Allograft Cortical Strut for Reconstruction of Space-occupying Bone Lesions

Similar documents
Calcium Phosphate Cement

Unicameral bone cysts are benign, fluid-filled cavities

Bone Void Filler. Callos. The Next Generation in Calcium Phosphate Cement A COLSON ASSOCIATE

Intercalary Femur and Tibia Segmental Allografts Provide an Acceptable Alternative in Reconstructing Tumor Resections

Radiology Case Reports. Bone Graft Extruded From an Intramedullary Nail Tract in the Tibia. Penelope J. Galbraith, M.D., and Felix S. Chew, M.D.

An aggressive aneurysmal bone cyst of the proximal humerus and related complications in a pediatric patient

Solitary Bone Cyst of the Lunate: A Case Report

Developments in bone grafting in veterinary orthopaedics part one

chronos Bone Void Filler. Beta-Tricalcium Phosphate ( β-tcp) bone graft substitute.

CELLPLEX TCP SYNTHETIC CANCELLOUS BONE

Fibula bone grafting in infected gap non union: A prospective case series

Bone Grafting and Bone Graft Substitutes. Original Author: James Krieg, MD Revision Author: David Hak, MD Last Revision May 2010

Lawrence A. DiDomenico, DPM, FACFAS

The long term fate of the fibula when used as an intraosseous graft

Iliac aneurysmal bone cyst treated by cystoscopic controlled curettage

Spine A Preliminary Study of the Efficacy of Beta-Tricalcium Phosphate as a Bone Graft Expander for Instrumented Posterolateral Fusions

Conservative surgical management of simple monostotic fibrous dysplasia of the proximal femur in a 19-year-old basketballer: a case report

Laura M. Fayad, MD. Associate Professor of Radiology, Orthopaedic Surgery & Oncology The Johns Hopkins University

Isolated congenital anterolateral bowing of the fibula : A case report with 24 years follow-up

CASE REPORT. Bone transport utilizing the PRECICE Intramedullary Nail for an infected nonunion in the distal femur

CERAMENT BONE VOID FILLER

SAFETY AND PROBLEMS WITH METAL ON METAL HIP IMPLANTS G. CERULLI 1,2,3,4

The injectable, self-setting calcium phosphate bone graft substitute.

34 th Annual Meeting of the European Bone and Joint Infection Society (EBJIS)

Relative Osteopenia After Femoral Implant Removal in Children and Adolescents

Ankle and subtalar arthrodesis

JMSCR Vol 06 Issue 12 Page December 2018

Metastatic Disease of the Proximal Femur

Hip Salvaging Surgery in Complicated Aneurysmal Bone Cyst of Proximal Femur

Treatment of Distal Radius Bone Defects with Injectable Calcium Sulphate Cement

Case Report Lower Limb Reconstruction with Tibia Allograft after Resection of Giant Aneurysmal Bone Cyst

Microparticulate Cortical Allograft: An Alternative to Autograft in the Treatment of Osseous Defects

Case Report. Byung Ill Lee, MD and Byoung Min Kim, MD Department of Orthopedic Surgery, Soonchunhyang University Hospital, Seoul, Korea

Treatment of the benign lytic lesions of the proximal femur with synthetic bone graft

Ethan M. Braunstein, M.D. 1, Steven A. Goldstein, Ph.D. 2, Janet Ku, M.S. 2, Patrick Smith, M.D. 2, and Larry S. Matthews, M.D. 2

B U I L D S T R O N G B O N E F A S T

POWER TO RESTORE WITHOUT LEAVING A TRACE. The only remaining evidence of the trauma

BIOACTIVE SYNTHETIC GRAFT

Orthobiologics In Orthopaedic Trauma

CASE STUDY: PRO-DENSE Injectable Regenerative Graft Used to Backfill a Bone Cavity Following Resection of a Giant Cell Tumor

Tibial osteomyelitis is a challenging problem for

Management of Campanacci type III giant cell tumor

Indications. Neuro Surgery. Plastic Surgery. ENT Surgery. Oral Maxillofacial Surgery

Title: An intramedullary free vascularized fibular graft combined with pasteurized

The Treatment of Pelvic Discontinuity During Acetabular Revision

MARK D. MURPHEY MD, FACR. Physician-in-Chief, AIRP. Chief, Musculoskeletal Imaging

Results of tibia nailing with Angular Stable Locking Screws (ASLS); A retrospective study of 107 patients with distal tibia fracture.

