Reliability and validity of the Hartofilakidis classification system of congenital hip disease in adults

Similar documents
CONGENITAL HIP DISEASE IN YOUNG ADULTS CLASSIFICATION AND TREATMENT WITH THA. Th. KARACHALIOS, MD, DSc PROF IN ORTHOPAEDICS

ORIGINAL PAPER. Department of Orthopedic Surgery, Hamamatsu Medical Center ABSTRACT

A novel method for assessing postoperative femoral head reduction in developmental dysplasia of the hip

Congenital hip disease in adults

Case Report Anterior Hip Subluxation due to Lumbar Degenerative Kyphosis and Posterior Pelvic Tilt

Cotyloplasty in Cementless Total Hip Arthroplasty for an Insufficient Acetabulum

Effect of Superior Placement of the Hip Center on Abductor Muscle Strength in Total Hip Arthroplasty

Reliability of Lichtman s classification for Kienböck s disease in 99 subjects

Unified Classification System (UCS) for peri-prosthetic fractures (PPFx)

Lessons learned from study of congenital hip disease in adults

Observer variation for radiography, computed tomography, and magnetic resonance imaging of occult hip fractures

Total Hip Arthroplasty Performed Using Conventional and Computer-Assisted, Tissue- Preserving Techniques 6

Low revision rate after total hip arthroplasty in patients with pediatric hip diseases

CLINICAL PAPER / ORTHOPEDIC

Society for Pediatric Radiology 2015 Hands on Session. DDH: Pitfalls and Practical Tips

Radiographic Evaluation Of Dynamic Hip Instability In Lequesne s False Profile View

Hip ultrasound for developmental dysplasia: the 50% rule

Are Portable Imaging Intraoperative Radiographs Helpful for Assessing Adequate Acetabular Cup Positioning in Total Hip Arthroplasty?

Acetabular Dysplasia in the Adolescent and Young Adult

(true) Disease Condition Test + Total + a. a + b True Positive False Positive c. c + d False Negative True Negative Total a + c b + d a + b + c + d

Congenital Hip Disease in Adults. George Hartofilakidis George C. Babis Kalliopi Lampropoulou-Adamidou

The Pavlik harness is a positioning device commonly

Leg Length Discrepancy in a Patient with Ipsilateral Total Knee and Total Hip Arthroplasty

Favorable outcome of total hip arthroplasty with insufficient bone coverage of the roof reinforcement ring: a case report.

2 Philomeen Weijenborg, Moniek ter Kuile and Frank Willem Jansen.

Does Native Combined Anteversion Influence Pain Onset in Patients With Dysplastic Hips?

Medial circumflex artery Lateral circumflex artery

Classification of Acetabular Cartilage Lesions. Claudio Mella, MD

Circles are Pointless - Angles in the assessment of adult hip dysplasia are not!

SEVERE VARUS AND VALGUS DEFORMITIES TREATED BY TOTAL KNEE ARTHROPLASTY

Congenital Hip Disease in Adults

FAI syndrome with or without labral tear.

A Useful Reference Guide for the Stem Anteversion During Total Hip Arthroplasty in the Dysplastic Femur

What is a Hip Dysplasia?

Seemingly isolated greater trochanter fractures do not exist

Supine and Standing AP Pelvis Radiographs in the Evaluation of Pincer Femoroacetabular Impingement

Statistical Validation of the Grand Rapids Arch Collapse Classification

Cementless Total Hip Arthroplasty with Medial Wall Osteotomy for the Sequelae of Septic Arthritis of the Hip

Orthopaedics Springer-Verlag 1987

*smith&nephew CONTOUR

Reliability of Simple Radiographic Parameters for Pincer FAI

Hip Dysplasia David S. Feldman, MD

CAUTION Federal law (USA) restricts this device to sale, by or on the order of a physician.

