2 test showed that lung cancer susceptibility was greater in smokers with c1/c1 genotype than in smokers with mutant genotype (OR=2.643, 95%CI=0.991-7.045, = 0.048; Table 5). While the CY2E1 gene DD, DC, and CC genotype distributions were 50.00%, 45.31%, and 4.69%, respectively. The D allele frequency in our study population was 72.66% and the C allele frequency was 27.34%. There was no significant difference in frequencies of CY2E1 DraI genotype and allele between lung cancer patients and healthy controls (Table 6). The lung cancer risk in individuals with DD genotype was significantly increased (OR=2.778, 95%CI=1.358-5.683, =0.005; Table 7). Lung cancer susceptibility was greater in smokers with DD genotype than in smokers with C allele (OR=4.308, 95%CI=1.768-10.494, =0.001; Table 8). The lung cancer risk was significantly lower in individuals with c1/c2+ c2/c2 and DC+CC than in individuals with c1/c1 and DD (OR=0.233, 95%CI=0.088-0.615, =0.002; Table 9). Table 3. Frequencies of genotype and allele distribution of CY2E1 RsaI/stI olymorphism in healthy individuals and patients with lung cancer c1/c1 c2/c2 c1/c2 c1 c2 Healthy 64 41(64.06) 1(1.56) 22(34.38) 104(81.25) 24(18.75) Lung cancer 64 52(81.25) 2(3.12) 10(15.63) 114(89.06) 14(10.94) Total 128 93(72.66) 3(2.34) 32(25.00) 218(85.16) 38(14.84) Table 4. Association between CY2E1 RsaI/stI olymorphism and lung cancer susceptibility Control (n=64) Lung cancer (n=64) OR(95%CI) X 2 c1/c1 41(64.06) 52(81.25) 1 c2/c2+c1/c2 23(35.94) 12(18.75) 0.525(0.273-1.011) 4.758 0.029 c2/c2+c1/c2 23(35.94) 12(18.75) 1 c1/c1 41(64.06) 52(81.25) 2.43(1.082-5.460) 4.758 0.029 <0.05; 95%CI: 95% confidence interval

110 Chin J Cancer Res 23(2): 107-111, 2011 www.springerlink.com Table 5. Associatioin between CY2E1 RsaI/stI olymorphism, smoking and lung cancer susceptibility Non-smoker Smoker Control lung cancer OR Control lung cancer OR (95%CI) (95%CI) c2/c2+c1/c2 7(35.0) 4(21.1) 1 16(36.4) 8(17.8) 1 c1/c1 13(65.0) 15(78.9) 2.019 0.333 28(63.6) 37(82.2) 2.643 0.048 (0.481-8.485) (0.991-7.045) <0.05 Table 6. Frequencies of genotype and allele distribution of CY2E1 DraI olymorphism in healthy individuals and patients with lung cancer DD CC DC D C Healthy 64 24(37.5) 3(4.69) 37(57.81) 85(66.4) 43(33.59) Lung cancer 64 40(62.50) 3(4.69) 21(32.81) 101(78.91) 27(21.09) Total 128 64(50.00) 6(4.69) 58(45.31) 186(72.66) 70(27.34) Table 7. Association between CY2E1 DraI olymorphism and lung cancer susceptibility Control(n=64) Lung cancer(n=64) OR(95%CI) DD 27(37.50) 40(62.50) 1 CC+DC 40(62.50) 24(37.50) 0.360(0.176-0.736) 8.000 0.005 CC+DC 40(62.50) 24(37.50) 1 DD 24(37.50) 40(62.50) 2.778(1.358-5.683) 8.000 0.005 <0.01 Table 8. Association between CY2E1 DraI olymorphism, smoking and lung cancer susceptibility Non-smoker Smoker Control lung cancer OR Control lung cancer OR (95%CI) (95%CI) CC+DC 12(60.0) 11(57.9) 1 28(56.2) 13(33.3) 1 DD 8(42.1) 8(42.1) 1.091 0.894 16(43.8) 32(66.7) 4.308 0.001 (0.304-3.910) (1.768-10494) <0.01; ORL Odds ratio; 95%CI: 95% confidence interval RsaI/stI DraI Table 9. Association between CY2E1 RsaI/stI and Dral olymorphism and lung cancer Control(n=4) Lung cancer (n=64) OR(95(%CI) C1/c1 DD 22(34.38) 36(56.25) 1 C1/c1 DC+CC 19(29.69) 16(25.00) 