Comparison of lung diffusing capacity in young elite athletes and their counterparts

Similar documents
What do pulmonary function tests tell you?

6- Lung Volumes and Pulmonary Function Tests

Getting Spirometry Right It Matters! Performance, Quality Assessment, and Interpretation. Susan Blonshine RRT, RPFT, AE-C, FAARC

Pulmonary Function Testing

PULMONARY FUNCTION TESTING. By: Gh. Pouryaghoub. MD Center for Research on Occupational Diseases (CROD) Tehran University of Medical Sciences (TUMS)

PULMONARY FUNCTION TEST(PFT)

Chapter 3. Pulmonary Function Study Assessments. Mosby items and derived items 2011, 2006 by Mosby, Inc., an affiliate of Elsevier Inc.

S P I R O M E T R Y. Objectives. Objectives 3/12/2018

Basic approach to PFT interpretation. Dr. Giulio Dominelli BSc, MD, FRCPC Kelowna Respiratory and Allergy Clinic

PULMONARY FUNCTION. VOLUMES AND CAPACITIES

PULMONARY FUNCTION TESTING. Purposes of Pulmonary Tests. General Categories of Lung Diseases. Types of PF Tests

PFT Interpretation and Reference Values

CIRCULAR INSTRUCTION REGARDING ESTABLISHMENT OF IMPAIRMENT DUE TO OCCUPATIONAL LUNG DISEASE FOR THE PURPOSES OF AWARDING PERMANENT DISABLEMENT

Teacher : Dorota Marczuk Krynicka, MD., PhD. Coll. Anatomicum, Święcicki Street no. 6, Dept. of Physiology

Effect of a 12-Week Awimming-Training on Spirometric parametersvariables in Teenage Females

SPIROMETRY TECHNIQUE. Jim Reid New Zealand

#8 - Respiratory System

PULMONARY FUNCTION TESTS

Spirometry. Obstruction. By Helen Grim M.S. RRT. loop will have concave appearance. Flows decreased consistent with degree of obstruction.

UNIT TWO: OVERVIEW OF SPIROMETRY. A. Definition of Spirometry

Pulmonary Function Tests. Mohammad Babai M.D Occupational Medicine Specialist

Increased difference between slow and forced vital capacity is associated with reduced exercise tolerance in COPD patients

بسم هللا الرحمن الرحيم

Spirometry: Introduction

International Journal of Biomedical and Advance Research 318

SPIROMETRY. Marijke Currie (CRFS) Care Medical Ltd Phone: Copyright CARE Medical ltd

Indian Journal of Basic & Applied Medical Research; September 2013: Issue-8, Vol.-2, P

Content Indica c tion Lung v olumes e & Lung Indica c tions i n c paci c ties

Respiratory Physiology In-Lab Guide

Cardiovascular and Respiratory Systems

Dependence of forced vital capacity manoeuvre on time course of preceding inspiration in patients with restrictive lung disease

S P I R O M E T R Y. Objectives. Objectives 2/5/2019

Coexistence of confirmed obstruction in spirometry and restriction in body plethysmography, e.g.: COPD + pulmonary fibrosis

RESPIRATORY PHYSIOLOGY Pre-Lab Guide

Understanding the Basics of Spirometry It s not just about yelling blow

COMPREHENSIVE RESPIROMETRY

Interpreting pulmonary function tests: Recognize the pattern, and the diagnosis will follow

Lung Function Basics of Diagnosis of Obstructive, Restrictive and Mixed Defects

Josh Stanton and Michael Epton Respiratory Physiology Laboratory, Canterbury Respiratory Research Group Christchurch Hospital

MSRC AIR Course Karla Stoermer Grossman, MSA, BSN, RN, AE-C

Pulmonary Function Testing

Breathing and pulmonary function

Effect of different intensities of aerobic training on vital capacity of middle aged obese men

Study of pulmonary functions in Yoga performing group and non-yogics

Pulmonary Function Testing. Ramez Sunna MD, FCCP

Spirometric protocol

Exercise Stress Testing: Cardiovascular or Respiratory Limitation?

#7 - Respiratory System

ATHLETES, YOGIS AND INDIVIDUALS WITH SEDENTARY LIFESTYLES; DO THEIR LUNG FUNCTIONS DIFFER?