Radiological Sequelae of developmental dysplasia of the hip: a Review

Figure 1: Design and outcomes of an independent blind study with gold/reference standard comparison. Adapted from DCEB (1981b)

COI. Consulting-TJO, United Institutional Support- Smith & Nephew, Acelity-KCI, Stryker, USMI

The Factor Causing Poor Results in Late Developmental Dysplasia of the Hip (DDH)

The necessity to restore the anatomic hip centre in congenital hip disease

R/F. Can T-smart Tomosynthesis Improve Diagnostic Accuracy on THA Component Stability? 1. Abstract

Primary total hip arthroplasty after acetabular fracture using intra-acetabular bended plates

A quantitative definition of scaphoid union: determining the inter-rater reliability of two techniques

Non-Arthroplasty Hip Surgery. Javad Parvizi MD FRCS Professor of Orthopaedic Surgery

Peggers Super Summaries: THR and Revision Concepts

Relationship Between the Alpha and Beta Angle in Diagnosing CAM type Femoroacetabular Impingement on Frog-leg Lateral Radiographs

Rotational acetabular osteotomy for advanced osteoarthritis of the hip joint with acetabular dysplasia

A Validated Classification for External Immobilization of the Cervical Spine

Are You Living with. Hip Pain? MAKOplasty may be the right treatment option for you.

Assessment of radiolucent lines around the Oxford unicompartmental knee replacement

Preventing complications in THR

Radiographic and Clinical Risk Factors for the Extent of Labral Injury at the Time of Hip Arthroscopy

Shunsaku Nishihara 1, Nobuhiko Sugano 1, Takashi Nishii 1, Hisashi Tanaka 2, Hideki Yoshikawa 1, and Takahiro Ochi 1

Clinical Practice & Referral Guideline - Developmental Dysplasia of the Hip

For Commercial products, please refer to the following policy: Preauthorization via Web-Based Tool for Procedures

reproducibility of the interpretation of hysterosalpingography pathology

Robotic-Arm Assisted Surgery

Management Of Acetabular Deficiency In Total Hip Arthroplasty: A Series Of 15 Cases

Field testing the Unified Classification System for periprosthetic fractures of the femur, tibia and patella in association with knee replacement

Disclosure. FAI: Imaging Modalities and Dynamic Imaging Software. Acceptance of Hip Arthroscopy & FAI. Public. Payors. Orthopaedic Community

Predicting the Position of the Femoral Head Center

Metha Short Hip Stem System

Transverse Acetabular Ligament A Guide Toacetabular Component Anteversion

Unequal Numbers of Judges per Subject

A comparison of ultrasonography and radiography in the management of infants with suspected developmental dysplasia of the hip

Assessment of primary hip osteoarthritis: comparison of radiographic methods using colon radiographs

Signature Personalized Patient Care

Smith & Nephew. R3 Cementless Cup

COMPUTING READER AGREEMENT FOR THE GRE

Cover Page. The handle holds various files of this Leiden University dissertation.

The Treatment of Pelvic Discontinuity During Acetabular Revision

Case Report Anterior Subluxation after Total Hip Replacement Confirmed by Radiographs: Report of Two Cases

A preliminary evaluation of raising the center of rotation in total hip arthroplasty for the patients with developmental dysplasia of the hip

Total Hip Replacement in Diaphyseal Aclasis: A Case Report

Ankle fracture classification : an evaluation of three classification systems : Lauge-Hansen, A.O. and Broos-Bisschop

Augmented Glenoid Component for Bone Deficiency in Shoulder Arthroplasty

A study of functional outcome after Primary Total Knee Arthroplasty in elderly patients

)371( COPYRIGHT 2016 BY THE ARCHIVES OF BONE AND JOINT SURGERY RESEARCH ARTICLE. Research performed at Dr. Sheikh Children Hospital, Mashhad, Iran

Adult Hip Dysplasia David S. Feldman, MD

Magnetic Resonance Imaging Interpretation in Patients With Symptomatic Lumbar Spine Disc Herniations

ORIGINAL ARTICLE. 78 Int J Res Med. 2013; 2(1);78-82 e ISSN: p ISSN: Morphological aspect of acetabulum of hip bone

Guidelines, Policies and Statements. Statement on the Use of Ultrasound in the Diagnosis of Developmental Hip Dysplasia and Dislocation

DIRECT ANTERIOR APPROACH

Fracture risk in unicameral bone cyst. Is magnetic resonance imaging a better predictor than plain radiography?