Orthopedic & Sports Medicine, Bay Care Clinic, 501 N. 10th Street, Manitowoc, WI Procedure. Subtalar arthrodesis

Index. orthopedic.theclinics.com. Note: Page numbers of article titles are in boldface type.

Biological Reconstruction after Excision of Juxta-articular Osteosarcoma around the Knee: A New Classification System

PRO-STIM Injectable Inductive Graft TECHNICAL MONOGRAPH

International Journal of Orthopaedics Sciences 2018; 4(2): Rajat Tak, Dr. Vikas Gupta and Rajesh Goel

Skeletal Radiology. Solitary (unicameral) bone cyst. The fallen fragment sign revisited

Outcome of Girdlestone s resection arthroplasty following complications of proximal femoral fractures

RECOVERY. P r o t r u s i o

Nonunion of the Femur Treated with Conventional Osteosynthesis Combined with Autogenous and Strut Allogeneic Bone Grafts

The Use of Freeze-Dried Bone Allograft as an Alternative to Autogenous Bone Graft in the Atrophic Maxilla: A 3-Year Clinical Follow-up

Inion BioRestore. Bone Graft Substitute. Product Overview

Isolated Subtalar or Talonavicular Fusion Has Failed. Now What?

Total Hip Replacement in Diaphyseal Aclasis: A Case Report

CASE REPORT. Antegrade tibia lengthening with the PRECICE Limb Lengthening technology

Medium- to Long-term Results of Strut Allografts Treating Periprosthetic Bone Defects

Radiological and histological analysis of synthetic bone grafts in recurring giant cell tumour of bone: a retrospective study

The Outcome of Bone Substitute Wedges in Medial Opening High Tibial Osteotomy

Aneurysmal bone cysts (ABCs) are rare, destructive,

Management of infected custom mega prosthesis by Ilizarov method

Surgical treatment of aseptic nonunion in long bones: review of 193 cases

Bone Tissue Biology & The Application of Synthetic Compounds for the Facilitation of Bone Tissue Healing

Case Report Percutaneous Method of Management of Simple Bone Cyst

CASE PRESENTATION. Dr. Faseeh Shahab PGY3 Orthopaedic Resident, Khyber Teaching Hospital, Peshawar, PAKISTAN

4/28/2010. Fractures. Normal Bone and Normal Ossification Bone Terms. Epiphysis Epiphyseal Plate (physis) Metaphysis

STIMULAN POWER TO TRANSFORM OUTCOMES

BMP s: The future of nonunion treatment or do we have a problem?

Giant cell tumour of the proximal femur

PRO-DENSE BONE GRAFT SUBSTITUTE

Metha Short Hip Stem System

Treatment Alternatives for Pediatric Femoral Fractures

Fracture risk in unicameral bone cyst. Is magnetic resonance imaging a better predictor than plain radiography?

Clinical Study Masquelet Technique for Treatment of Posttraumatic Bone Defects

PERIPROSTHETIC FRACTURES FOLLOWING TOTAL HIP ARTHOPLASTY

SICOT Online Report E057 Accepted April 23th, in Fibula and Rib

BONE TRANSPLANTATION IN LIMB SAVING SURGERIES: THE PHILIPPINE EXPERIENCE

OSTEOCHONDRAL ALLOGRAFT RECONSTRUCTION FOR MASSIVE BONE DEFECT

Management Of Acetabular Deficiency In Total Hip Arthroplasty: A Series Of 15 Cases

Giant Cell Tumour of the Distal Radius: Wide Resection and Reconstruction by Non-vascularised Proximal Fibular Autograft

Graftys. Cross-selling. Indications. Comparison. Basic Science. Graftys 415 rue Claude Nicolas Ledoux Aix en Provence Cedex 4

Surgical Management of aseptic Femoral Shaft Non-union after Intramedullary Fixation

More than bone regeneration. A total solution.