Asthma Management Introduction, Anatomy and Physiology

Anyone who smokes and/or has shortness of breath and sputum production could have COPD

Lung Pathophysiology & PFTs

Variation in lung with normal, quiet breathing. Minimal lung volume (residual volume) at maximum deflation. Total lung capacity at maximum inflation

Spirometry in primary care

PREDICTION EQUATIONS FOR LUNG FUNCTION IN HEALTHY, LIFE TIME NEVER-SMOKING MALAYSIAN POPULATION

BETTER SPIROMETRY. Marijke Currie (CRFS) Care Medical Ltd Phone: Copyright CARE Medical ltd

Int. J. Pharm. Sci. Rev. Res., 34(2), September October 2015; Article No. 24, Pages: Role of Spirometry in Diagnosis of Respiratory Diseases

Respiratory System. Chapter 9

Lab 4: Respiratory Physiology and Pathophysiology

SPIROMETRY METHOD. COR-MAN IN / EN Issue A, Rev INNOVISION ApS Skovvænget 2 DK-5620 Glamsbjerg Denmark

DESIGN, ANALYSIS AND IMPLEMENTATION OF SPIROMETER

Analysis of Lung Function

BiomedicalInstrumentation

Original Contributions

behaviour are out of scope of the present review.

Difference Between The Slow Vital Capacity And Forced Vital Capacity: Predictor Of Hyperinflation In Patients With Airflow Obstruction

A Comparative Study on Vital Capacity of Different Level Kabaddi Players

Physiology lab (RS) First : Spirometry. ** Objectives :-

Pathophysiology Department

This is a cross-sectional analysis of the National Health and Nutrition Examination

Evaluation of the effect of exercise on pulmonary function in young healthy adults

EFFECTS OF RESPIRATORY MUSCLE TRAINING ON VENTILATION AND ENDURANCE PERFORMANCE OF ACTIVE MALE STUDENTS

Quality Assurance Mapping Your QC Program Equipment and Test Quality. Susan Blonshine RRT, RPFT, FAARC, AE-C

Performance Enhancement. Cardiovascular/Respiratory Systems and Athletic Performance

Clinical pulmonary physiology. How to report lung function tests

UNIVERSITY OF JORDAN DEPT. OF PHYSIOLOGY & BIOCHEMISTRY RESPIRATORY PHYSIOLOGY MEDICAL STUDENTS FALL 2014/2015 (lecture 1)

European Master in Health and Physical Activity

Prevalence of Supranormal Pulmonary Function Testing Values. Between a Military and Non-Military Cohort. Anthony A. Cochet, Capt, USAF, MC 1

The Role of CPET (cardiopulmonary exercise testing) in Assessing Lung Disease in CF

Respiratory System Mechanics

EFFECTS OF POSTURE ON RESPIRATORY FUNCTIONS IN SMART PHONE USERS: AN OBSERVATIONAL STUDY

Year 10 Physical Education LC1 Medium Term Plan

FUNCTIONAL CONDITION OF THE RESPIRATORY SYSTEM AND RELATIONSHIP WITH A PHYSICAL WORKING CAPACITY OF ATHLETES FOOTBALL PLAYERS

/FVC ratio in children of 7-14 years of age from Western Rajasthan

Biology 236 Spring 2002 Campos/Wurdak/Fahey Laboratory 4. Cardiovascular and Respiratory Adjustments to Stationary Bicycle Exercise.

Report Templates Available for EasyOne Pro (LAB) and Easy on-pc

**Department of Physiology, K. G 's Medical College Lucknow, tbalrampur Hospital, Lucknow

CHAPTER 5: Training methods and aerobic training Practice questions - text book pages 91-92

Pulmonary Function Testing: Concepts and Clinical Applications. Potential Conflict Of Interest. Objectives. Rationale: Why Test?

A Primer on Reading Pulmonary Function Tests. Joshua Benditt, M.D.

Office Based Spirometry

Spirometry: FEVER DISEASE DIABETES HOW RELIABLE IS THIS? 9/2/2010 BUT WHAT WE PRACTICE: Spirometers are objective tools

Pulmonary Functions in Punjabi Type 2 Diabetics: Based on Chronicity of Disease

QATs. VCE Physical Education SCHOOL-ASSESSED COURSEWORK UNIT 3 OUTCOME 2. Introduction. Quality Assessment Tasks

Key-Words: oxygen uptake, VO2max, altitude, hypoxia, running.

Ch 16 A and P Lecture Notes.notebook May 03, 2017

PULMONARY FUNCTION TEST IN OBESE AND NON-OBESE INDIVIDUALS. 1 Dr. Shah Bijal, 2 Dr. Selot Bhavna, 3 Dr. Patel Sangita V., 4 Dr. Patel Nikhil J.