Thousand Oaks High School AP Research STEM

The effect of a lateral flare feature on implant stability

COMMITMENT &SOLUTIONS UNPARALLELED. Assessing Human Visual Inspection for Acceptance Testing: An Attribute Agreement Analysis Case Study

Severin Classification System for Evaluation of the Results of Operative Treatment of Congenital Dislocation of the Hip

Case report: Pain L THR [ post THR 2 years; with history of trivial fall] Your Diagnosis?

Combined Pelvic Osteotomy in the Treatment of Both Deformed and Dysplastic Acetabulum Three Years Prospective Study

HipNav: Pre-operative Planning and Intra-operative Navigational Guidance for Acetabular Implant Placement in Total Hip Replacement Surgery

Transcription:

DOI 10.1007/s00264-007-0472-0 ORIGINAL PAPER Reliability and validity of the Hartofilakidis classification system of congenital hip disease in adults C. K. Yiannakopoulos & T. Xenakis & T. Karachalios & G. C. Babis & G. Hartofilakidis Received: 29 August 2007 / Revised: 9 September 2007 / Accepted: 18 September 2007 # Springer-Verlag 2007 Abstract The reliability and validity of the Hartofilakidis et al. classification system in adults with congenital hip disease (CHD) were examined. The radiographs of 102 adult patients (158 hips) with CHD were independently assessed by three senior surgeons. Interobserver variability was assessed by examining the agreement between the three raters while validity of the classification system was assessed by examining the agreement between the assessment by either one of the three raters and the intraoperative finding (reference standard). The interobserver agreement between the three observers was high ranging from 0.720 to 0.854 (substantial to excellent) while the agreement of the preoperative prediction with the intraoperative findings was 87.4% (K=0.823, excellent agreement). The Hartofilakidis et al. classification system reliably predicts from preoperative pelvis radiographs the bone deficiencies encountered during the operation. C. K. Yiannakopoulos : G. C. Babis : G. Hartofilakidis First Orthopaedic Department, University of Athens Medical School, Athens, Greece T. Xenakis Department of Orthopaedic Surgery, School of Medicine, University of Ioannina, Ioannina, Greece T. Karachalios Orthopaedic Department, School of Medicine, Faculty of Health Sciences, University of Thessaly, Papakyriazi 22, Larissa 41222, Greece C. K. Yiannakopoulos (*) Byzantiou 2, Nea Smyrni, Athens 17121, Greece e-mail: cky@ath.forthnet.gr Résumé Nous avons voulu tester dans ce travail la fiabilité et la viabilité de la classification d Hartofilakidis dans les séquelles des affections congénitales de la hanche. Les radios de 102 adultes (158 hanches) avec lésions congénitales ont été analysées, de façon indépendante par trois chirurgiens seniors avec validation inter observateur et intra observateur. Les résultats de cette analyse inter observateur sont hautement significatifs de 0.720 à 0.854 et les prévisions pré opératoires confirmées par les constatations per opératoires sont excellentes 87.4% (k=0.823). La classification d Hartofilakidis est un système parfaitement viable qui permet de prévoir un pré opératoire les lésions que l on pourra constater en per opératoire. Introduction For the classification of congenital hip disease (CHD) in adults various systems have been proposed [1, 12, 16, 17]. The Hartofilakidis et al. classification system, initially published in 1988, relies on intraoperative findings to describe the hip pathology encountered during the operation [1, 2]. The major distinguishing feature is the description of acetabular deformity (Table 1). This classification system encompasses three types of deformity in the adult hip, i.e. dysplasia, low dislocation and high dislocation (Fig. 1). The demographics and clinical presentation vary between the various CHD types [13]. Patients with dysplasia become symptomatic later in adult life, the anatomical distortion of the femur and the acetabulum is milder, the operation is simpler and the results of total hip replacement (THR) are generally better compared to the more severe forms of the disease [14]. In 20 50% of adults with hip osteoarthritis the underlying problem is hip dysplasia [9].