CIRCUMFERENTIAL PROXIMAL FEMORAL ALLOGRAFTS IN REVISION SURGERY ON TOTAL HIP ARTHROPLASTY: CASE REPORTS WITH A MINIMUM FOLLOW-UP OF 20 YEARS

CASE REPORT COMPLETE BONE REMODELING AFTER CALCAR RECONSTRUCTION WITH METAL WIRE MESH AND IMPACTION BONE GRAFTING: A CASE REPORT

Fracture fixation. Types. Mechanical considerations. Biomechanics of fracture fixation. External fixation. Internal fixation

Pathologic Fractures in Children

ADVANCED BONE GRAFT SYSTEM OVERVIEW

A Case of Fibrous Dysplasia with Bilateral Shepherd Crook Deformity Treated with Dynamic Hip Screw Fixation

9/28/2016. MS & PhD Colorado State University Mechanical Engineering Thesis and Dissertation work in orthopaedic biomechanics

Trabecular Metal Acetabular Revision System Buttress and Shim Augments Surgical Technique

Treatment of non-union of forearm bones with a free vascularised cortico - periosteal flap from the medial femoral condyle

Treatment of bone defect with calcium phosphate cement subsequent to tumor curettage in pediatric patients

NEW FIXATION STRATEGIES FOR OSTEOPOROTIC BONE

Transcription:

llograft Cortical Strut for Reconstruction of Space-occupying one Lesions Jason C. Tank, MD; Michael F. Vignos, S; Robert J. Wetzel, MD; Scott D. Weiner, MD abstract Full article available online at Healio.com/Orthopedics. Search: 20131219-19 Space-occupying bone lesions present orthopedic surgeons with clinical and operative challenges. Multiple reconstructive procedures have proven successful for small bone lesions but lack the structural support necessary for reconstruction of larger lesions. This study reports the clinical outcomes of patients undergoing excision and reconstruction of large bone lesions with allograft cortical struts without additional internal fixation. This retrospective outcomes study reviewed patients who underwent surgical curettage and cortical strut allograft reconstruction of any space-occupying bone lesion. Clinical, surgical, and imaging data were collected. The primary outcome measures were lesion healing, graft incorporation, long-term pain, return to activity, and presence of complications/recurrences. Figure: nteroposterior radiograph showing a proximal humerus lesion on presentation (). nteroposterior radiograph at final follow-up showing the reconstruction. The patient did not return to full preoperative function but performed normal activities of daily living with her arm (). Seventeen patients met the inclusion criteria. t least partial lesion healing and allograft incorporation was identified in 15 of 17 lesions. Of the 15 patients who did not sustain a recurrence, only 1 did not return to full activities. Mean lesion volume was 107 cc. verage follow-up was 19.6 months. Two recurrences were identified, and no other major complications were identified. The authors are from the Department of Orthopaedic Surgery (JCT, SDW), Summa Health System, kron, Ohio; the Department of Mechanical and erospace Engineering, The Ohio State University (MFV), Columbus, Ohio; and the Department of Orthopaedic Surgery (RJW), Northwestern University Feinberg School of Medicine, Chicago, Illinois. The authors have no relevant financial relationships to disclose. The authors thank Leanne Spearing, MS, CCRP, for her contributions. Correspondence should be addressed to: Scott D. Weiner, MD, Department of Orthopaedic Surgery, Summa Health System, 444 N Main St, kron, OH 44310 (weinersd@summahealth.org). Received: July 31, 2013; ccepted: ugust 20, 2013; Posted: January 15, 2014. doi: 10.3928/01477447-20131219-19 e66