Triennial Pulmonary Workshop 2012

-SQA-SCOTTISH QUALIFICATIONS AUTHORITY. Hanover House 24 Douglas Street GLASGOW G2 7NQ NATIONAL CERTIFICATE MODULE DESCRIPTOR

1. When a patient fails to ventilate or oxygenate adequately, the problem is caused by pathophysiological factors such as hyperventilation.

Transcription:

Pulmonol. 2018;24(4):219-223 www.journalpulmonology.org BRIEF COMMUNICATION Comparison of lung diffusing capacity in young elite athletes and their counterparts B. Lazovic a,f,, M. Zlatkovic-Svenda b,f, J. Grbovic c, B. Milenković c,f, S. Sipetic-Grujicic d,f, I. Kopitovic e, V. Zugic c,f a University Clinical Hospital Center Zemun, Pulmonology Unit, Serbia b Institute of Rheumatology, School of Medicine, Belgrade, Serbia c Clinic for Lung Disease, Clinical Center of Serbia, Belgrade, Serbia d Institute of Epidemiology, Faculty of Medicine, Serbia e The Institute for Pulmonary Diseases of Vojvodina, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia f University of Belgrade School of Medicine, Belgrade, Serbia Received 25 April 2017; accepted 28 September 2017 Available online 22 November 2017 KEYWORDS Athletes; Diffusing capacity; Transfer coefficient Abstract Background: The influence of exercise on the pulmonary function is controverse, some studies have reported no sports influence, while the others have found positive correlation. Aim: To evaluate and compare the sports influence on pulmonary function: spirometry (VC, FVC, FEV1, FEV1/FVC), lung diffusing capacity (DLCO) and coefficient of the CO gas transfer (KCO) in two elite athletes groups and healthy sedentary controls. Method: Equally divided into aerobic and anaerobic group, 60 elite athletes were recruited, as well as 43 age-matched, healthy sedentary controls. All of the participants performed basic anthropometric measurements, spirometry, DLCO and KCO at rest. Kruskal -Wallis one way ANOVA test was used to determine differences between groups; Mann -Whitney U test was used for inter-groups differences and Pearson coefficient for pulmonary variables and anthropometric parameters correlation. Statistical analyses were performed using the SPSS computer statistic program, version 20. Results: No differences were found in pulmonary characteristics (spirometric function values, DLCO and KCO) in athletes and non-athletes at rest, as well as between aerobics and anaerobics. There were no correlations between the anthropometric parameters and the investigated respiratory function tests. DLCO (%) correlated positively with in athletes playing anaerobic type of sport (karate and taekwondo) (p = 0.036; r = 0.544), and negatively in sedentary control group (p = 0.030; r = 0.560). Regarding KCO, no differences were found. Corresponding author. E-mail address: lazovic.biljana@gmail.com (B. Lazovic). https://doi.org/10.1016/j.rppnen.2017.09.006 2531-0437/ 2017 Sociedade Portuguesa de Pneumologia. Published by Elsevier España, S.L.U. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

