Antioxidant activity and components of a traditional chinese medicine formula consisting of Crataegus pinnatifida and Salvia miltiorrhiza

Similar documents
A high-performance liquid chromatography (HPLC) method for determination of chlorogenic acid and emodin in Yinhuang Jiangzhi Tea

Application Note. Agilent Application Solution Analysis of ascorbic acid, citric acid and benzoic acid in orange juice. Author. Abstract.

Research on Extraction Process of Gallic Acid from Penthorum chinense Pursh by Aqueous Ethanol

HPLC Determination of Eight Polyphenols in the Leaves of Crataegus pinnatifida Bge. var. major

Journal of Chromatography A, 1157 (2007) 51 55

Pharmacokinetic Study on Hyperoside in Beagle s Dogs

Determination of Tetracyclines in Chicken by Solid-Phase Extraction and High-Performance Liquid Chromatography

Qualitative and quantitative determination of phenolic antioxidant compounds in red wine and fruit juice with the Agilent 1290 Infinity 2D-LC Solution

Analysis of Counterfeit Antidiabetic Drugs by UHPLC with the Agilent 1220 Infinity Mobile LC

SUPPLEMENTARY MATERIAL Antiradical and antioxidant activity of flavones from Scutellariae baicalensis radix

Development, Estimation and Validation of Lisinopril in Bulk and its Pharmaceutical Formulation by HPLC Method

F. Al-Rimawi* Faculty of Science and Technology, Al-Quds University, P.O. Box 20002, East Jerusalem. Abstract

THIN LAYER CHROMATOGRAPHY

Journal of Chemical and Pharmaceutical Research, 2013, 5(1): Research Article

Plasmonic blood glucose monitor based on enzymatic. etching of gold nanorods

J Pharm Sci Bioscientific Res (4): ISSN NO

retardation in infants. A wide variety of analytical methods for the analysis of

A chemical family-based strategy for uncovering hidden bioactive. molecules and multicomponent interactions in herbal medicines

CHAPTER INTRODUCTION OF DOSAGE FORM AND LITERATURE REVIEW

Journal of Chemical and Pharmaceutical Research, 2014, 6(3): Research Article

CHAPTER 8 HIGH PERFORMANCE LIQUID CHROMATOGRAPHY (HPLC) ANALYSIS OF PHYTOCHEMICAL CONSTITUENTS OF M. ROXBURGHIANUS AND P. FRATERNUS PLANT EXTRACTS

Development and validation of related substances method for Varenicline and its impurities

Journal of Chemical and Pharmaceutical Research, 2017, 9(3): Research Article

Optimization of extraction method and profiling of plant phenolic compounds through RP-HPLC

RP-HPLC Analysis of Temozolomide in Pharmaceutical Dosage Forms

Title Revision n date

Determination of β2-agonists in Pork Using Agilent SampliQ SCX Solid-Phase Extraction Cartridges and Liquid Chromatography-Tandem Mass Spectrometry

SUPPLEMENTARY MATERIAL

Rapid Gradient and Elevated Temperature UHPLC of Flavonoids in Citrus Fruit

Reverse Phase HPLC Analysis of Atomoxetine in Pharmaceutical Dosage Forms

Panpan Wu 1,2, Fajie Li 3,4, Jianyong Zhang 5, Bin Yang 2*, Zhaojie Ji 1 and Weidong Chen 1

OPTIMIZATION OF MICROWAVE-ASSISTED EXTRACTION OF BIOACTIVE COMPOUNDS FROM LEAVES AND STEMS OF THAI WATER SPINACH (Ipomoea aquatic var.

DETERMINATION OF OXYCODONE CONTENT AND RELATED SUBSTANCES IN OXYCODONE AND ACETAMINOPHEN CAPSULE BY HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY

Amudha S et al., Asian Journal of Pharmthiaceutical Technology & Innovation, 04 (21); 2016; Research Article

METHOD DEVELOPMENT AND VALIDATION BY RP-HPLC FOR ESTIMATION OF ZOLPIDEM TARTARATE

International Journal of Pharma and Bio Sciences DEVELOPMENT AND VALIDATION OF RP-HPLC METHOD FOR THE ESTIMATION OF STRONTIUM RANELATE IN SACHET

ISSN: ; CODEN ECJHAO E-Journal of Chemistry 2011, 8(3),

Bangladesh J. Bot. 46(4): , 2017 (December)

Determination and pharmacokinetics of manidipine in human plasma by HPLC/ESIMS

Application Note. Agilent Application Solution Analysis of fat-soluble vitamins from food matrix for nutrition labeling. Abstract.