0.515(0.220-1.205) 2.369 0.124 C1/c2+c2/c2 DD 2(3.13) 4(6.25) 1.222(0.206-7.235) 0.000 1.000 C1/c2+c2/c2 DC+CC 21(32.80) 8(12.50) 0.233(0.088-0.615) 9.197 0.002 <0.01; 95%CI: 95% confidence interval DISCUSSION Distribution of CY2E1 RasI/stI alleles (c1, c2) and DraI alleles (D, C) varies much in different races [3,13]. Frequencies of allele c2 and C are 4% and 11% in European-Americans, 1% and 8% in African-Americans, 28% and 24% in Taiwanese [13], 1.94% and 8.25% in Turkish population, respectively [3]. Our study finds that frequencies of allele c2 and C are 18% and 34% in Mongolian population, 18% and 28% in Han population, which are similar to the allele frequencies of Taiwanese. Our study shows that there is no difference in CY2E1 RsaI/stI and DraI polymorphism between Mongolian and Han population in Inner Mongolia, which may due

www.springerlink.com Chin J Cancer Res 23(2): 107-111, 2011 111 to the small sample size. Therefore, larger sample size will be needed to further confirm the result of our study. Our study shows that CY2E1 (c1/c1) and CY2E1 (DD) are predisposing factors of lung cancer in population in Inner Mongolia. Smoking exerts synergetic effect with CY2E1 (c1/c1) and CY2E1 (DD) on the occurrence of lung cancer. revious studies also show that individuals with CY2E1 c1/c1 or DD genotype have more risk to developing lung cancer compared to those with CY2E1 c1/c2+c2/c2 or CC+CD genotype in Chinese and Indian population [14-17], CY2E1 (c1/c1) or CY2E1 (DD) increased the risk of lung cancer in smokers [14,17]. However, Le Marchand et al. find that CY2E1 RsaI/stI and DraI polymorphism did not related with lung squamous cell carcinoma but lung adenocarcinoma in Caucasian, Japanese and Hawaiian originated population in Hawaii [18], there is no risk in relation to CY2E1 and lung cancer in north Indian population [19]. Mechanism of genetic susceptibility to lung cancer is very complex. Different genetic background and environmental exposure may lead to significant differences in susceptibility to lung cancer. Therefore, regional and ethnic differences should be considered when a specific gene is served as a genetic marker. Additionally the small sample size of lung cancer patients in our current study has limitation in representing the population. Large sample size will be needed to further confirm the result of our study. In summary, CY2E1 RsaI/stI and DraI polymorphism is associated with the risk of lung cancer among population in Inner Mongolia. CY2E1 DD and cl/cl genotype may be susceptibility gene and exert a synergetic effect with smoking in the occurrence of lung cancer. However, there was no significant difference in CY2E1 RsaI/stI and DraI polymorphism between Mongolian and Han population living in Inner Mongolia, indicating that there may be no regional and race difference in distribution of CY2E1 genotype in Chinese population. In order to obtain more accurate and valuable genetic markers, large sample sizes will be needed in further study. REFERENCES 1. Hu C. Advances on epidemiology of lung cancer and tobacco control. Zhongguo Fei Ai Za Zhi (in Chinese) 2008; 11: 25-8. 2. Nebert DW, Dalton T. The role of cytochrome 450 enzymes in endogenous signaling pathways and environmental carcinogenesis. Nature Reviews Cancer 2006; 6: 947-60. 