220 B. Lazovic et al. Conclusion: Spirometry indices and DLCO are not influenced either by aerobic or anaerobic training type, so benefits of sports on pulmonary indices or DLCO was not confirmed. 2017 Sociedade Portuguesa de Pneumologia. Published by Elsevier España, S.L.U. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Introduction Single breath carbon monoxide diffusing capacity (DLCO) is one of the most valuable clinical tests for the pulmonary function assessment in clinical medicine and one of the most widely used tests for the pulmonary gas exchange, measuring the inspired and expired carbon monoxide partial pressure difference. 1,2 It reflects alveolo-capillary membrane properties, particularly the movement of oxygen from the alveoli into the red blood cells, demonstrating the capillary gas uptake. 1 In healthy individuals, DLCO is mainly predicted by, gender and age. Studies examining pulmonary function and DLCO in athletes are scarce and heterogeneous with some contradictory results. Some studies have shown no significant differences in the respiratory function between physically trained individuals and their age-matched sedentary controls, while others have found larger lung volumes in some particular types of sport, such as swimming. 2 In order to add information about the influence of sport on DLCO, to define sport disciplines in terms of the health benefit, to document the effects of training on the pulmonary function and eventually add new follow-up measurements in sports, we have investigated the lung diffusing capacity in young elite athletes and their age-matched nonathletic, sedentary controls. Athletes were divided into two groups according to their different sport disciplines which cover two totally divergent ways of training: aerobic and anaerobic. Materials and methods Participants A total of 103 persons were investigated (all men, since there were no women in the examined professional sport disciplines). The sport group included 60 young elite athletes, divided into two groups according to the type of the sport involved: 30 elite football players (aerobics) and 30 karate and taekwondo players (anaerobics), aged (mean (SD)) 20.7 (4.1) and 21.9 (4.3) years, respectively. Control group consisted of 43 age-matched sedentary counterparts, aged 21.5 (3.4) years. Elite athlete was typically described as an athlete who is systematically being trained for a minimum of five years and at least 15 hours a week, and has been competing in international level tournaments. Average training period for athletes was 12.4 (4.3) years with 19.1 (0.4) hours per week for football players and 11.6 (2.4) years and 19.1 (2.1) hours for karate and taekwondo players. Exclusion criteria were: past or current smoking, as well as any known chronic respiratory or cardiovascular disease. None of the athletes suffered from exercise-induced asthma, according to self-reports. Control group participants were not routinely engaged in any type of sport. Ethical approval The research protocol was approved by Institutional Review Board for medical ethics and complied with the Declaration of Helsinki guidelines. All participants had given written informed consent before the inclusion. Pulmonary data All experiments were performed using the same spirometer and analyzed with integrated software (MasterScreen Diffusion, Viasys HealthCare, Germany). The calibration of spirometar was checked on daily basis according to the American Thoracic Society/European Respiratory Society (ATS/ERS) criteria. All participants rested in sitting position for 10 minutes before performing pulmonary function tests (PFT). First, the (relaxed) vital capacity (VC) was determined. After taking a series of normal breaths, the participants exhaled fully, following by a full inhalation. Several maneuvers of VC were performed and in some cases additional measurements were required, until the two highest VCs did not differ by more than 150 ml. After determination of VC, the lung diffusing capacity for carbon monoxide (DLCO) was established as described before. A simulator test was performed daily, and the system was recalibrated before each individual test. During the test, the participants were asked to start with normal respiration, followed by a relaxed exhalation up to the residual volume and a quick inhalation to 90% VC from the gas source with 0.3% carbon monoxide. During the test participants were asked to exhale after 9-11 s. The interval between trials was 4 minutes. DLCO was presented unadjusted and as the percentage of the predicted value (% DLCO pred). DLCO per alveolar volume (VA) gives the coefficient of CO transfer (KCO), which was also presented as the predicted percentage KCO (KCO pred). After completion of DLCO measurements, participants were asked to perform maximal forced inspiratory and expiratory maneuvers after a short period of normal breathing to construct flow-volume curves. This procedure was repeated until the criteria set out by the ATS/ERS were met. We measured the following parameters: vital capacity- VC (measured in liters-l), forced vital capacity-fvc (L), forced expiratory volume in the first second-fev1 (L), Peak