Determination of Flavones in Crataegus pinnatifida by Capillary Zone Electrophoresis

ISSN (Print)

Separation of Polyphenols by Comprehensive 2D-LC and Molecular Formula Determination by Coupling to Accurate Mass Measurement

Pelagia Research Library

Pelagia Research Library

ISSN X CODEN (USA): PCHHAX. A study of the component composition of phenolic compounds obtained from Dahlia varieties Ken s Flame herb

UPLC/MS Monitoring of Water-Soluble Vitamin Bs in Cell Culture Media in Minutes

Ankit et al Journal of Drug Delivery & Therapeutics; 2013, 3(2), Available online at RESEARCH ARTICLE

SIMULTANEOUS ESTIMATION OF VALSARTAN AND HYDROCHLOROTHIAZIDE IN TABLETS BY RP-HPLC METHOD

Application Note. Treatment of poor memory, memory loss, Alzheimer s disease, peripheral vascular disease.

Effective use of Pharmacopeia guidelines to reduce cost of chromatographic analysis for Fluticasone propionate

IJPAR Vol.3 Issue 4 Oct-Dec-2014 Journal Home page:

Application Note Soy for Isoflavones by HPLC. Botanical Name: Glycine max L. Common Names: Parts of Plant Used: Beans.

Sanjog Ramdharane 1, Dr. Vinay Gaitonde 2

Application Note. Small Molecule Pharmaceuticals. 2-Ethyl-2-phenylmalonamide Ethosuximide Primidone Carbamazepine. Carbamazepine-

Cholesterol determination using protein-templated fluorescent gold nanocluster probes

Pharmacokinetics and excretion of cryptotanshinone after intravenous injection in pigs

MEDAK DIST. ANDHRA PRADESH STATE, INDIA. Research Article RECEIVED ON ACCEPTED ON

Simultaneous determination of triacetin, acetic ether, butyl acetate and amorolfine hydrochloride in amorolfine liniment by HPLC

RP-HPLC Method Development and Validation of Abacavir Sulphate in Bulk and Tablet Dosage Form

TENOFOVIR TABLETS: Final text for addition to The International Pharmacopoeia (June 2010)

Isolation of five carotenoid compounds from tangerine tomatoes

Optimization of ultrasound extraction of Wolfberry Flavonoids and its antioxidant activities


Journal of Chemical and Pharmaceutical Research

DEVELOPMENT AND VALIDATION OF RP-HPLC METHOD FOR QUANTITATIVE ANALYSIS TOLBUTAMIDE IN PURE AND PHARMACEUTICAL FORMULATIONS

Automated Sample Preparation for FAME Analysis in Edible Oils Using an Agilent 7696A Sample Prep WorkBench

Development and Validation of Improved RP-HPLC method for Identification and Estimation of Ellagic and Gallic acid in Triphala churna

Chang-Seob Seo, Jung-Hoon Kim, Hyeun-Kyoo Shin

Synergistic effects of antioxidative peptides from rice bran

Abstract. G. D. Patil 1, P. G. Yeole 1, Manisha Puranik 1 and S. J. Wadher 1 *

Development and Validation of Stability Indicating HPTLC Method for Estimation of Seratrodast

Tentu Nageswara Rao et al. / Int. Res J Pharm. App Sci., 2012; 2(4): 35-40

Determination of taurine in energy drinks by high-performance liquid chromatography

International Journal of Pharma and Bio Sciences

Relationship in between Chemical Oxidation and Browning of Flavanols

OPTIMIZATION OF EXTRACTION PROCESS FOR TOTAL POLYPHENOLS FROM ADLAY

Analysis of the fatty acids from Periploca sepium by GC-MS and GC-FID

SUPPLEMENTARY MATERIAL

Asian Journal of Pharmaceutical Analysis and Medicinal Chemistry Journal home page:

A New Stability-Indicating and Validated RP-HPLC Method for the Estimation of Liraglutide in Bulk and Pharmaceutical Dosage Forms

RP- HPLC and Visible Spectrophotometric methods for the Estimation of Meropenem in Pure and Pharmaceutical Formulations

Electronic Supporting Information

DETERMINATION OF CANNABINOIDS, THC AND THC-COOH, IN ORAL FLUID USING AN AGILENT 6490 TRIPLE QUADRUPOLE LC/MS

Simultaneous Determination of Seven Active Components in Mian anning Mixture by HPLC Under Multiple UV Wavelengths

ORAC Assay Kit KF A/ B 96/ 192 tests (96 well plate)

Development and Validation of RP-HPLC Method for the Estimation of Gemigliptin

Analysis report ORAC Europe BV

Analytical Method Development for USP Related Compounds in Paclitaxel Using an Agilent Poroshell 120 PFP

Application Note. Author. Abstract. Introduction. Food Safety

Journal of Chemical and Pharmaceutical Research

Enhancement of flavonols water solubility by cyclodextrin inclusion complex formation - case study

Molecules 2018, 23, 2472; doi: /molecules

ASSAY AND IMPURITY METHOD FOR DURACOR TABLETS BY HPLC

Rb 1. Results of variance analysis REFERENCES Chin J Mod Appl Pharm, 2014 September, Vol.31 No

Development and Validation of a Polysorbate 20 Assay in a Therapeutic Antibody Formulation by RP-HPLC and Charged Aerosol Detector (CAD)

A HIGH PERFORMANCE LIQUID CHROMATOGRAPHIC ASSAY FOR LERCANIDIPINE HYDROCHLORIDE

World Journal of Pharmaceutical Research

DEVELOPMENT AND VALIDATION OF NEW HPLC METHOD FOR THE ESTIMATION OF PALIPERIDONE IN PHARMACEUTICAL DOSAGE FORMS

Development and Validation of Stability Indicating HPLC method for Determination of Eperisone HCL in Bulk and in Formulation

Transcription:

Chen et al. BMC Complementary and Alternative Medicine 2013, 13:99 RESEARCH ARTICLE Open Access Antioxidant activity and components of a traditional chinese medicine formula consisting of Crataegus pinnatifida and Salvia miltiorrhiza Cheng-Yu Chen, Hua Li, Ya-Nan Yuan, Hui-Qing Dai and Bin Yang * Abstract Background: The aims of this study were to evaluate the antioxidant activity and to identify the antioxidant components of a traditional Chinese medicine formula consisting of a combination of Shanzha (the fruit of Crataegus pinnatifida Bge. var. major N.E.Br., SZ) and Danshen (the root of Salvia miltiorrhiza Bge., DS). This medicine is extensively used to treat cardiovascular disease. Methods: Twelve samples extracted and fractionated from SZ, DS and the formula (SZ+DS) were analyzed. The concentrations of eight phenolic compounds were determined by high performance liquid chromatography. Oxygen radical absorbance capacity (ORAC) assay and 1,1-diphenyl-2-picrylhydrazyl assay were conducted to explore the antioxidant activities of the samples and of the 15 phenolic compounds detected. Correlation analysis of the antioxidant activity of herb samples and their phenolic components was performed. Results: The main phenolic component in all SZ+DS samples was salvianolic acid B, which exhibited strong antioxidant activity (ORAC value: 16.73 ± 2.53, IC50 value: 8.80 ± 0.06 μm) compared with the other phenolic compounds. For all samples, there was a positive relationship between their total phenolic components and their antioxidant activities. Conclusions: Phenolic compounds were the bioactive components of the herb samples, and salvianolic acid B was identified as the main bioactive compound in the SZ+DS formula. Keywords: Traditional Chinese medicine, Crataegus pinnatifida, Salvia miltiorrhiza, Antioxidant activity, Antioxidant compounds, HPLC, Oxygen radical absorbance capacity, DPPH assay Background Shanzha (the fruit of Crataegus pinnatifida Bge. var. major N.E.Br., SZ) and Danshen (the root of Salvia miltiorrhiza Bge., DS) are medicinal plants used extensively in traditional Chinese medicine (TCM). These two herbs (SZ+DS) are used together to treat cardiovascular diseases such as coronary disease and hyperlipemia. DS promotes blood circulation and tissue regeneration, while SZ prevents thrombosis and promotes digestion. In TCM, the combination of these two herbs is said to promote the qi circulation, nourish blood, remove blood stasis, and relieve pain [1]. Numerous studies have shown that cardiovascular disease is the result of a * Correspondence: ybinmm@hotmail.com Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China metabolic imbalance of endogenous radicals [2], so it is possible to treat it by administering antioxidants. Both SZ and DS exhibit high antioxidant activities [3,4]. The active components of SZ are mainly phenolic compounds such as chlorogenic acid, rutin, and ( )-epicatechin [5], while the active components of DS have been identified as salvianolic acid A and salvianolic acid B [6]. However, knowledge about the antioxidant capacity and the bioactive components in the SZ+DS combination is scarce. In most cases, the chemical ingredients in a herbal formula differ from those found in the individual herbs. Therefore, it is necessary to investigate the antioxidant activities and active components of the formula. Various in vitro methods have been used to measure the antioxidant capacity of samples. According to the 2013 Chen et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Chen et al. BMC Complementary and Alternative Medicine 2013, 13:99 Page 2 of 6 Table 1 Calibration curves, LOD and LOQ of the investigated compounds Analyte Calibration curve Linear range/μg r LOD/ng LOQ/ng Danshensu sodium Y=547569X-21458 0.09-6.80 0.9993 39.0 97.6 Protocatechuic aldehyde Y=4413435X-17209 0.02-2.31 0.9999 2.0 20.0 Rosmarinic acid Y=2057826X+15905 0.03-3.60 0.9995 8.6 34.6 Lithospermic acid Y=1114788X-45648 0.08-8.00 0.9999 33.9 84.8 Salvianolic B Y=1113657X-91003 0.04-10.80 0.9998 10.7 42.8 Salvianolic A Y=2744138X-38060 0.03-4.50 0.9997 6.0 30.0 Procyanidin B 2 Y=630617X+1435 0.07-1.60 0.9996 25.0 75.0 ( )-Epicatechin Y=682521X-3363 0.05-1.80 0.9997 14.0 56.0 mechanism by which antioxidants quench radicals, these methods are divided into two clusters. One is based on the ability of an antioxidant to deactivate radicals by hydrogen donation, and includes oxygen radical absorbance capacity (ORAC) assay, total oxidant scavenging capacity assay, and low-density lipoprotein assay. The other refers to the capacity of an antioxidant to terminate radicals through electron transferring, and includes 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay and Trolox equivalent antioxidant capacity assay [7]. In this paper, we investigated the antioxidant components in SZ+DS by using an High-performance liquid chromatography (HPLC)-based analytical method together with assays to measure antioxidant capacities. The HPLC method was used to characterize and quantify the phenolic components contained in the SZ, DS, and SZ+DS extracts, while the antioxidant assays were conducted to provide a comprehensive analysis of the antioxidant activities of the extracts and their phenolic components. Furthermore, we performed a correlation analysis of the antioxidant activities of the extracts and their corresponding phenolic components. Methods Chemicals and plants Salvianolic acid A and rosmarinic acid were purchased from the National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine (Nanchang, China). Lithospermic acid was obtained from the Shanghai Ronghe Pharmaceutical Company (Shanghai, China). Procyanidin B 2 was obtained from Chromadex. Salvianolic acid B, sodium danshensu, protocatechuic aldehyde, hyperoside, rutin, and ( )-epicatechin were purchased from the National Institute for Food and Drug Control (Beijing, China). Caffeic acid, 2,2'-azobis (2-methyl- propionamidine) dihydrochloride (AAPH), and DPPH were purchased from Sigma Chemical Co. (St. Louis, MO, USA). Quercetin, isoquercitrin, and fluorescein sodium were purchased from Fluka Chemical Co. Protocatechuic acid was obtained from Wako Pure Chemical Industries, Ltd. (Osaka, Japan). Trolox was purchased from Aldrich. Deionized water was prepared using a Milli-Q water purification system (Millipore, France). HPLC grade acetonitrile was purchased from Burdick & Jackson (USA). HPLC grade tetrahydrofuran was obtained from Fisher (USA). Other reagents were of analytical grade. DS and SZ were collected from Shandong Province (China) and identified by the authors as the fruit of C. pinnatifida var. major and the root of S. miltiorrhiza, respectively. Voucher specimens were deposited in the herbarium of the Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China. HPLC analysis was performed on a Waters Alliance 2695 System equipped with a Waters 2996 DAD. ORAC and DPPH Table 2 Precision and recovery for the developed HPLC method Analyte Precision Recovery Intra-day variability RSD (%) Inter-day variability RSD (%) Average (%) RSD (%) Danshensu sodium 3.33 3.77 98.77 1.64 Protocatechuic aldehyde 3.37 3.82 97.74 1.99 Rosmarinic acid 3.29 3.23 100.22 2.32 Lithospermic acid 2.57 2.61 101.21 1.32 Salvianolic B 3.48 0.73 103.38 3.34 Salvianolic A 3.27 3.45 99.19 2.56 Procyanidin B 2 2.27 2.82 100.00 5.40 ( )-Epicatechin 2.57 2.54 98.85 5.91