llograft cortical strut reconstruction of large bone lesions is successful in returning patients to baseline functional status of the extremity with minimal to no long-term pain without the need for internal fixation devices, thus avoiding hardware-related pain. enign bone lesions present orthopedic surgeons with a unique combination of clinical and operative challenges. Eradication of the lesion and limiting recurrence while preserving bone integrity and extremity function are the main goals of treatment. Surgical curettage and bone grafting is a common technique for addressing these challenges. When bone lesions are large (larger than 60 cc) or near joint surfaces and require therapeutic curettage, large structural defects result in the remaining bone, compromising its integrity. Reconstruction and stabilization of the defect are necessary to avoid pathologic fracture, function loss, lesion recurrence, or other complications. Reconstruction options to fill the defect following curettage include autograft, allograft, and/or synthetic bone void fillers. Each type of graft material has unique biologic and mechanical properties. In a majority of cases, additional internal fixation is needed to support the graft. lthough autograft bone is a viable option for reconstruction, harvest site morbidity and inadequate quantity of graft have influenced surgeons to seek other sources. 1 Other restoration options include freeze-dried cortical allograft, freeze-dried cancellous allograft, partially decalcified allograft, synthetic plasterof-paris pellets, calcium sulfate, calcium phosphate, and granular tri-calcium phosphate. 1-4 lthough these reconstruction substitutes provide adequate treatment for small lesions, they lack structural support required for treatment of large or periarticular lesions. 4 Numerous studies have explored these options, yet all procedures have limitations. 1-5 llograft cortical struts, commonly a segmental section of fibula, have recently been cited as a treatment option when the lesion is too large for the previously mentioned bone graft substitutes. 6 When reconstruction options require structural support, the cortical allograft is sized to tightly fit into the intramedullary canal region of the lesion. The allograft is then placed into adequate position parallel to the mechanical axis of the bone. No hardware or fixation is used to secure the graft, thus avoiding the need for subsequent surgical removal of retained hardware and avoiding the possibility of hardwareassociated pain. 5,7 Cortical strut allografting alone is not a universal technique. Cortical graft is more structurally supportive compared with cancellous graft and exhibits slower rates of incorporation. 3,5,7-10 The slow incorporation rate of cortical allograft can also be advantageous when treating benign lesions, like fibrous dysplasia, which frequently recur. 11,12 The incomplete resorption of cortical allograft provides continued mechanical stability, permitting adjacent healing. The purpose of this study was to report the authors results of hardware-free, intramedullary cortical allograft strut reconstruction in the management of large or periarticular benign bone lesions. Primary outcomes include both stability of the surgical reconstructive procedure as evidenced by allograft incorporation and lesion healing, and surgical site complications. Secondary outcome measures include preservation of extremity function, which is defined by long-term pain and postoperative activity level. Materials and Methods This institutional review board approved study was a retrospective chart review describing the radiographic and functional outcomes after curettage and allograft cortical strut bone grafting of benign lesions in a series of 17 patients. Inclusion criteria were patients with a large (larger than 60 cc) or periarticular benign bone lesion who underwent curettage and fresh-frozen cortical strut allograft reconstruction without internal fixation by the senior author (S.D.W.) between June 1998 and January 2010 (Figures 1-2). The typical surgical procedure included corticotomy and aggressive Figure 1: nteroposterior radiograph showing a periarticular proximal tibial nonossifying fibroma. C D Figure 2: Initial postoperative anteroposterior () and lateral () radiographs showing periarticular proximal tibial reconstruction of a nonossifying fibroma. One-year follow-up anteroposterior (C) and lateral (D) radiographs showing near-complete lesion healing with partial allograft incorporation. The patient was asymptomatic, with return to full activities. JNURY 2014 Volume 37 Number 1 e67

