Usefulness of interferon-γ release assay for the diagnosis of sputum smear-negative pulmonary and extra-pulmonary TB in Zhejiang Province, China

Similar documents
[DOI] /j.issn

TB Intensive San Antonio, Texas November 11 14, 2014

Effect of prolonged incubation time on the results of the QuantiFERON TB Gold In-Tube assay for the diagnosis of latent tuberculosis infection

Technical Bulletin No. 172

TB Prevention Who and How to Screen

TB Intensive Houston, Texas October 15-17, 2013

TB Nurse Case Management San Antonio, Texas July 18 20, 2012

Diagnostic Value of ELISPOT Technique for Osteoarticular Tuberculosis

TB Intensive Tyler, Texas December 2-4, 2008

Identifying TB co-infection : new approaches?

Evaluation and Treatment of TB Contacts Tyler, Texas April 11, 2014

Testing for TB. Bart Van Berckelaer Territory Manager Benelux. Subtitle

CHAPTER 3: DEFINITION OF TERMS

Peggy Leslie-Smith, RN

Clinical Utility of the QuantiFERON TB-2G Test for Elderly Patients With Active Tuberculosis*

Original Article Evaluation of Xpert MTB/RIF in detection of pulmonary and extrapulmonary tuberculosis cases in China

Qualitative and quantitative results of interferon-γ release assays for monitoring the response to anti-tuberculosis treatment

T-CELL RESPONSES ASSESSED USING IGRA AND TST ARE NOT CORRELATED WITH AFB GRADE AND CHEST RADIOGRAPH IN PULMONARY TUBERCULOSIS PATIENTS

Understanding and Managing Latent TB Infection Arnold, Missouri October 5, 2010

Approaches to LTBI Diagnosis

ORIGINAL ARTICLE. Clinical evaluation of QuantiFERON TB-2G test for immunocompromised patients

Barbara J Seaworth MD Medical Director, Heartland National TB Center Professor, Internal Medicine and Infectious Disease UT Health Northeast

Research Methods for TB Diagnostics. Kathy DeRiemer, PhD, MPH University of California, Davis Shanghai, China: May 8, 2012

Interferon Gamma Release Assay Testing for Latent Tuberculosis Infection: Physician Guidelines

The updated incidences and mortalities of major cancers in China, 2011

Use of Interferon-γ Release Assays (IGRAs) in TB control in low and middle-income settings - EXPERT GROUP MEETING -

In our paper, we suggest that tuberculosis and sarcoidosis are two ends of the same spectrum. Given the pathophysiological and clinical link between

Self-Study Modules on Tuberculosis

International Journal of Innovative Research in Medical Science (IJIRMS)

Communicable Disease Control Manual Chapter 4: Tuberculosis

Variation in T-SPOT.TB spot interpretation between independent observers of different laboratories

Nguyen Van Hung (NTP, Viet Nam)

Factors Associated with Indeterminate and False Negative Results of QuantiFERON-TB Gold In-Tube Test in Active Tuberculosis

Detecting latent tuberculosis using interferon gamma release assays (IGRA)

Let s Talk TB A Series on Tuberculosis, A Disease That Affects Over 2 Million Indians Every Year

APPLICATION OF IMMUNO CHROMATOGRAPHIC METHODS IN PLEURAL TUBERCULOSIS

2017/2018 Annual Volunteer Tuberculosis Notice

Accuracy of enzyme-linked immunospot assay for diagnosis of pleural tuberculosis: a meta-analysis

Title: Role of Interferon-gamma Release Assays in the Diagnosis of Pulmonary Tuberculosis in Patients with Advanced HIV infection

Clinical evaluation of QuantiFERON TB-2G test for immunocompromised patients

NATIONAL INSTITUTE FOR HEALTH AND CLINICAL EXCELLENCE SCOPE

The Value of T-SPOT.TB Technology in the Diagnosis of Tuberculosis in Elderly Patients B Sun 1, L Ma 1, J Wu 1, H Kuang 1, L Zhao 1 ABSTRACT