3. Ulusoy G, Arinç E, Adali O. and allele frequencies of polymorphic CY2E1 in the Turkish population. Arch Toxicol 2007; 81: 711-8. 4. Wu RM, Cheng CW, Chen KH, et al. Genetic polymorphism of the CY2E1 gene and susceptibility to arkinson s disease in Taiwanese. J Neural Transm 2002; 109: 1403-14. 5. Liu R, Yin LH, u Y. Association of combined CY2E1 gene polymorphism with the risk for esophageal squamous cell carcinoma in Huai an population, China. Chin Med J (Engl) 2007; 120: 1797-802. 6. Cantor K, Villanueva CM, Silverman DT, et al. olymorphisms in GSTT1, GSTZ1, and CY2E1, disinfection byproducts, and risk of bladder cancer in Spain. Environ Health erspect. 2010; (Jul) 30, [Epub ahead of print]. 7. Guo X, Zeng Y, Deng H, et al. Genetic polymorphisms of CY2E1, GST1, NQO1 and MO and the risk of nasopharyngeal carcinoma in a Han Chinese population of Southern China. BMC Res Notes 2010; 3: 212. 8. Wang Y, Yang H, Li L, et al. Association between CY2E1 genetic polymorphisms and lung cancer risk: a meta-analysis. Eur J Cancer 2010; 46: 758-64. 9. Zhan, Wang J, Zhang Y, et al. CY2E1 RasI/stI polymorphism is associated with lung cancer risk among Asians. Lung Cancer 2010; 69: 19-25. 10. Eom SY, Zhang YW, Kim SH, et al. Influence of NQO1, ALDH2, and CY2E1 genetic polymorphisms, smoking, and alcohol drinking on the risk of lung cancer in Koreans. Cancer Causes Control 2009; 20: 137-45. 11. Zienolddiny S, Campa D, Lind H, et al. A comprehensive analysis of phase I and phase II metabolism gene polymorphisms and risk of non-small cell lung cancer in smokers. Carcinogenesis 2008; 29: 1164-9. 12. Wang D, Chen S, Wang B, Zhou W. A case-control study on the impact of cytochrome 450 2E1 and 1A1 gene polymorphisms on the risk of lung cancer of the Han nationality in Guangzhou district. Zhongguo Fei Ai Za Zhi (in Chinese) 2006; 9: 497-501. 13. Stephens EA, Taylor JA, Kaplan N, et al. Ethnic variation in the CY2E1 gene: polymorphism analysis of 695 African-Americans, European-Americans and Taiwanese. harmacogenetics 1994; 4: 185-92. 14. Li Z, Tan W, Shao K. Susceptibility to lung cancer in Chinese is associated with genetic polymorphism in cytochrome 4502E1. Zhonghua Zhong Liu Za Zhi (in Chinese) 2000; 22: 5-7. 15. Wang J, Deng Y, Li L, et al. Association of GSTM1, CY1A1 and CY2E1 genetic polymorphisms with susceptibility to lung adenocarcinoma: a case-control study in Chinese population. Cancer Sci 2003; 94: 448-52. 16. Wu X,Amos CI, Kemp BL, et al. Cytochrome 450 2E1 Dral polymorphism in lung cancer in minority populations. Cancer Epidemiol Biomarkers rev 1998; 7: 13-8. 17. Soya SS, Vinod T, Reddy KS, et al. CY2E1 polymorphisms and gene-environment interactions in the risk of upper aerodigestive tract cancers among Indians. harmacogenomics 2008; 9: 551-60. 18. Le Marchand L, Sivaraman L, ierce L, et al. Associations of CY1A1, GSTM1, and CY2E1 polymorphisms with lung cancer suggest cell type specificities to tobacco carcinogens. Cancer Res 1998; 58: 4858-63. 19. Sobti RC, Sharma S, Joshi A, et al. Genetic polymorphism of the CY1A1, CY2E1, GSTM1 and GSTT1 genes and lung cancer susceptibility in a north Indian population. Mol Cell Biochem 2004; 266: 1-9.