Table 1 The Hartofilakidis et al. system for classification of CHD in adults Type Description Deficiencies of the acetabulum as verified during surgery Dysplastic hip Low dislocation High dislocation The femoral head is contained within the original acetabulum despite the degree of subluxation The femoral head articulates with a false acetabulum that partially covers the true acetabulum to a varying degree The femoral head is completely out of the true acetabulum and migrated superiorly and posteriorly to a varying degree Segmental deficiency of the superior wall Secondary shallowness due to fossa-covering osteophyte Complete absence of the superior wall Anterior and posterior segmental deficiency Narrow opening and inadequate depth of the true acetabulum Segmental deficiency of the entire acetabulum with narrow opening. Inadequate depth Excessive anteversion Abnormal distribution of bone stock, mainly located superoposteriorly in relation to the true acetabulum Ideally, a classification system in addition to being reliable should validly predict the intraoperatively anticipated structural bone deformities or abnormalities and aid treatment planning. It should also include all types of deformity, be simple, easy to memorise and accurate. Reliability is essentially the extent of the agreement between repeated measurements, and validity is the extent to which a method of measurement provides a true assessment of that which it purports to measure [3, 5]. The purpose of this study was to examine the interobserver reliability and the validity of the Hartofilakidis et al. classification of CHD in adults comparing radiographic morphology with intraoperative findings. Materials and methods The anteroposterior pelvis radiographs of 102 patients with hip osteoarthritis secondary to CHD were examined. The radiographs were obtained from the senior author s (GH) database. The total number of hips examined was 158. The study was approved by the Institutional Review Board. In all cases the morphology of the hip joint and the pathology of hip deformity were assessed and recorded at the time of surgery by the senior author (GH). There were 22 cases (13.9%) with dysplasia, 70 cases (44.3%) with low dislocation and 66 cases (41.2%) with high dislocation. Each radiograph was independently assessed by three experienced senior hip surgeons from different Universities of Greece. The observers were not involved in the selection of the radiographs and had no knowledge of the name, age and sex of each patient. All observers received a detailed description and a diagrammatic explanation of the Hartofilakidis et al. classification system along with a CD containing all radiographs. Interobserver testing was carried out in a blinded fashion. These results were then compared with the intraoperative findings as recorded by the senior author by another examiner. Interobserver reliability was assessed by examining the agreement between the three raters. The validity of the classification system was assessed by examining the agreement between the assessment by each one of the three raters and the intraoperative findings, which were used as a reference standard (Table 2). Sample size estimation The intraclass correlation coefficient is often used as an index of reliability in a measurement study. In these studies, there are N observations made on each of K individuals. These Fig. 1 The radiological appearance of the three types of CHD in adults: dysplasia (a), low dislocation (b) and high dislocation (c)

