It is a common practice among athletes competing

Similar documents
Shot put is a track and field event requiring high

Neither Stretching nor Postactivation Potentiation Affect Maximal Force and Rate of Force Production during Seven One-Minute Trials

Recent research has shown that performing muscular

Postactivation potentiation, fiber type, and twitch contraction time in human knee extensor muscles

Repetition Maximum Continuum

Original Article. Rate of force development, lean body mass and throwing performance in female shot-put athletes

Muscular power is a basic constituent of neuromuscular SHORT-TERM EFFECTS OF SELECTED EXERCISE

Performance Enhancement. Strength Training

POST-ACTIVATION POTENTIATION AND VERTICAL JUMP PERFORMANCE. Cody Hardwick

The Acute Effects of Heavy Loads on Jump Squat Performance: An Evaluation of the Complex and Contrast Methods of Power Development

Rate of force development, muscle architecture and performance in young competitive track and field throwers

Theoretical and Practical Aspects of Strength Power Potentiation Complexes. Presented by G. Gregory Haff, Ph.D., C.S.C.S.*D, FNSCA,

Relationships of strength qualities

EXPERIMENTS WITH STRENGTH DEVELOPMENT METHODS

GK Jane Division of Physical Education, University of the Witwatersrand, Johannesburg, South Africa

Posttetanic Potentiation in Knee Extensors After High-Frequency Submaximal Percutaneous Electrical Stimulation

Effect of cold treatment on the concentric and eccentric torque-velocity relationship of the quadriceps femoris

D.O.I: GEORGIOS DASTERIDIS, THEOPHILOS PILIANIDIS, NIKOLAOS MANTZOURANIS, NIKOLAOS AGGELOUSIS

Ahitter in baseball has approximately 0.4 seconds to

NATURAL DEVELOPMENT AND TRAINABILITY OF PLYOMETRIC ABILITY DURING CHILDHOOD BY KIRSTY QUERL SPORT SCIENTIST STRENGTH AND CONDITIONING COACH

Deakin Research Online

Twitch torque is transiently increased after a highintensity

TRAINING IN SPORTS. Key Points :

TITLE: THE OPTIMAL COMPLEX TRAINING REST INTERVAL FOR ATHLETES FROM ANAEROBIC SPORTS. Michigan University, Marquette, Michigan 49855, USA.

Manuscript Title: The Effects of Postactivation Potentiation on. Sprint and Jump Performance of Male Academy Soccer Players

EFFECT OF KINETICALLY ALTERING A REPETITION VIA THE USE OF CHAIN RESISTANCE ON VELOCITY DURING THE BENCH PRESS

ACE Personal Trainer Manual, 4 th edition. Chapter 10: Resistance Training: Programming and Progressions

MELDING EXPLOSIVE POWER WITH TECHNIQUES IN THE LONG JUMP. Explosive Strength IS THE RATE OF FORCE DEVELOPMENT AT THE START OF A MUSCLE CONTRACTION.

Strength Training for Cyclist. James Herrera MS, CSCS, USAW USA Cycling National Team Coach BMX

ABSTRACT. by Ceith Creekmur

Influence of type of muscle contraction and gender on postactivation potentiation of upper and lower limb explosive performance in elite fencers

Brad Schoenfeld, PhD, CSCS, CSPS, FNSCA. Hypertrophy Loading Zones: How Incorporating Light Weights Can Translate into Greater Gains

TRAINING OF TECHNIQUE AND SPECIFIC POWER IN THROWING EVENTS

MUSCULAR AND NEURAL CONTRIBUTIONS TO POSTACTIVATION POTENTIATION

The Role of Plyometric Training for the T2T and T2C Athlete

Strength and conditioning? Chapter 4 Training Techniques. Weight gain (24yr, 73kg, 177cm, takes 18% protein) Guidelines.

Physiological and metabolic background of Strength Training. Practical consequences for Science based Strength Training.