Making the Diagnosis of Tuberculosis

NATIONAL INSTITUTE FOR HEALTH AND CLINICAL EXCELLENCE SCOPE

University of Groningen

Table 9. Policy for Tuberculosis Surveillance and Screening

Kinetics of T-cell-based assays on cerebrospinal fluid and peripheral blood mononuclear cells in patients with tuberculous meningitis

New NICE guideline updates recommendations for diagnosing latent tuberculosis

Does serum CA125 have clinical value for follow-up monitoring of postoperative patients with epithelial ovarian cancer? Results of a 12-year study

Author's response to reviews

Category Description / Key Findings Publication

INTENSIFIED TB CASE FINDING

Student Health Requirements Master of Arts, Biomedical Sciences Program

Diagnostic Value of Elisa Serological Tests in Childhood Tuberculosis

Diagnosis and Medical Management of Latent TB Infection

Subdural hemorrhages in acute lymphoblastic leukemia: case report and literature review

Targeted Testing and the Diagnosis of. Latent Tuberculosis. Infection and Tuberculosis Disease

RESEARCH NOTE QUANTIFERON -TB GOLD IN-TUBE TEST FOR DIAGNOSING LATENT TUBERCULOSIS INFECTION AMONG CLINICAL-YEAR THAI MEDICAL STUDENTS

Adachi et al. SpringerPlus 2013, 2:440 a SpringerOpen Journal

Summary of Key Points WHO Position Paper on BCG Vaccine, February 2018

Latent Tuberculosis Infections Controversies in Diagnosis and Management Update 2016

MEMORANDUM. Re: Guidance for follow-up of newly-arrived individual with Class B1 Tuberculosis Pulmonary Tuberculosis, no treatment

of clinical laboratory diagnosis in Extra-pulmonary Tuberculosis

Tuberculosis Tools: A Clinical Update

KJLM. Serial Interferon-gamma Release Assays for the Diagnosis of Latent Tuberculosis Infection in Patients Treated with Immunosuppressive Agents

Primer on Tuberculosis (TB) in the United States

QuantiFERON-TB Gold Plus

A hemodialysis cohort study of protocolbased anticoagulation management

Profile of Tuberculosis Infection among Current HIV+ Patients at the Philippine General Hospital

Northwestern Polytechnic University

TB, BCG and other things. Chris Conlon Infectious Diseases Oxford

More significance of TB- IGRA except for the diagnose of tuberculosis

A Clinician s Perspective: Improving Rheumatology Patient Care Using the T-SPOT.TB Test

Diagnostic challenges of active childhood TB in Tanzania. Michala Vaaben Rose, MD, Ph.D Department of Infectious Diseases, Hvidovre

ATTACHMENT 2. New Jersey Department of Health Tuberculosis Program FREQUENTLY ASKED QUESTIONS

MEMORANDUM. Re: Guidance for follow-up of newly-arrived Individual with a Class B1 Tuberculosis Extrapulmonary Tuberculosis

Conflict of Interest Disclosures:

Frances Morgan, PhD October 21, Comprehensive Care of Patients with Tuberculosis and Their Contacts October 19 22, 2015 Wichita, KS

Didactic Series. Latent TB Infection in HIV Infection

New Standards for an Old Disease:

Diagnosis Latent Tuberculosis. Disclosures. Case

Young Jin Kim, Sun Min Lee, Go Eun Choi, Sang Hyun Hwang, Hyung Hoi Kim, Eun Yup

ESCMID Online Lecture Library. by author

Validity of interferon-c-release assays for the diagnosis of latent tuberculosis in haemodialysis patients

Clinical and Public Health Impact of Nucleic Acid Amplification Tests (NAATs) for Tuberculosis

New Approaches to the Diagnosis and Management of Tuberculosis Infection in Children and Adolescents