Table 2 Comparison of percent of agreement with the gold standard method (intraoperative classification) among the three observers individuals represent a factor observed at random. This design arises when K subjects are each rated by N raters. The intraclass correlation coefficient may be thought of as the correlation between any two observations made on the same subject. When this correlation is high, the observations on a subject tend to match, and the measurement reliability is high. Sample size calculation was based on the primary outcome with the aim of showing a reliability that was at least substantial (kappa>0.7); the power was set to 90%, α=0.05, and β=0.10. Using this approach, a sample size of n=three observers and K=20 X-rays per observer was calculated for each group. Statistical analysis Percent of agreement Observer 1 85.7% Observer 2 87.7% Observer 3 88.7% χ 2 =0.83, p=0.660 Assessment of interobserver consistency was accomplished using two parameters: the proportion of agreement and the kappa coefficient as proposed by Fleiss. The observed proportion of agreement is the percentage of instances in which the observers agreed. The kappa coefficient involves adjustment of the observed proportion of agreement by correction for the proportion of agreement which arises due to chance. Observer s agreement with the gold standard method was examined using Cohen s quadratic weighted kappa (K) coefficient. Interobserver agreement was assessed by calculating kappa coefficients for every possible pair of observers. Kappa is the chance-corrected proportional agreement, and possible values range from +1 (perfect agreement) via 0 (no agreement above that expected by chance) to -1 (complete disagreement). Interpretation of the data was performed according to Landis and Koch [11]. An agreement is graded as slight (Κ=0 0.2), fair (Κ=0.21 0.40), moderate (Κ=0.41 0.60), substantial (Κ=0.61 0.80) and almost perfect (Κ=0.81 1). The observed proportion of agreement with the gold standard method among the observers was compared with the chi-square test. Pearson s chi-square test was also used to compare the distribution of the three types of hip deformity between the right and the left hip. The level of significance was p< 0.05. The statistical analysis was performed using SPSS version 13.00 statistical package. Results The agreement between the gold standard method and the three observers was excellent. The overall percentage of agreement of all three observers compared with the intraoperative judgment was 87.4% (K=0.823, excellent agreement). The agreement for observer 1 was 85.7% (K=0.8, excellent agreement, p<0.0005), for observer 2 87.7% (K= 0.831, excellent agreement, p<0.0005) and for observer 3 88.7% (K=0.839, excellent agreement, p<0.0005). There was no statistically significant difference among the three observers concerning the percent of agreement with the gold standard method (Table 3). The percentage of agreement between observer 1 and observer 2 was 80.3% (K=0.728, substantial agreement), between observer 1 and observer 3 it was 87.2% (K=0.816, excellent agreement) and between observer 2 and 3 it was 81.7% (K=0.740, substantial agreement) (Table 4). Discussion Several classification systems have been used to describe the different types of CHD in adults [1 4]. However, the reliability of those systems has not explicitly been the focus of attention and their validity has not been, to our knowledge, been reported. This study evaluated the interobserver reliability of the Hartofilakidis et al. classification system using preoperative Table 3 The interobserver agreement between the three observers 1, 2 and 3. K kappa measure of agreement, SE standard error, Sig statistical significance, % agr % agreement Observer 2 Observer 3 Observer 1 0.728 0.038 <0.0005 80.3% 0.816 0.034 <0.0005 87.2% Observer 2 0.740 0.037 <0.0005 81.7%

Table 4 The intraobserver agreement between the three observers 1, 2 and 3 for the left, the right and both hips. K kappa measure of agreement, SE standard error, Sig statistical significance, % agr % agreement Observer 2 Observer 3 Left hip Left hip Observer 1 0.721 0.053 <0.0005 80.4% 0.854 0.044 <0.0005 90.2% Observer 2 0.722 0.054 <0.0005 80.4% Right hip Right hip Observer 1 0.720 0.056 <0.0005 80.2% 0.770 0.052 <0.0005 84.1% Observer 2 0.747 0.053 <0.0005 82.1% Left and right hips Left and right hips Observer 1 0.728 0.038 <0.0005 80.3% 0.816 0.034 <0.0005 87.2% Observer 2 0.740 0.037 <0.0005 81.7% anteroposterior pelvis radiographs and examined its validity using the intraoperative findings as the gold standard method. Reliability of a classification system depends on the consistency of measurements or observations and has to do with the quality of measurement or observation. It also describes the extent of the agreement between repeated measurements. A reliable classification system classifies a disease or fracture consistently but it does not necessarily reveal what in reality is happening. A valid classification system reveals the true underlying pathology of the disease or fracture [3, 5]. Validity is the best approximation to the truth providing a true assessment of that which it purports to measure or describe. Reliability and validity are not independent but they are related to each other. A method may be reliable if it measures something consistently but is valid only if the result of measurement approximates the true value. Validity implies reliability but not vice versa. Reliability is a necessary but not sufficient condition for validity. A classification system may be reliable but not valid, but it cannot be valid without being reliable [3]. Not every commonly used classification system in orthopaedics is reliable or reproducible. Substantial variation within the ratings of several radiograph reviewers may be noted. The accuracy of any classification system, which can be considered as a measuring instrument, is described estimating the reliability and the validity of the data. The quality of a measurement or observation can be described with the determination of reliability and validity. The more valid and reproducible a classification system is the better are the communication between clinicians and researchers, the treatment planning and the evaluation of the results of any given therapeutic intervention. Preoperative radiographs are used as a projection of the pathology or the expected bone deficiencies encountered during hip surgery. The surgeon should be able to recognise on preoperative radiographs the anatomical abnormalities Fig. 2 Anteroposterior radiograph and 3-D CT scan of a 34-year-old woman with CHD of the right hip. On the preoperative radiograph (a) raters1and2 classified the hip as dysplastic and rater 3 as low dislocation. The 3-D CT scan (b) provedthat the hip was dysplastic. Diagnosis was confirmed during total hip arthroplasty