Chapter 14 Training Muscles to Become Stronger

CANADIAN PHYSICAL PERFORMANCE EXCHANGE FITNESS STANDARD FOR TYPE 1 WILDLAND FIRE FIGHTERS (WFX-FIT) SIX WEEK TRAINING PROGRAM

The Relation Between Reactive Strength Index and Running Economy in Long-Distance Runners Nicholas Gallina Dr. David Diggin

ELITEVIDEN 4, 2006 Anvendt styrketræning, Styrketræning for sprint og spring 1 Symposie ved Institut for Idræt og Biomekanik, Syddansk Universitet

Staircase in mammalian muscle without light chain phosphorylation

Kinetic responses during landings of plyometric exercises

MENTOR METHOD OF TRAINING

NUMBER 1 OF 1 THIS QUERY FORM MUST BE RETURNED WITH ALL PROOFS FOR CORRECTIONS

Impulses and ground reaction forces at progressive intensities of weightlifting variations.

Chapter 4. Muscular Strength and Endurance KIN 217 3/28/18 1

STAR Research Journal

S trength and conditioning professionals ABSTRACT

A Comparison of Plyometric Training Techniques for Improving Vertical Jump Ability and Energy Production

M any aspects of a strength and. Copyright ª National Strength and Conditioning Association. Unauthorized reproduction of this article is prohibited.

ACUTE EFFECTS OF DROP JUMP POTENTIATION PROTOCOL ON SPRINT AND COUNTERMOVEMENT VERTICAL JUMP PERFORMANCE

Title. Author(s)Yamaguchi, Taichi; Ishii, Kojiro. CitationThe Journal of Strength and Conditioning Research, 1. Issue Date Doc URL.

Improving Muscular Strength and Endurance

VOLLEYBALL ATHLETES STRENGHTH/CONDITIONING WORK OUT

CHAPTER 3: The neuromuscular system. Practice questions - text book pages QUESTIONS AND ANSWERS. Answers

Journal of Physical Education and Sport Vol 28, no 3, September, 2010 e ISSN: ; p ISSN: JPES

Edinburgh Research Explorer

chapter Plyometric Training

New Test Battery / Sequencing of Physical Fitness Assessments

DEVELOPING EXPLOSIVE POWER

Published by Verkhoshansky SSTM 2011 Rome, Italy

Effectiveness of Muscular Power Performance on Long-Term Training

Post-activation Potentiation: Increasing Power Output in the Block Power Clean. Dennis Wilson. A Senior Honors Project Presented to the

DEVELOPING PHYSICAL CAPACITIES IV - STRENGTH MUSCLE TYPES

The Effects of 4 and 10 Repetition Maximum Weight-Training Protocols on Neuromuscular Adaptations in Untrained Men

Maximising Fitness for Teenage Boys

Chapter 6. Summarizing discussion

Muscular System. IB Sports, exercise and health science 1.2

STRENGTH TRAINING FOR THE HIGH SCHOOL TRACK AND FIELD ATHLETE. By Carrie Lane, Assistant Track and Field Coach

BARBELL HIP THRUST. Eckert, RM 1 and Snarr, RL 1,2

The Squat and its Application to Everything

PROGRESSION MODEL WEEK 1 WEEK 2 WEEK 3 WEEK 4 BASE STRESS SHOCK PEAK D1 3 x 8 4 x 8 5 x 6 3 x 4 D2 3 x 8 4 x 8 5 x 6 3 x 4

The Acute Effects of Ballistic and Non-Ballistic Concentric-Only Half-Squats on Squat Jump Performance

Muscle Function and Exercise

Intramuscular Fiber Conduction Velocity, Isometric Force and Explosive Performance

Changes in upper body concentric mean power output resulting from complex training emphasizing concentric muscle actions

Lifting your toes up towards your tibia would be an example of what movement around the ankle joint?

VO2MAX TEST.