CUSOM Student Health Immunization Requirements

Use of an Interferon- Release Assay To Diagnose Latent Tuberculosis Infection in Foreign-Born Patients*

LTBI-Tuberculin skin test. T-Spot.TB Technology. QuantiFERON -TB Gold In Tube T-SPOT.TB ELISA ELISA

Takashi Yagisawa 1,2*, Makiko Mieno 1,3, Norio Yoshimura 1,4, Kenji Yuzawa 1,5 and Shiro Takahara 1,6

LATENT TUBERCULOSIS. Robert F. Tyree, MD

Mycobacterial Infections: What the Primary Provider Should Know about Tuberculosis

Review. Interferon- assays in the immunodiagnosis of tuberculosis: a systematic review. Interferon- assays for tuberculosis diagnosis

Diagnosis of tuberculosis in children

Post-treatment change in Mycobacterium tuberculosis antigenstimulated tumor necrosis factor-alpha release in patients with active tuberculosis

Clinical Policy Title: Interferon-gamma release assays for tuberculosis screening

Diagnosis of tuberculosis

Immediate Incubation Reduces Indeterminate Results for QuantiFERON-TB Gold In-Tube Assay

Unilateral lateral rectus muscle advancement surgery based on one-fourth of the angle of consecutive esotropia

Transcription:

Ji et al. Infectious Diseases of Poverty (2017) 6:121 DOI 10.1186/s40249-017-0331-1 RESEARCH ARTICLE Open Access Usefulness of interferon-γ release assay for the diagnosis of sputum smear-negative pulmonary and extra-pulmonary TB in Zhejiang Province, China Lei Ji 1, Yong-Liang Lou 2, Zhong-Xiu Wu 3, Jin-Qin Jiang 1, Xing-Li Fan 1, Li-Fang Wang 1, Xiao-Xiang Liu 1, Peng Du 1, Jie Yan 4,5* and Ai-Hua Sun 1,2* Abstract Background: Quick diagnosis of smear-negative pulmonary tuberculosis (TB) and extra-pulmonary TB are urgently needed in clinical diagnosis. Our research aims to investigate the usefulness of the interferon-γ release assay (IGRA) for the diagnosis of smear-negative pulmonary and extra-pulmonary TB. Methods: We performed TB antibody and TB-IGRA tests on 389 pulmonary TB patients (including 120 smear-positive pulmonary TB patients and 269 smear-negative pulmonary TB patients), 113 extra-pulmonary TB patients, 81 patients with other pulmonary diseases and 100 healthy controls. Blood samples for the TB-Ab test and the TB-IGRA were collected, processed, and interpreted according to the manufacturer s protocol. Results: The detection ratio of smear-positive pulmonary TB patients and smear-negative pulmonary TB patients were 90.8% (109 of 120) and 89.6% (241 of 269), respectively. There was no statistically significant difference of its performance betweenthesetwosamplesets(p > 0.05). The detection ratio of positive TB patients and extra-pulmonary TB patients were 90.0% (350 of 389) and 87.6% (99 of 113), respectively, which was not significantly different (P > 0.05). Conclusions: In this work, the total detection ratio using TB-IGRA was 89.4%, therefore TB-IGRA has diagnostic values in smear-negative pulmonary TB and extra-pulmonary TB diagnosis. Keywords: Interferon-gamma release assay, Smear-negative pulmonary TB, Extra-pulmonary TB Multilingual abstracts Please see Additional file 1 for translations of the abstract into five official languages of the United Nations. Background The World Health Organization s (WHO) flagship Global TB Report 2016, released on Oct 12, considers Mycobacterium tuberculosis as one of the most * Correspondence: Med_bp@zju.edu.cn; aihuasun@126.com Equal contributors 4 Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital of Zhejiang University, Hangzhou 310003, Zhejiang, People s Republic of China 1 Department of Basic Medicine, Hangzhou Medical College, Hangzhou 310053, Zhejiang, People s Republic of China Full list of author information is available at the end of the article significant human pathogens that are harmful to the global public health [1]. Over 550 million Chinese are infected with M. tuberculosis, including nearly 100 million extra-pulmonary tuberculosis (TB) patients and 300 million sputum smear-negative and/or culture-negative infections [1]. The clinical manifestations of TB are highly varied and unspecific; M. tuberculosis is able to infect various systems of the human body. The bacteriological examination method (smear microscopy) is still the gold standard for TB diagnosis in many countries, but the low smearpositive rate and long incubation period required to obtain positive cultures are problematic for the requirements in clinical diagnosis and treatment. Extrapulmonary disease, like disseminated TB, brings great difficulties in clinical diagnosis [2, 3], since it is very The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Ji et al. Infectious Diseases of Poverty (2017) 6:121 Page 2 of 5 hard to detect M. tuberculosis in patient s sputum. Therefore, it results in a delay in the diagnostic process for pulmonary TB, especially in smearnegative cases [4]. Early detection and accurate diagnosis of TB could reduce the morbidity and spread of TB and it is also the key element in TB control [4]. Serological diagnosis of TB, such as the TB antibody (TB-Ab) test, is widely used in the laboratory in China, but the diagnostic yield is generally no more than 70%. Therefore, there is an urgent need for developing rapid and highly sensitive technology