Fig. 3 Anteroposterior radiograph and 3-D CT scan of a 44-year-old woman with bilateral CHD. On the preoperative pelvis radiograph (a) the right hip was classified as high dislocation by all three raters. For the classification of the left hip there was disagreement. Raters 2 and 3 classified the hip as high dislocation and rater 1 as low dislocation. The 3-D CT scan (b, c) proved that in both hips the type of dislocation was high and the diagnosis was confirmed during total hip arthroplasty which may be encountered during the operation. This facilitates preoperative planning and assists in effectively dealing with the technical difficulties of the operation. In our study there was significant agreement between the preoperative rater s assessments (reliability) and the intraoperative assessment (validity) with weighted kappa values of >0.75. These results may be partially due to the fact that the reviewers, though from different institutions, were familiar with the Hartofilakidis et al. classification having performed many THRs for CHD. This may be considered as a limitation of the study; however, we assumed that the more experienced the observers the better would be the understanding of the definitions of a classification system and the prediction of the expected bone deficiencies found intraoperatively. In tentative cases the underlying anatomy of the hip joint can be evaluated with three-dimensional (3-D) computed tomography (CT). With exclusion of the femoral head from the final image the deficiencies of the acetabulum can be readily appraised (Figs. 2 and 3). The inter- and intraobserver reliabilities of the Crowe and Hartofilakidis classifications were recently examined by Decking et al. [7]. In this paper the radiographs of 51 patients (62 hips with CHD) were included. According to those authors both systems can be recommended because of their high reliability; however, to our knowledge, validation of any CHD classification system has not yet been performed. This is the case because classifications such as the one of Crowe et al. [16] cannot be validated because they are based not on the pathology of the acetabulum or the femur but rather on arbitrary assumptions or measurements performed on radiographs. The Hartofilakidis et al. classification is based on the pathology of the acetabulum as determined intraoperatively. This study evaluated the validity of the Hartofilakidis et al. classification using as a gold standard the intraoperative findings. There was a high correlation between the preoperative radiographs and the intraoperative findings among all participants in this study. The intraoperative findings in contrast to the radiographic findings are considered soft data [13]. Observer bias to the validation process has been kept to a minimum since all intraoperative observations were made and recorded by the senior author. The validity of several classification systems in revision total hip and knee arthroplasty has been evaluated comparing assessment of preoperative radiographs and intraoperative findings [10, 18]. A classification is purported to measure some future performance. The success of THR in CHD, as judged by the rate of revision surgery, depends on the severity of the anatomical distortion of the acetabulum which is explicitly described by the Hartofilakidis et al. classification. Survival of the THR in patients with CHD depends on the type of the acetabular deformity [8, 11, 14, 15], acetabular component loosening being the weak link. The Hartofilakidis et al. classification system has been shown to be reliable as well as valid in predicting the acetabular abnormalities encountered during THR. It provides a reliable estimate of the acetabular bone loss in adults with hip osteoarthritis secondary to CHD. With this classification the structural alterations of the acetabulum could be reliably predicted using standard anteroposterior pelvis radiographs. Knowledge of the structural deformities of the acetabulum in CHD in adults and of the segmental roof or wall defects anticipated during surgery, as predicted by the Hartofilakidis classification, improves preoperative planning and may improve cup placement, anticipating an increase in the endurance and longevity of the component. The reliability and validity of the Hartofilakidis et al. classification system relates to its ability to consistently predict the pathoanatomical changes of the acetabulum and thus to apprise the surgeon of the different defect types anticipated during surgery. Acknowledgement We wish to thank Antonis Galanos, M.Sc. for providing help with the statistical analysis.