Chen et al. BMC Complementary and Alternative Medicine 2013, 13:99 Page 3 of 6 Figure 1 HPLC chromatogram of SDW at 288nm. 1, danshensu; 2, chlorogenic acid; 3, procyanidin B2; 4, ( )-epicatechin; 5, rosmarinic acid; 6, lithospermic acid; 7, salvianolic B; 8, salvianolic A. assays were performed on a Varioskan Flash Multimode Reader (Thermo Scientific, Finland). Sample preparation DS was reflux extracted for 1 h with a 10-fold water volume. The extract was filtered and centrifuged at 4000 rpm for 10 min, and the supernatant (DS water extract, DSW) was concentrated and dried up to produce the concentrated DS water extract 1 (DSW 1). Ethyl acetate was used to separate the lipophilic ingredients from the aqueous solution of DSW 1; both phases were concentrated to dryness and named as DS ethyl acetate extract (DSE) and concentrated DS water extract 2 (DSW 2), respectively. The SZ and SZ+DS samples were prepared in the same way, consequently obtaining eight extracts: SZ water extract (SZW), concentrated SZ water extract 1 (SZW 1), SZ ethyl acetate extract (SZE), concentrated SZ water extract 2 (SZW 2), SZ+DS water extract (SDW), concentrated SZ+DS water extract 1 (SDW 1), SZ+DS ethyl acetate extract (SDE), and concentrated SZ+DS water extract 2 (SDW 2). HPLC analysis HPLC analysis was carried out on an Agilent Extend C18 (4.6 250 mm, 5 μm) column. The mobile phase consisted of 50 mm phosphate buffer (ph 2.5) (solvent A), and methanol-acetonitrile-tetrahydrofuran (10:90:0.05, V/V/V) (solvent B). A gradient program was adopted for the analysis. The flow rate was 1.0 ml/min. The column temperature was set at 30 C. All concentrated water extract samples were extracted with 20 ml of 70% methanol in a reflux bath for 30 min. After cooling, the obtained solution was adjusted to the original weight, and filtered through a membrane filter (0.22 μm) before injection. All ethyl acetate extract samples were dissolved in 10 ml of 70% methanol and filtered through a membrane filter (0.22 μm) before injection. All water extract samples were filtered through a membrane filter (0.22 μm) directly before injection. The injection volume was 10 μl. ORAC assay ORAC assay was carried out using our previously reported method [8]. Briefly, the reaction mixture was Table 3 Content of phenolic compounds in herb samples/% (n=2) Danshensu Protocatechuic aldehyde Rosmarinic acid Lithospermic acid Salvianolic B Salvianolic A Procyanidin B 2 ( )-Epicatechin DSW 1 0.34 0.06 0.12 0.21 2.07 0.11 * * DSE * 0.03 0.01 * * 0.02 * * DSW 2 0.37 0.03 0.08 0.13 1.48 0.18 * * DSW 0.15 0.02 0.17 0.22 3.5 0.05 * * SZW 1 * * * * * * 0.01 0.01 SZE * * * * * * * * SZW 2 * * * * * * * * SZW * * * * * * 0.12 0.12 SDW 1 0.07 * 0.07 0.11 1.70 0.03 * * SDE * * 0.06 0.11 1.73 0.02 * * SDW 2 * * * * 0.16 * * * SDW 0.14 * 0.18 0.2 3.82 0.05 0.07 0.06 *No detected.