to change this situation [5, 6]. The interferon-γ release assay (IGRA) uses a special antigen as stimulus and follows Enzyme Linked Immunosorbent Assay (ELISA) procedures for detection has potentially high specificity and sensitivity. After being invented by Lalvani [5], this method is widely used in many counties and has become the most commonly used diagnostic method in TB detection [7 10]. IGRA is an ex vivo blood test of the T-cell immune response. It detects the T-cell release of interferon-gamma (IFN-γ), an inflammatory cytokine, following stimulation by antigens specific to the M. tuberculosis complex. These antigens include 6-kDa early secretory antigenic target (ESAT-6) and 10-kDa culture filtrate antigen (CFP-10), which are more specific for M. tuberculosis than the tuberculin skin test (TST) because they are not produced by Bacillus Calmette Guérin (BCG) vaccine strains and non-tuberculosis mycobacteria (NTM) strains [11]. In order to verify the sensitivity and specificity of TB- IGRA in TB tests, we compared the diagnostic performance of TB-IGRA and TB-Ab tests in 389 pulmonary TB patients, 113 extra-pulmonary TB patients, 81 patients with other pulmonary diseases and 100 healthy individuals visiting the Center of Physical Examination for routine physical examination. Methods Subjects This work has obtained approval from the Research Ethics Committee of Hangzhou Medical College. All subjects signed the informed consent forms as approved. Demographic and clinical data were collected using a specific form and then transferred into a database. The examination for TB was usually completed within one week. Whole blood samples of 502 patients with TB were collected from Hangzhou Red Cross Hospital, Quzhou People s Hospital, and Hospital of integrated traditional Chinese and Western medicine in Xiacheng District of Hangzhou and the Center for Disease Control and Prevention (CDC) of Zhejiang Province of China between September 2012 and June 2013. The demographic characteristics of the subjects in this study are shown in Table 1. The average age of the patients was 45 years and ranged from 13 to 82 years of age. According to sputum-smear, sputum-culture and X- ray tests, 120 patients were classified as smearpositive pulmonary TB patients, 269 patients were classified as smear-negative pulmonary TB patients and 113 patients were classified as extra-pulmonary TB patients (including tuberculous pleurisy, tuberculous peritonitis, spinal TB, renal TB, pelvic TB and intestinal TB). According to clinical manifestations, pathological diagnosis, sputum smear and culture, and X-ray diagnosis, 81 patients were classified as other lung disease patients (including pneumonia, lung cancer, lung tumors and bronchiectasis); the average age of these patients was 49 years and ranged from 17 to 82 years of age. One hundred cases of healthy individuals visiting the Center of Physical Examination for routine physical examination were collected from the above-mentioned hospitals. These healthy individuals had no prior history of TB and were sputum culture and X-ray negative. The average age of these subjects was 48 years and ranged from 31 to 60 years of age. Reagents and instruments TB-IGRA kits and TB-Ab kits were purchased from Beijing Wantai Biological Pharmacy Co., Ltd. and Nanjing Potomac Bio-Technology Co., Ltd., respectively. Multiskan MK-3 from Lab systems. Biosafety Cabinet from Heal Force. BD-TEK-ELX50 from Bio-Tek Company. TB-Ab test The TB-Ab test was used to detect serum samples. Assays and interpretation of results were strictly according to the manufacturers instructions. Simultaneously, sputum smear and sputum culture assays were performed. Table 1 The demographic characteristics of the subjects Population No. M/F a Median (IQR) age (years) Smear-positive pulmonary TB patients 120 77/43 45(25 61) Smear-negative pulmonary TB patients 269 173/96 Extra-pulmonary TB patients 113 66/47 Other lung diseases patients 81 28/53 49(33 61) Healthy controls 100 56/44 48(44 53) a M/F indicates the ratio of male/female