CHAPTER 4: The musculo-skeletal system. Practice questions - text book pages QUESTIONS AND ANSWERS. Answers

Full Body (medicine ball) Saggital Front Reach

DEVELOPING SHOT PUT GLIDE TECHNIQUE

TRAINING FOR EXPLOSIVE POWER

PART III STRUCTURAL WORK (same weight from week to week)

differentiate between the various types of muscle contractions; describe the factors that influence strength development;

Mathias Method STRONGer Powerlifting

performance in young jumpers

KS4 Physical Education

PART III STRUCTURAL WORK (same weight from week to week)

In recent years, coaches in different sports and

Strength and Conditioning Training for Orienteering

;~ STEPHEN EDWARD ALWAY, BoSco, MoSco

The adaptations to resistance training are largely

Correlational Effects Of Plyometric Training On Leg Muscle Strength, Endurance And Power Characteristics Of Nigerian University Undergraduates

CSEP-Certified Certified Personal Trainer (CSEP-CPT) CPT) Musculoskeletal Fitness Theory

Acute effects of one session of combined poloyometric and special karate fitness test on physical performance in male karate athletes

EQA DISCUSSION QUESTIONS: INFLUENCE OF MUSCLE FIBER TYPE ON MUSCLE CONTRACTION. Influence of Muscle Fiber Type on Muscle Contraction

Plyometrics. Ankle Bounces. Bounding. Butt Kuck

Bratislava. Bratislava SLOVAKIA. Bratislava. Bratislava. Assesment of strength and power in elite athletes. Slovakia

PHYSICAL FITNESS 1.- ENDURANCE TRAINING SYSTEMS

Transcription:

ACUTE EFFECT OF DROP JUMPING ON THROWING PERFORMANCE GERASIMOS TERZIS, 1 KONSTANTINOS SPENGOS, 2 GIORGOS KARAMPATSOS, 1 PANAGIOTA MANTA, 2 AND GIORGOS GEORGIADIS 1 1 Department of Track and Field, School of Physical Education and Sport Science, University of Athens, Athens, Greece; and 2 Neurology Clinic, Aiginition Hospital, Division of Public Health, Psychiatry and Neurology, Medical School, University of Athens, Athens, Greece ABSTRACT Terzis, G, Spengos, K, Karampatsos, G, Manta, P, and Georgiadis, G. Acute effect of drop jumping on throwing performance. J Strength Cond Res 23(9): 2592 2597, 2009 The purpose of the present study was to investigate the acute effect of drop jumping on throwing performance. Eight men and 8 women, moderately trained subjects with basic shot put skills, performed 3 squat underhand front shot throws after a short standard warm-up. Three minutes later they performed 5 maximal consecutive drop jumps from 40 cm. Immediately after the drop jumps, they repeated the squat underhand front shot throws. On another day, their 6 repetition maximum (RM) muscular strength in leg press was assessed. Muscle biopsies were also obtained from vastus lateralis for the determination of fiber-type composition and fiber cross-sectional area. Throwing performance was significantly increased after drop jumping (8.25 6 1.1 m vs. 8.63 6 1.3 m, p, 0.01). The percentage of type II muscle fiber area was significantly related to the increase in throwing performance after drop jumping (r = 0.76, p, 0.01). The increase in throwing performance was significant in men (8.94 6 1 m vs. 9.60 6 0.9 m, p, 0.01) but not in women (7.56 6 1 m vs. 7.67 6 0.9 m, ns). Of note, the percentage of type II fiber area was higher in men than in women (M: 66.4 6 13%, F: 50.2 6 15%, p, 0.01). Leg press strength (6RM) was moderately related to the increase in throwing performance after drop jumping (r = 0.50, p, 0.05). These results suggest that drop jumping just before a throwing action induces an increase in performance in subjects with a high percentage of type II muscle fiber area and (to a lesser degree) in subjects with enhanced muscular strength. KEY WORDS fiber-type composition, postactivation potentiation, warm-up, shot put Address correspondence to Gerasimos Terzis, gterzis@phed.uoa.gr. 23(9)/2592 2597 Ó 2009 National Strength and Conditioning Association INTRODUCTION It is a common practice among athletes competing in track and field throwing events to use specific muscular actions/exercises just before competition to enhance their performance. However, there are no scientific data regarding the effectiveness of such interventions. In the laboratory setting, a single maximum isometric voluntary contraction of 10 seconds duration can increase the twitch response for the following couple of minutes (8). This phenomenon, termed postactivation potentiation, has been documented in both human and animal muscles (9,12). Field studies have revealed that performance of a single heavy-resistance lower-body exercise either enhances (7,21) or has no effect (11) on explosive performance immediately after. Moreover, it has been shown that a single set of 5 repetition maximum (RM) in bench press has no immediate effect on explosive push-ups (10), whereas explosive exercise, such as the snatch, enhances subsequent jumping performance (13). Thus, it seems that although there is no consensus regarding the acute enhancement of explosive performance with heavy-resistance exercise, high powerdemanding tasks (e.g., the snatch) might induce an acute increase in lower-body explosive performance. However, this phenomenon has not been investigated in throwing events such as the shot put. Postactivation potentiation is a short-lived phenomenon (approximately 3 minutes, [8]). Thus, resistance exercise (e.g., squat, snatch) cannot be used to enhance throwing performance just before a throwing event. On this basis, we hypothesized that explosive muscular actions such as jumping, which can be performed immediately before a competitive throw, would enhance shot put throwing performance. In the present study, we aimed to evaluate the effect of drop jumping on a simple throwing action in moderately skilled subjects as a preliminary study before its evaluation in throwers during competition. Furthermore, laboratory studies have shown that postactivation potentiation is closely related to muscle fiber-type composition (8,20) and muscular strength (7). Specifically, it has been shown that it is enhanced in stronger subjects and those with a high the 2592