Chen et al. BMC Complementary and Alternative Medicine 2013, 13:99 Page 4 of 6 min intervals until the differences between data were within 0.003. Figure 2 Phenolic components in all herb samples. prepared with 100 μl of 0.08 nm fluorescein sodium in phosphate buffer solution (PBS) (75 mm, ph 7.4) and 50 μl of sample in 96-well plates. After incubation at 37 C for 30 min, 50 μl of 153 mm AAPH solution in PBS was added. The fluorescence (λ excitation = 490 nm; λ emission = 514 nm) of each well was measured at 1 min intervals. A standard curve of Trolox was plotted (10 100 μm) with each measurement. The antioxidant capacity was calculated based on the area under the fluorescence curve. The capacity was expressed as Trolox equivalents (μm trolox/μm compound, μm trolox/g extract). DPPH assay Scavenging of DPPH radical was determined according to our previously reported method with few modifications [9]. Briefly, 100 μl of each sample, dissolved in methanol, was poured into 96-well plates and 150 μl of 130 μm DPPH was added. The absorbance of the reaction mixture at 516 nm was continuously measured at 1 Table 4 ORAC value and IC 50 value of extract ORAC value/μmol g -1 IC 50 value/μg ml -1 SZE 28±3 10536.67±514.10 DSE 39±3 2285.71±56.13 SZW 2 83±5 2362.45±90.24 SZW 1 190±31 786.88±17.60 SDW 2 209±19 746.35±16.60 SZW 375±41 412.67±12.77 DSW 2 603±27 198.74±7.36 SDW 1 768±94 178.20±3.52 DSW 757±26 131.15±10.29 DSW 1 788±47 96.39±1.35 SDE 916±48 219.95±24.90 SDW 1130±128 63.43±0.84 Results and discussion Method validation Method validation was performed on parameters such as linearity, precision and recovery. Calibration curves were constructed from peak areas versus compound amounts. The limit of detection (LOD) and limit of quantification (LOQ) for each marker compound were determined at signal-to-noise ratios of 3 and 10, respectively. The calibration data are shown in Table 1. Relative standard deviation (RSD) values were calculated and considered as the measure of precision. To assess the intra-day precision, the standard solution was injected eight times within a day. The inter-day precision test was assessed by testing over three consecutive days (Table 2). The accuracy of quantitation in terms of recovery was assessed. Standard solutions were spiked into the sample solution containing half the mass of the plant material with known amounts of the tested analytes, and the sample was extracted according to the procedure described in Sample preparation. The amount of each analyte in the standard solution was almost equal to that in the sample solution. The average recovery rate of the eight analytes ranged from 97.74% to 103.38%, with RSD values varying between 1.32% and 5.91% (Table 2). Sample analysis Eight phenolic compounds were identified from all samples of SZ, DS, and SZ+DS by comparing their retention times and UV spectra with those of standard compounds (Figure 1). Table 5 ORAC value and IC 50 value of compounds ORAC value IC 50 value/μm Chlorogenic acid 3.50±0.36 27.50±0.77 Danshensu sodium 5.30±0.31 23.00±0.26 Caffeic acid 5.31±0.18 23.60±0.47 Protocatechuic aldehyde 6.03±0.90 13.30±0.26 Hyperoside 6.20±1.08 22.00±0.19 Rosmarinic acid 7.02±1.03 13.50±0.10 Protocatechuic acid 7.84±1.26 17.50±0.25 Isoquercitrin 7.86±0.67 18.83±0.05 Rutin 9.62±1.40 18.30±0.49 Salvianolic A 10.26±0.82 12.10±0.15 ( )-Epicatechin 11.10±0.41 20.40±0.15 Lithospermic acid 11.40±0.71 15.61±1.07 Quercetin 12.90±0.35 13.10±0.26 Salvianolic B 16.73±2.53 8.80±0.06 Procyanidin B 2 20.29±1.80 11.20±0.30