Carbon monoxide diffusing capacity at rest 221 Expiratory FlowPEF: (L/s) and FEV1/FVC ratio (%). The predicted values for FEV1 (FEV1pred), PEF (PEF pred) and DLCO were derived from reference value for European Community for Steel and Coal (ECSC). Data analysis Pulmonary parameters were presented by descriptive methods of statistics, as predicted and measured values, the later achieved both in liters and in percentages. Kruskal -Wallis one way ANOVA test was used to determine differences between groups with relation to the measured parameters; Mann -Whitney U test was used for inter-groups differences. Correlation between pulmonary variables and anthropometric parameters was determined by Pearson coefficient. Statistical analyses were performed by using the SPSS for Windows, version 20. Results Participant characteristics are shown in Table 1. No significant age-related differences were found. Significant differences were found in weight and BMI between aerobics and controls, aerobics and anaerobics, anaerobics and controls (p < 0.05). The null hypothesis that the investigated parameters had the same distribution across groups was tested. No difference was found regarding predicted and measured VC, FVC, FEV1 and PEF values, as well as with regard to VC, FVC, FEV1, FEV1/VC and PEF measured values (both in liters and in percentages) among aerobics, nonaerobics and controls. Also, no difference was found in DLCO and KCO in aerobics, non-aerobics and controls (Table 2). Investigating anthropometric influence on respiratory function, the only significant correlations were found between DLCO (%) and, which might be due to different alveolar volumes, found to be positive in anaerobic group (p = 0.036; r = 0.544), and negative in the control group (p = 0.030; r = 0.560) (Graph 1). Discussion The present study has shown no difference in lung volumes, lung diffusing capacity and gas transfer coefficient between aerobic athletes, anaerobic athletes and their age-matched controls at rest. Our investigation has shown no influence of age, body weight, body and BMI on lung volumes, as previously reported. 2 Strong positive correlation was found between and DLCO in athletes playing anaerobic type of sport (karate) (the higher the athlete is, the higher DLCO he has) and negative correlation in controls (the taller the person is, the lower DLCO is). We did not observe correlations between DLCO/VA ratio and. According to some studies, athletes have higher lung volumes than sedentary controls, mostly caused by respiratory adaptations to training. 3-5 However, published material about training influence on DLCO enhancement is limited. In 1967, several authors have reported higher DLCO in athletes (specially swimmers, when compared to sedentary controls), suggesting that increased DLCO was due to physical training under the continuous oxygen delivery circumstances. 6 On the other hand, some studies have also denied the influence of training on athlete s DLCO: a vigorous fivemonths endurance training has shown lowering of the heart rate, but no DLCO changes. 7 In elite swimmers, enhanced DLCO could be caused by larger lung volumes, not by DLco/VA ratio increase. It could be explained by the specific way of training, which might be the reason for DLCO increase. It should be borne in mind that higher DLCO in athletes could also be caused by the self-selection bias. A very recent study has shown that endurance-trained athletes appear to have differences within the pulmonary membrane that facilitate the increased O2 demand for the high-level exercise, as it was noticed that athletes had a greater DLCO and greater DM at 80 and 90% of VO2 max compared to non-athletes. 8 However, it was suggested that there should be an upper limit for the pulmonary expansion at which DLCO reaches its maximum. The apparent oxygen diffusing capacity (DLO2) approached a plateau or upper limit as the work load increases, by reaching its submaximal levels. 9,10 Repeated, high intensity exercise may reduce the integrity of the lungs over the years - leading to DLCO diminishment, which is increased with age and particularly and almost immediately after exercise. 7 Also, the likelihood of developing higher arterial desaturation in trained men is less during submaximal exercise when compared to the untrained, because Table 1 Patient characteristics. Group p a p b Mean (SD) Ae/An/C Ae/An Ae/C An/C Aerobic Anaerobic Control Age (years) 20.7 (4.1) 21.9 (4.3) 21.5 (3.4) ns Weight (kg) 77.5 (8.9) 82.9 (7.7) 95.7 (27.4) 0.009 ** 0.034 * 0.005 ** 0.033 * Height (cm) 182.7 (8.2) 181.5 (7.3) 175.3 (27.1) ns BMI (kg/m 2 ) 23.2 (1.7) 25.1 (1.9) 26.7 (2.9) 0.000 ** 0.002 ** 0.000 ** 0.020 ** a Kruskal -Wallis one-way ANOVA test for independent samples. b Mann -Whitney U test for two independent samples. * Level of significance: p < 0.05. ** Level of significance: p < 0.01.