References 1. Chougle A, Hemmady MV, Hodgkinson JP (2005) Severity of hip dysplasia and loosening of the socket in cemented total hip replacement. A long-term follow-up. J Bone Joint Surg Br 87:16 20 2. Chougle A, Hemmady MV, Hodgkinson JP (2006) Long-term survival of the acetabular component after total hip arthroplasty with cement in patients with developmental dysplasia of the hip. J Bone Joint Surg Am 88:71 79 3. Crowe JF, Mani VJ, Ranawat CS (1979) Total hip replacement in congenital dislocation and dysplasia of the hip. J Bone Joint Surg Am 61:15 23 4. Decking R, Brunner A, Decking J, Puhl W, Gunther KP (2006) Reliability of the Crowe und Hartofilakidis classifications used in the assessment of the adult dysplastic hip. Skeletal Radiol 35:282 287 5. Eftekhar NS (1978) Principles of total hip arthroplasty. Mosby, St. Louis 6. Garbuz DS, Masri BA, Esdaile J, Duncan CP (2002) Classification systems in orthopaedics. J Am Acad Orthop Surg 10:290 297 7. Gozzard C, Blom A, Taylor A, Smith E, Learmonth I (2003) A comparison of the reliability and validity of bone stock loss classification systems used for revision hip surgery. J Arthroplasty 18:638 642 8. Greenfield ML, Kuhn JE, Wojtys EM (1998) A statistics primer. Validity and reliability. Am J Sports Med 26:483 485 9. Hartofilakidis G, Stamos K, Ioannidis TT (1988) Low friction arthroplasty for old untreated congenital dislocation of the hip. J Bone Joint Surg Br 70:182 186 10. Hartofilakidis G, Stamos K, Karachalios T, Ioannidis TT, Zacharakis N (1996) Congenital hip disease in adults. Classification of acetabular deficiencies and operative treatment with acetabuloplasty combined with total hip arthroplasty. J Bone Joint Surg Am 78:683 692 11. Hartofilakidis G, Karachalios T, Stamos KG (2000) Epidemiology, demographics, and natural history of congenital hip disease in adults. Orthopedics 23:823 827 12. Hartofilakidis G, Karachalios T (2004) Total hip arthroplasty for congenital hip disease. J Bone Joint Surg Am 86:242 250 13. Kerboul M, Mathieu M, Sauzieres P (1987) Total hip replacement for congenital dislocation of the hip. In: Postel M, Kerboul M, Evrard J, Courpied JP (eds) Total hip replacement. Springer, New York, pp 51 66 14. Kim YH, Kim JS (2005) Total hip arthroplasty in adult patients who had developmental dysplasia of the hip. J Arthroplasty 20:1029 1036 15. Kocher MS, Zurakowski D (2004) Clinical epidemiology and biostatistics: a primer for orthopaedic surgeons. J Bone Joint Surg Am 86:607 620 16. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159 174 17. Saleh KJ, Holtzman J, Gafni A, Saleh L, Davis A, Resig S, Gross AE (2001) Reliability and intraoperative validity of preoperative assessment of standardized plain radiographs in predicting bone loss at revision hip surgery. J Bone Joint Surg Am 83:1040 1046 18. Weinstein SL (1987) Natural history of congenital hip dislocation (CDH) and hip dysplasia. Clin Orthop 225:62 76