curettage of the lesion with intramedullary impaction of the allograft strut for reconstruction. Clinical data collected from patient medical records included type of lesion/ diagnosis, previous intervention (operative or nonoperative), imaging studies (radiographs [pre- and postoperative and follow-up], computed tomography scans, and magnetic resonance imaging), and operative intervention details (size of materials [cortical allograft, crushed allograft, hardware] and additional materials used). Postoperative clinical data were also collected, including refracture incidence, local recurrence, postoperative complications, pain, and activity level (none, some limitation, normal activity). If a recurrence was identified, the patient was not included in clinical follow-up. Preoperative radiographs were evaluated for lesion location (specific bone and location within bone [epiphyseal, metaphyseal, diaphyseal]) and size measured in cubic centimeters. 13 Postoperative radiographs were evaluated for lesion healing (complete healing, incomplete healing, no healing) and allograft incorporation (complete incorporation, incomplete incorporation, no incorporation) based on radiographic interpretation previously used by Shih et al. 4,8 lesion was considered completely healed if preoperative cavitation was obliterated, incompletely healed if residual lytic areas remained, and not healed if no evidence of trabecular formation existed or the graft resorbed. 4,8 llograft incorporation was considered to be complete if the graft was completely obliterated, partial if the graft was still visible but had blunted borders, and not incorporated if the contour was unchanged from initial radiographs. 4,8 Radiographs were reviewed by 2 authors (J.C.T., S.D.W.) separately. Results The study population comprised 17 patients (9 females and 8 males) with an average age of 19.7 years (range, 2-62 Patient No./ge, y Diagnosis years). verage patient weight was 127.2 lb, and average body mass index was 22.3 kg/m 2. verage follow-up was 19.6 months. Clinical and radiographic review revealed 6 aneurysmal bone cysts, 4 nonossifying fibromas, 3 simple bone cysts, 2 fibrous dysplasias, 1 plasmacytoma, and 1 lymphangiomatosis. Of these lesions, 53% were located in an upper extremity and 47% were located in a lower extremity. With respect to the location within the bone, 82% of the lesions were metaphyseal, 12% were epiphyseal, and 6% were metadiaphyseal. Mean lesion size was 107 cc (range, 21-363 cc). Six lesions failed previous surgical intervention (Table). verage fresh-frozen allograft cortical length was 6 cm (range, 3-10 cm). Regarding strut type, 16 were fibular allograft and 1 was femoral allograft. ll Table Patient Data Lesion Vol, cc 3 Lesion Healing llograft Incorporation Function 1/16 NOF 363 Complete Complete Previous level 2/17 NOF 40 Partial Complete Previous level 3/16 Lymphangiomatosis 21 Complete Partial Previous level 4/16 Fibrous dysplasia 147 Partial Complete Previous level 5/17 C 136 Partial Complete Previous level 6/62 Simple bone cyst 103 Complete Partial Previous level 7/12 C 42 Complete Partial Previous level 8/2 C 120 Complete Complete Previous level 9/14 Recurrent C 36 Failed None N/ 10/16 NOF 70 Partial Complete Previous level 11/6 C 42 Complete Complete Previous level 12/17 NOF 54 Complete Complete Previous level 13/18 C 121 Partial Complete Previous level 14/20 Simple bone cyst 22 Failed None N/ 15/16 Fibrous dysplasia 31 Partial Partial Previous level 16/45 Plasmacytoma 145 Complete Partial Some 17/25 Simple bone cyst 126 Complete Partial Previous level bbreviations: C, aneurysmal bone cyst; N/, not applicable; NOF, nonossifying fibroma; Vol, volume. lesions were treated with a supplemental bone graft material: 13 were filled with morselized cancellous allograft, 2 with OsteoSet (Wright Medical Technology, Inc, rlington, Tennessee) pellets, 2 with allograft matchsticks, and 1 with autograft bone graft. Two patients experienced recurrences. The first patient s recurrence was a recurrent aneurysmal bone cyst. The recurrence occurred 4 months postoperatively and was treated with revision curettage and allograft strut placement. The second patient s recurrence was a unicameral bone cyst that recurred as fibrous dysplasia 6 years after the index procedure. His lesion was periacetabular and underwent repeat curettages with calcium phosphate reconstruction at another institution. No surgical site infections or neurovascular complications were identified. e68