Ji et al. Infectious Diseases of Poverty (2017) 6:121 Page 3 of 5 Interferon-γ release assay All subjects were tested with TB-IGRA according to the manufacturer s instructions. Six milliliter fresh whole blood was collected using heparin vacutainer blood collection tubes. Briefly, 1 ml of peripheral venous blood samples collected from each participant were injected in three special culture tubes for the TB-IGRA: One test tube (T) coated with M. tuberculosis-specific antigens (a recombinant fusion protein of CFP-10 and ESAT-6), one positive control tube (P) containing phytohemagglutinin (PHA), and one negative control tube (N). Then the three tubes were incubated at 37 C for 22 ± 2 h. Subsequently, the tubes were centrifuged at 3000 g for 10 min and the serum was stored at 20 C until detection. The IFN-γ levels were detected using the ELISA method. Positive samples were identified following the criteria defined in Table 2 [12]. Statistical analysis Statistical analysis was performed using IBM SPSS Statistics ver. 11.0 (IBM Co., Armonk, NY, USA). Statistical significance was defined as P < 0.05. Student s t-tests were used to compare continuous variables of the study groups. To evaluate discrete variables, Pearson chi-square and Fisher exact tests were performed as appropriate. For the assessment of diagnostic agreement between tests, Cohen κ statistics were used. Results TB-IGRA test results of different patient groups The total detection ratio of TB-IGRA tests for all groups combined was 89.4% (449 of 502), while the detection ratios of the TB group and extrapulmonary TB group were 90.0% (350 of 389) and 87.6% (99 of 113), respectively. The detection ratios of sputum positive and smear-negative TB patient groups were 90.8% (109 of 120) and 89.6% (241 of 269), respectively, and the detection ratios between Table 2 TB-IGRA detection criterion N P N T N Results 400 Any value 14 and N 4 Positive 20 < 14 Negative 14 but < N 4 < 20 < 14 Uncertain 14 but < N 4 400 Any value Any value T Testing tube (T) content value, N Negative control tube (N) content value, P (Unit: pg/ml) Positive control tube (P) content value these two patient groups were not significant different (χ 2 = 0.52 and 0.14,P > 0.05). The detection ratios of TB-IGRA in other lung diseases and healthy controls was 11.6% (21 of 181), while the non-tb lung disease group TB-IGRA total detection ratio was 16.0% (13 of 81). Therefore, it was significantly lower than the detection ratio in TB patients, which was 90.0% (350 of 389) (χ 2 = 208.36, P < 0.01) (Tables 3 and 4). Sensitivity comparison of TB-IGRA and TB-Ab test The TB-IGRA and TB-Ab detection sensitivities of sputum positive TB patients were 90.8% (109 of 120) and 41.7% (50 of 120), respectively, the detection sensitivities of smear-negative TB patients were 89.6% (241 of 269) and 31.6% (85 of 269), respectively, and the overall detection sensitivities of TB patients were 90.0% (350 of 389) and 34.7% (135 of 389), respectively. The TB-IGRA and TB-Ab detection sensitivities of extra-pulmonary TB were 87.6% (99 of 113) and 31.0% (35 of 113), respectively, while the overall sensitivities of TB-IGRA and TB-Ab detection of TB were 89.4% (449 of 502) and 33.9% (170 of 502), respectively. Therefore, the sensitivity of the TB-IGRA test was significantly higher than the sensitivity of the TB-Ab test (χ 2 = 64.9 327.9, P < 0.01) (Table 3). Specificity comparison of TB-IGRA and TB-Ab test The specificity of the TB-IGRA tests for the healthy control group and the other lung diseases group were 92.0% (92 of 100) and 83.9% (68 of 81), respectively, while the specificity of the TB-Ab tests for the healthy controls group and the lung diseases group were 93.0% (93 of 100) and 86.4% (70 of 81), respectively. The overall specificity of the TB-IGRA tests and the TB-Ab tests were 88.4% (160 of 181) and 90.1% (163 of 181), respectively, which were not significantly different (χ 2 =0.2,P >0.05)(Table4). Discussion Currently, rapid diagnosis of TB is depending on observation of clinical symptoms, radiographic examination, smears and culture of clinical samples [4]. Because the negative rate of smears and culture of clinical samples is too high and the pathological samples for testing are hard to obtain, it is difficult to diagnose smear-negative and extra-pulmonary TB. Although the TST test is widely used to detect TB, NTM and BCG vaccination is known to introduce false-positive results [5]. Furthermore, in the TST test, patients with advanced HIV disease could give rise to false negative results [6]. In China, the BCG vaccination program has been widely implemented