Chen et al. BMC Complementary and Alternative Medicine 2013, 13:99 Page 5 of 6 Most phenolic components found in SZ and DS were also detected in the SZ+DS formula, except for protocatechuic aldehyde. SDW had a lower content of procyanidin B 2 and ( )-epicatechin compared with SZW, and a slightly higher content of salvianolic acid B compared with DSW. The amounts of danshensu, rosmarinic acid, lithospermic acid, salvianolic acid B and salvianolic acid A identified in DSW 1 were higher than those in SDW 1. Compared with DSE, SDE had higher contents of rosmarinic acid, lithospermic acid, and salvianolic acid B. The amount of salvianolic acid B in SDW 2 was lower than that in DSW 2. Regarding total phenolic compounds, SDW had the highest content, followed by DSW, while SZ samples had the lowest phenolic content (Table 3 and Figure 2). Rutin, hyperoside, and isoquercitrin were detected in SZW, but were not found in its concentrated water extract. Quercetin and tanshinone, which are hydrophobic and reported to be present in SZ and DS, respectively, were not detected in our experiment because of the solvent extraction treatment. No novel chromatographic peak was found in SZ+DS samples. Interestingly, lithospermic acid and salvianolic acid B were detected in SDE, but neither was found in DSE. This might be explained by the high content of organic acid in SZ, which may have lowered the ph value of SDW, contributing to the extraction of both phenolic compounds by ethyl acetate. Antioxidant activity of herb samples and phenolic compounds SDW exhibited the highest DPPH and AAPH free radical scavenging capacity, followed by DSW, SDW 1 and SDE, while SZE had the lowest values. The ORAC value of DS was similar to those reported in the literature [10,11], whereas the ORAC value of SZ differed greatly (190 μmolg -1 vs. 1240 μmolg -1 ) [11], which may be explained by the temperature of extraction (Table 4). The 15 phenolic compounds found in the samples appeared to have strong free radical-scavenging activity, with procyanidin B 2 and salvianolic acid B showing the highest values and chlorogenic acid the lowest (Table 5). In terms of structure-activity relationship, flavonoids such as rutin, hyperoside, and isoquercitrin, whose C-3 position is glycosylated, exhibited less free radical-scavenging capacity than their corresponding aglycon, quercetin. Flavonol showed higher radical-scavenging capacity than flavan (e.g. quercetin > ( )-epicatechin), while procyanidin B 2, which consists of two ( )-epicatechin units, had higher antioxidant activity than its monomer. Phenolic acid compounds such as salvianolic acid B, salvianolic acid A, rosmarinic acid, and lithospermic acid, which are composed of danshensu and caffeic acid units, exhibited higher radical-scavenging capacity than their monomer counterparts. Among phenolic compounds, salvianolic acid B was the most powerful radical scavenger, which is consistent with Zhao s result [12]. In summary, the conjugation system formed through the unsaturated double bond located at C 2 -C 3 of flavonol compounds and their C- 3 hydroxyl might contribute to the high radicalscavenging capacity of these compounds. Furthermore, such capacity can also be enhanced through polymerization of flavone or phenolic compounds, owing to the increase of hydroxyl groups. Correlation between the antioxidant activity of the samples and their phenolic compounds A positive relationship was established between the ORAC value of the herb samples and their total phenolic components, being represented with the linear equation Y = 530.92 X - 495.05, r = 0.9845, indicating that the higher the concentration, the higher the ORAC value. Similarly, a negative relationship was found between the IC 50 value of the herb samples and their total phenolic components, being represented with the linear equation Y = 63.207 Ln (X) + 211.12, r = 0.9424, indicating that the higher the concentration, the lower the IC 50 value. The content of salvianolic acid B correlated well with the radical-scavenging capacity of the DS and SZ+DS samples, suggesting that it was the main antioxidant component in these samples. Conclusions Our study demonstrated that phenolic compounds exhibited potential antioxidant activities and can be considered as bioactive components of DS and SZ. Among these compounds, salvianolic acid B from DS showed the highest activity and was identified as the main bioactive compound in the SZ+DS formula. Competing interests The authors declare that they have no competing interest. Authors' contributions C-yC was responsible for acquisition of data, analysis, drafting of the manuscript. HL, Y-nY and H-qD made contribution to collection and preparation of herbal samples. BY was coordinator and designed all the assays. All authors read and approved the final manuscript. Acknowledgements This work was supported by an International Cooperation Program from the Ministry of Science and Technology of the P.R.China (Grant No. 2006DFB31720). Received: 21 December 2012 Accepted: 26 March 2013 Published: 10 May 2013 References 1. Lv JS: Shi Jin Mo Dui Yao. Beijing: People s Military Medical Press; 2005. 2. Zhao BL: Oxygen free radical and nature antioxidants. Beijing: Science Press; 1999. 3. Xu J, Guo CJ, Wei JY, Yang JJ, Li YF: Studies on the effect of once administration different fruit juices by gavage on antioxidant capacity of