Figure 3: nteroposterior radiograph showing a proximal humerus lesion on presentation (). nteroposterior radiograph at final follow-up showing the reconstruction. The patient did not return to full preoperative function but performed normal activities of daily living with her arm (). C D Figure 4: Early postoperative anteroposterior () and lateral () radiographs showing proximal femur reconstruction for fibrous dysplasia. nteroposterior (C) and lateral (D) radiographs at 3-year follow-up showing complete lesion healing with partial allograft incorporation. The patient was asymptomatic with return to full activities. llograft incorporation and lesion healing in patients without recurrence (n=15) were assessed from each patient s most recent postoperative radiographs. Nine patients reached a level of complete allograft incorporation, whereas 6 patients reached partial allograft incorporation. Regarding lesion healing, 8 of the 15 lesions were completely healed, whereas 6 were partially healed. None of the partially healed lesions needed repeat surgery and had stable disease. For patients without recurrence, 14 of 15 returned to full activities with little or no pain (Table). Discussion To the authors knowledge, this is the first study reporting the successful treatment of space-occupying benign bone lesions in weight-bearing and nonweightbearing extremities with allograft cortical strut reconstruction for large or periarticular lesions. The goals of this procedure were to eradicate the lesion, provide the patient with minimal long-term pain, and preserve extremity function without the use of supplemented internal fixation and its inherent problems. The first treatment goal was lesion eradication with preservation of extremity function. Eradication was achieved in all but 2 patients, the first a multiply recurring aneurysmal bone cyst at initial presentation, likely a more aggressive disease process, and the second a unicameral bone cyst that recurred as fibrous dysplasia. The second goal was to reconstruct the defect created by resection, thus permitting early extremity function and return to normal activity levels. The majority of patients returned to their previous level of extremity function with mild to no pain early in the postoperative course with no prolonged immobilization. The only patient who did not return to full function had a plasmacytoma and continued to have residual pain limiting upper extremity function (Figure 3). This is comparable with the results reported by Shih et al, 4 who found 86% of humeral lesions had no pain. In contrast to Shih et al, 4 the current study data evaluated both weight-bearing and nonweight-bearing extremities, identifying a successful technique in both upper and lower extremities. This technique was successful in treating lesions of any size (larger or smaller than 60 cc) as well as treating periarticular lesions. Clinically, these rates of healing may seem low; however, they support the perceived biomechanical advantages of the allograft strut. The strut acts as internal support and shares the mechanical load applied to the extremity without the use of metallic implants. The graft was fit tightly in an intramedullary position that permitted load sharing along the weight-bearing axis of the bone. The strut may provide the necessary structural integrity for the patient to return to a normal level of activity although the lesion is not completely healed. Due to these biomechanical characteristics of the allograft cortical strut, it is reasonable to suggest that partial allograft incorporation and complete lesion healing are the optimal results for this procedure. The lesion should be completely healed to lower the chances of a recurrence as well as to avoid pathologic fracture. Partial allograft strut incorporation permits continued load-sharing capabilities with the host bone (Figure 4). s noted by Shih et al, 4 the strut acts as an internal splint until sufficient healing occurs to permit host bone loading. The value of using an allograft is that repair is an indolent, predicable process. 14 Histological analyses have shown osteonal reabsorption patterns near revascularized haversian canals but not near the peripheral aspect of the osteon. 15 This microscopic finding alludes to the continued biomechanical support from allograft strut use. If the allograft strut is completely incorporated, it can no longer share the load in the affected extremity and may increase future lesion complications. The prolonged incorporation time may be advantageous to allow the lesion to heal fully. The current study results suggest that patients with fibrous dysplasia may have JNURY 2014 Volume 37 Number 1 e69