Ji et al. Infectious Diseases of Poverty (2017) 6:121 Page 4 of 5 Table 3 Sensitivity comparison of different testing methods for TB patients Methods TB, n = 389 Extra-pulmonary TB, n = 113 Culture Positive, n = 120 Culture negative, n = 269 Total, n = 389 P S (%) P S (%) P S (%) P S (%) P S (%) TB-IGRA 109 90.8 241 89.6 350 90.0 99 87.6 449 89.4 TB-Ab 50 41.7 85 31.6 135 34.7 35 31.0 170 33.9 P short for Positive cases, S short for Sensitivity and causes a highly false-positive detection ratio in TST test [13]. Therefore, immunological methods with high sensitivity and specificity to detect smearnegative and extra-pulmonary TB are urgently needed. In this work, the total detection ratio of TB-IGRA tests was 89.4%, which was higher than the widely used TB-Ab test that showed a detection ratio of 33.9% (P <0.01).Furthermore,theseratioswerealso higher than results reported by Wang JY (87%) [14] and Kobashi Y (86%) [15], but slightly lower than Kim SH s result (95%) [16]. Overall, TB-IGRA showed a higher detection ratio of TB than other serological methods. In addition, the detection ratio of this method in smear-negative TB patients and positive pulmonary TB patients showed no significant difference (89.6% vs 90.8%, P > 0.05). Given that the TB-IGRA test has a high sensitivity, is able to detect smear-negative patients effectively, and can be used for latent TB detection, we used TB-IGRA for the diagnosis of TB and extra-pulmonary TB. The sensitivity of these tests were 90.0 and 87.6%, which was not significantly different (P >0.05).The sensitivity of the TB-Ab test that is used in TB and extra-pulmonary TB detection was 34.7 and 31%, which was significantly lower than the sensitivity of TB-IGRA (P <0.01). Furthermore, the TB-IGRA and TB-Ab specific detection ratios of healthy controls were 92.0 and 93.0%, while specific detection ratios in the lung disease group were 83.9 and 86.4%. Therefore, no significant difference in specificity was observed (P >0.05).Althoughthedetectionratioof the TB-IGRA was very high, still 8 positive samples in the healthy controls group were detected. Therefore, we need to confirm whether these positive samples are real false positives or latent TB. Table 4 Specificity comparison of different methods Methods Other pulmonary diseases, n =81 Healthy controls, n = 100 Total, n = 181 P S (%) P S (%) P S (%) TB-IGRA 13 83.9 8 92.0 21 88.4 TB-Ab 11 86.4 7 93.0 18 90.1 P short for Positive cases, S short for Sensitivity Conclusions In this work, we showed that the total detection ratio of the TB-IGRA tests was 89.4%, confirming that the TB-IGRA test has high sensitivity and specificity and diagnostic values in smear-negative pulmonary TB and extra-pulmonary TB diagnosis. The use of the TB-IGRA test may help in the early detection and accurate diagnosis of TB. Additional file Additional file 1: Multilingual Abstracts in the five official working languages of the United Nations. (PDF 869 kb) Abbreviations BCG: Bacillus Calmette Guérin; CDC: Centers for disease control and prevention; CFP-10: 10 kda culture filtrate antigen; ELISA: Enzyme linked immunosorbent assay; ESAT-6: 6-kDa early secretory antigenic target; IFN-γ: Interferon-γ; IGRA: Interferon-γ release assay; NTM: Non-tuberculosis mycobacteria; PHA: Phytohemagglutinin; TB: Tuberculosis; TB-Ab: TB antibody; TST: Tuberculin skin test; WHO: World Health Organization Acknowledgements The authors would like to thank Prof. Stijn van der Veen for critical reading of the manuscript. We gratefully acknowledge the contribution of all health staff. Funding This work was supported by Grants from the National Natural Sciences Foundation of China (81271893), the Natural Science Foundation of Zhejiang Province (LY12H19002), and Zhejiang Provincial Program for the Cultivation of High-level Innovative Health Talents, the Scientific Research Foundation of the Education Department of Zhejiang Province (Y201534356), the Natural Science Foundation of Zhejiang Medical College (2014B01) and Visiting Engineer Program of the Education Department of Zhejiang Province. Availability of data and materials The datasets supporting the findings of this paper are included in the paper. Authors contributions JL and LY were responsible for the initial study concept. YJ and SA all contributed to the study design. WZ carried out the data collection. JJ conducted the thematic analysis. FX drafted the initial paper with input from all authors. WL edited the initial paper. The remaining authors critically reviewed it and made revisions. All authors read and approved the final manuscript. Ethics approval and consent to participate This work has obtained the approval from the Research Ethics Committee of Hangzhou Medical College. The approval numbers are 2013 002 and 2011 011. The serum specimens used in this study have been allowed to collect from TB patients. Written informed consents have been obtained from the participants. We also have obtained the written informed consents from the guardians on behalf of the minors/children enrolled in our study.