222 B. Lazovic et al. Table 2 Pulmonary characteristics (spirometrics, diffusion capacity) for aerobics (A), non-aerobics (B) and controls (C). Mean (SD) p a Pulmonary characteristics Spirometry Diffusion capacity Predicted Measured (L) Measured (%) Group A B C A/B/C VC 5.76 (0.45) 5.70 (0.45) 5.73 (0.46) ns FVC 5.53 (0.48) 5.44 (0.41) 5.48 (0.43) ns FEV1 4.63 (0.35) 4.56 (0.31) 4.59 (0.32) ns PEF 10.18 (0.39) 10.18 (0.44) 10.21 (0.46) ns VC 5.94 (0.72) 5.97 (0.86) 5.95 (0.70) ns FVC 5.85 (0.67) 5.90 (0.86) 5.83 (0.65) ns FEV1 4.96 (0.60) 4.86 (0.80) 4.87 (0.55) ns FEV1/VC 85.58 (6.94) 82.25 (6.58) 83.62 (6.07) ns PEF 11.04 (1.54) 11.26 (1.61) 11.94 (1.54) ns VC 103.20 (8.05) 104.33 (9.63) 103.60 (9.97) ns FVC 105.87 (8.50) 108.07 (10.31) 106.67 (10.08) ns FEV1 106.33 (9.31) 105.73 (13.13) 106.40 (12.31) ns FEV1/VC 103.27 (8.30) 100.40 (8.70) 100.80 (7.66) ns PEF 108.27 (12.91) 110.33 (13.40) 117.27 (16.40) ns Predicted DLCO b 12.44 (0.76) 12.50 (0.79) 12.49 (0.84) ns KCO 1.68 (0.03) 1.68 (0.03) 1.67 (0.03) ns Measured (L) DLCO b 12.97 (2.18) 13.06 (2.29) 12.49 (1.62) ns KCO 1.78 (0.21) 1.79 (0.24) 1.73 (0.17) ns Measured (%) DLCO b 104.20 (16.30) 104.20 (15.01) 100.27 (14.41) ns KCO 106.13 (12.27) 106.87 (14.86) 103.47 (9.53) ns VC, vital capacity; FVC, forced vital capacity; FEV1, forced expiratory volume in1 second; PEF, peak expiratory flow; VC, Tiffeneau-Pinelli index; DLCO, diffusion capacity for carbon monoxide; KCO, transfer coefficient for carbon monoxide. a Kruskal -Wallis one way ANOVA test for independent samples. b Mann -Whitney U test. DLCO DLCO DLCO 20.00 Statistics: ns 20.00 r=0.544 p=0.036 20.00 r=0.560 p=0.030 17.50 17.50 17.50 15.00 15.00 15.00 12.50 12.50 12.50 10.00 10.00 10.00 160 170 180 190 200 160 170 180 190 200 160 170 180 190 200 Aerobics Anaerobics Controls Graph 1 Correlation between and DLCO (realized value) in aerobics, anaerobics and controls. of the lung diffusion capacity limitation and the fact that mechanical constraints of respiration occur at maximal exercise, or close to it. 7,8 Our study has shown no differences in pulmonary indices between aerobics and anaerobis at rest. However, some other studies have shown different lung volumes between athletes and non-athletes. 3 Considering the type of the sport examined, karate, we did not expect huge respiratory system changes, concordant with earlier studies. 4 The results of the present study suggest that different sport disciplines have no influence on the pulmonary function indices, which consequently cannot be used for monitoring the sport achievements. Study limitations: controls were significantly overweight compared with the other two groups, which might have impact on DLCO. Results of the present study are limited to male subjects only (no elite female athletes were available in the disciplines we looked at). The sample size was limited by the number of national representatives in Serbia engaged in specific sport disciplines. As the study was performed at the beginning of the training session, we were not able to test whether the lung diffusing capacity would

Carbon monoxide diffusing capacity at rest 223 be subject to change after a pause in the intensive training session. Conflicts of interest The authors have no conflicts of interest to declare. References 1. McKenzie DC. Respiratory physiology: adaptations to high-level exercise. Br J Sports Med. 2012;46:381-4. 2. Bougault V, Turmel J, Levesque B, Boulet LP. The respiratory health of swimmers. Sports Med. 2009;39:295-312. 3. Lazovic B, Mazic S, Suzic-Lazic J, Djelic M, Djordjevic-Saranovic S, Durmic T, et al. Respiratory adaptations in different types of sports. Eur Rev Med Pharmacol Sci. 2015;19:2269-74. 4. Mazic S, Lazovic B, Djelic M, Suzic-Lazic J, Djordjevic-Saranovic S, Acimovic T, et al. Respiratory parameters in elite athletes - does sport have an influence? Rev Port Pneumol. 2015;21: 192-7. 5. Durmic T, Lazovic B, Djelic M, Lazic JS, Zikic D, Zugic V, et al. Sport-specific influences on respiratory patterns in elite athletes. J Bras Pneumol. 2015;41:516-22. 6. Anderson TW, Shepartd RJ. Physical training and exercise diffusing capacity. Int Y Angev Physio Elinsc Abeitsphysio. 1967;25:198-209. 7. Dempsey JA, Hanson PG, Henderson KS. Exercise-induced arterial hypoxaemia in healthy human subjects at sea level. J Physiol. 1984;355:161-75. 8. Tedjasaputra V, Bouwsema M, Stickland M. Effect of aerobic fitness on capillary blood volume and diffusing membrane capacity responses to exercise. J Physiol. 2016;594:4359-70. 9. Rasmussen BS, Hanel B, Jensen K, Serup B, Secher NH. Decrease in pulmonary diffusion capacity after maximal exercise. J Sports Sci. 1984:185-8. 10. Préfaut C, Anselme F, Caillaud C, Massé-Biron J. Exerciseinduced hypoxemia in older athletes. J Appl Physiol (1985). 1994;76:120-6.