Figure 5: nteroposterior radiograph () and magnetic resonance image () of a 16-year-old girl showing fibrous dysplasia of the proximal femur. the greatest clinical benefit from this procedure (Figures 4-5). With fibrous dysplasia, partial allograft incorporation is ideal because recurrence of fibrous dysplasia and pathologic fracture are common. 11,16 If fibrous dysplasia recurs with a partially incorporated allograft strut, the residual strut will provide additional inherent structural stability, allowing increased extremity function (Figure 4). The residual support from the partially incorporated allograft may also help prevent pathologic fracture. Placement of an uninstrumented allograft cortical strut is a valuable procedure in the pediatric population because repeat surgical intervention for implant removal is avoided. If hardware is used in a pediatric patient, it is commonly removed as the patient matures. The allograft strut placement eliminates the need to perform this secondary surgical procedure, thus eliminating second surgical risk and hardwareassociated pain and complications. There is elimination of the refracture risk, which is also a known complication after plate removal. 17 This technique is advantageous in adults because it avoids potential irritation from metallic implants by providing a stable, hardware-free reconstruction. llograft tissue is commonly used in modern orthopedic surgery. The disease transmission risk is extremely low when Centers for Disease Control and Prevention guidelines are followed; thus, allograft cortical bone is considered safe for human implantation. 18-20 lthough this procedure was successful, this series is not without limitations. The population was small and collected over a long time period because surgical oncologic disorders amenable to this treatment are relatively infrequent. larger, multicenter study may be helpful in further defining the role of this technique. nother limitation is that the surgical technique used is an immeasurable variable that depends on surgeon skill and experience as well as lesion characteristics and patient factors. This technique will vary from surgeon to surgeon and may not be applicable to all lesions. Conclusion The authors do not believe that the allograft strut has any effect on lesion healing but has definite value in reconstruction of the defect created by aggressive curettage needed to permit lesion eradication. llograft cortical strut reconstruction of any size or periarticular space-occupying benign bone lesion is a highly successful procedure. ased on this study s data, this procedure produces a limb-sparing, biologic, hardware-free reconstruction in the majority of patients in which it is performed. llograft cortical strut reconstruction is a beneficial surgical technique for an orthopedic oncologist s armamentarium when treating benign space-occupying bone lesions. References 1. Gerrand CH, Griffin M, Davis M, et al. Large segment allograft survival is improved with intramedullary cement. J Surg Oncol. 2003; 84(4):198-208. 2. Heitmann C, Erdmann D, Levin LS. Treatment of segmental defects of the humerus with an osteoseptocutaneous fibular transplant. J one Joint Surg m. 2002; 84(12):2216-2223. 3. Nicholas R, Lange T. Granular tricalcium phosphate grafting of cavitary lesions in human bone. Clin Orthop Relat Res. 1994; 306:197-203. 4. Shih HN, Shih LY, Cheng CY, et al. Reconstructing humerus defects after tumor resection using an intramedullary cortical allograft strut. Chang Gung Med J. 2002; 25(10):656-663. 5. Peltier L, Jones R. Treatment of unicameral bone cysts by curettage and packing with plaster-of-paris pellets. J one Joint Surg m. 1978; 60(6):820-822. 6. Shih HN, Su J, Hsu K, et al. llogeneic cortical strut for benign lesions of the humerus in adolescents. J Ped Orthop. 1997; 17(4):433-436. 7. Sethi, garwal K, Sethi S, et al. llograft in the treatment of benign cystic lesions of bone. rch Orthop Trauma Surg. 1993; 112(4):167-170. 8. Shih HN, Chen Y, Huang T, et al. Semistructural allografting in bone defects after curettage. J Surg Oncol. 1998; 68(3):159-165. 9. Spence K, right R, Fitzgerald S, et al. Solitary unicameral bone cysts: treatment with freeze-dried crushed cortical-bone allograft. J one Joint Surg m. 1976; 58(5):636-641. 10. Wu LD, Xiong Y, Yu HC. Effects of rhmp-2 on cortical strut allograft healing to the femur in revision total hip arthroplasties: an experimental study. Int Orthop. 2007; 31(5):605-611. 11. Enneking WF, Gearen PF. Fibrous dysplasia of the femoral neck: treatment by cortical bone-grafting. J one Joint Surg m. 1986; 68(9):1415-1422. 12. Tomasik P, Spindel J, Miszczyk L, et al. Surgical treatment of dysplasia fibrosa and defectus fibrosus with bone allografts. Ortop Traumatol Rehabil. 2010; 12(1):58-66. 13. Glancy GL, urgioni DJ, Eilert RE, et al. utograft versus allograft for benign lesions in children. Clin Orthop Relat Res. 1998; 7:262-273. 14. Enneking WF, Campanacci D. Retrieved human allografts: a clinicopathological study. J one Joint Surg m. 2001; 83(7):971-986. 15. Enneking WF, Mindell ER. Observations on massive retrieved human allografts. J one Joint Surg m. 1991; 73:1123-1142. 16. Guille JT, Kumar SJ, MacEwen GD. Fibrous dysplasia of the proximal part of the femur: long-term results of curettage and bone-grafting and mechanical realignment. J one Joint Surg m. 1998; 80:648-658. 17. eaupre GS, Csongradi JJ. Refracture risk after plate removal in the forearm. J Orthop Trauma. 1996; 10(2):87-89. 18. uck E, Malinin T, rown MD. one transplantation and human immunodeficiency virus. Clin Orthop Relat Res. 1994; 303:8-17. 19. Centers for Disease Control and Prevention. Guidelines for preventing transmission of human immunodeficiency virus. MMWR. 1994; 43(RR-8):1-17. 20. Russo R, Scarborough N. Inactivation of viruses in demineralized bone matrix. FD Workshop on Tissue Transplantation and Reproductive Tissue; June 1995; ethesda, MD. e70