Ji et al. Infectious Diseases of Poverty (2017) 6:121 Page 5 of 5 Consent for publication Not applicable. Competing interests The authors declare that they have no competing interests. Author details 1 Department of Basic Medicine, Hangzhou Medical College, Hangzhou 310053, Zhejiang, People s Republic of China. 2 School of Laboratory Medical Science and Life Science, Wenzhou Medical University, Wenzhou 325035, Zhejiang, People s Republic of China. 3 Zhejiang Blood Center, Hangzhou 310006, Zhejiang, People s Republic of China. 4 Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital of Zhejiang University, Hangzhou 310003, Zhejiang, People s Republic of China. 5 Department of Medical Microbiology and Parasitology, College of Medicine, Zhejiang University, Hangzhou 310058, Zhejiang, People s Republic of China. Received: 9 October 2016 Accepted: 4 July 2017 References 1. WHO. Global tuberculosis report 2016. Geneva: World Health Organization; 2016. http://www.who.int/tb/publications/global_report/en/. Accessed 15 Nov 2016. 2. Fry DE. Extra-pulmonary tuberculosis and its surgical treatment. Surg Infect. 2016;17(4):394 401. 3. Ali Chaudhry L, Al-Solaiman S. Multifocal tuberculosis: many faces of an old menace. Int J Mycobacteriol. 2013;2(1):58 69. 4. Park MY, Kim YJ, Hwang SH, Kim HH, Lee EY, Jeong SH, et al. Evaluation of an immunochromatographic assay kit for rapid identification of Mycobacterium tuberculosis complex in clinical isolates. J Clin Microbiol. 2009;47(2):481 4. 5. Lalvani A. Diagnosing tuberculosis infection in the 21st century: new tools to tackle an old enemy. Chest. 2007;131(6):1898 906. 6. Mandalakas AM, van Wyk S, Kirchner HL, Walzl G, Cotton M, Rabie H, et al. Detecting tuberculosis infection in HIV-infected children: a study of diagnostic accuracy, confounding and interaction. Pediatr Infect Dis J. 2013; 32(3):e111 8. 7. Wang MS, Wang JL, Wang XF. The performance of interferon-gamma release assay in nontuberculous mycobacterial diseases: a retrospective study in China. BMC Pulm Med. 2016;16(1):163. 8. Huo ZY, Peng L. Accuracy of the interferon-γ release assay for the diagnosis of active tuberculosis among HIV-seropositive individuals: a systematic review and meta-analysis. BMC Infect Dis. 2016;16:350. 9. Clifford V, He Y, Zufferey C, Connell T, Curtis N. Interferon gamma release assays for monitoring the response to treatment for tuberculosis: a systematic review. Tuberculosis. 2015;95(6):639 50. 10. Sun L, Yan HM, Hu YH, Jiao WW, Gu Y, Xiao J, et al. IFN-γ release assay: a diagnostic assistance tool of tuberculin skin test in pediatric tuberculosis in China. Chin Med J. 2010;123(20):2786 91. 11. Pai M, Behr M. Latent Mycobacterium tuberculosis infection and interferongamma release assays. Microbiol Spectr. 2016;4(5). doi:10.1128/ microbiolspec.tbtb2-0023-2016. 12. Wantai. Wantai quantitative diagnostic kit for Mycobacterium tuberculosis IFN-γ release assay (WT-IGRA) [package insert]. Beijing: Beijing Wantai Biological Pharmacy Co., Ltd; 2012. 13. Ruan Q, Zhang S, Ai J, Shao L, Zhang W. Screening of latent tuberculosis infection by interferon-γ release assays in rheumatic patients: a systemic review and meta-analysis. Clin Rheumatol. 2016;35(2):417 25. 14. Wang JY, Chou CH, Lee LN, Hsu HL, Jan IS, Hsueh PR, et al. Diagnosis of tuberculosis by an enzyme-linked immunospot assay for interferon-gamma. Emerg Infect Dis. 2007;13(4):553 8. 15. Kobashi Y, Obase Y, Fukuda M, Yoshida K, Miyashita N, Oka M. Clinical reevaluation of the QuantiFERON TB-2G test as a diagnostic method for differentiating active tuberculosis from nontuberculous mycobacteriosis. Clin Infect Dis. 2006;43(12):1540 6. 16. Kim SH, Choi SJ, Kim HB, Kim NJ, Oh MD, Choe KW. Diagnostic usefulness of a T-cell based assay for extrapulmonary tuberculosis. Arch Intern Med. 2007; 167(20):2255 9. Submit your next manuscript to BioMed Central and we will help you at every step: We accept pre-submission inquiries Our selector tool helps you to find the most relevant journal We provide round the clock customer support Convenient online submission Thorough peer review Inclusion in PubMed and all major indexing services Maximum visibility for your research Submit your manuscript at www.biomedcentral.com/submit