Chen et al. BMC Complementary and Alternative Medicine 2013, 13:99 Page 6 of 6 rat peripheral blood. Journal of Chinese Institute of Food Science and Technology 2007, 7:8 21. 4. Chen YL, Huang WJ, Liu Q: Effect of Danshen Injection on oxidant/ antioxidant system of geriatric refractory heart failure. Practical Clinical Medicine 2004, 5:15 17. 5. Bai GC, Qiu SX, Yu BY, Liu RH: Study on scavenging activities for superoxide anion radicals and structure-activity relationship of polyphenolic compounds from leaves of Crataegus. Chinese Pharmaceutical Journal 2005, 40:1066 1069. 6. Xia XH, Liu M, Zhang ZM, Wu ZJ, Pan SY: Anti-oxidant activity of hydrophilic components of Danshen root in vitro. Chinese Archive of Traditional Chinese Medicine 2009, 27:1085 1087. 7. Prior RL, Wu XL, Schaich K: Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. Journal of Agriculture and Food Chemistry 2005, 53:4290 4302. 8. Dai HQ, Chen CY, Yang B: AAPH scavenging activities of 22 flavonoids and phenolic acids and 9 extracts of Chinese materia medica. China Journal of Chinese Materia Medica 2010, 35:2296 2302. 9. Yuan YN, Chen CY, Yang B, Kusu F, Kotani A: DPPH radical scavenging activities of 31 flavonoids and phenolic acids and 10 extracts of Chinese materia medica. Chinese Journal of Chinese Materia Medica 2004, 34:1695 1700. 10. Ou BX, Huang DJ, Hampsch-Woodill M, Flanagan JA: When east meets west: the relationship between yin-yang and antioxidation-oxidation. FASEB J 2003, 17:127 129. 11. Liao H, Banbury LK, Leach DN, Liao H, Banbury LK, Leach DN: Antioxidant activity of 45 Chinese herbs and the relationship with their TCM characteristics. ecam Advance Access 2007:1 6. 12. Zhao GR, Xiang ZJ, Ye TX, Xiang ZJ, Yuan YJ, Guo JX, Zhao LB: Characterization of the radical scavenging and antioxidant activities of danshensu and salvianolic acid B. Food Chem Toxicol 2008, 46:73 81. doi:10.1186/1472-6882-13-99 Cite this article as: Chen et al.: Antioxidant activity and components of a traditional chinese medicine formula consisting of Crataegus pinnatifida and Salvia miltiorrhiza. BMC Complementary and Alternative Medicine 2013 13:99. Submit your next manuscript to BioMed Central and take full advantage of: Convenient online submission Thorough peer review No space constraints or color figure charges Immediate publication on acceptance Inclusion in PubMed, CAS, Scopus and Google Scholar Research which is freely available for redistribution Submit your manuscript at www.biomedcentral.com/submit