the www.nsca-jscr.org percentage of type II muscle fibers. However, this phenomenon has not been investigated in throwing. The purpose of the present study was to investigate the acute effect of drop jumping on throwing performance. Furthermore, we aimed to investigate the influence of muscle fiber-type composition and muscular strength on performance enhancement during a simple throwing action to provide possible insights into the nature of the findings. METHODS Experimental Approach to the Problem This study addressed the question of whether moderatetrained subjects would acutely increase their throwing performance after the implementation of a small number of intense muscular actions. This research question is based theoretically on the phenomenon of postactivation potentiation (8), and the results of this study might be applied to moderate-level shot put throwers. Moreover, this serves as a preliminary study to further investigate this phenomenon in well-trained throwers. Sixteen subjects (men and women) with basic shot put skills performed a simple (from a kinesiological point of view) throwing action: the squat underhand front shot throw (Figure 1). Subjects performed 3 squat underhand front shot throws after a short warm-up. Subsequently, they performed 5 drop jumps and immediately after they performed another set of squat underhand front shot throws. The underhand shot throw (Figure 1) was chosen as a throwing performance test because it is a commonly used exercise and it is performed very often by shot putters. It is a task that is highly correlated with shot put performance in well-trained shot putters (unpublished data from our national throwers team, 14) and in moderatetrained individuals (19). Moreover, this test was used because Figure 1. The squat underhand front shot throw. it is an easy-to-learn-task by moderate-trained individuals. Our subjects had been using this task for almost 3 months during their university courses; thus, any learning effect during the day of the experiment was minimized. Further, it has been found in a previous study that moderate-trained subjects, as those participated in the present investigation, can use their lower extremities more efficiently during a more simple task, such as the squat underhand shot throw, than during the real shot put performance (18). To further investigate possible mechanisms responsible for the current results, leg press 6RM was used as a muscular strength index and muscle fiber-type composition was determined in vastus lateralis because studies have reported that postactivation potentiation is influenced by muscular strength and the percentage of type II muscle fibers (7,21). Both men and women were recruited because there is limited information regarding gender differences in postactivation potentiation in field studies. Subjects Sixteen volunteers, physical education students (8 men and 8 women), gave their written consent to participate in the study after being informed about the experimental procedures and the possible hazards of the muscle biopsy (men: 22 6 1 years, height 177 6 5 cm, weight 77 6 6 kg; women: 23 6 3 years, height 170 6 6 cm, weight 66 6 7 kg). All subjects had righthand dominance and followed a shot put skill course of 5 weeks duration (4 hours/week) before their participation in the study. All procedures were approved by the Ethics Committee of the S.P.E.S.S. of the U.O.A. Procedures Squat Underhand Front Shot Throw. The squat underhand front shot throw testing was performed outdoors in the morning hours in a standard shot put circle at an ambient temperature of 20 to 22 C. After a 10-minute warm-up (5 minutes running and then stretching), subjects rested for 3 minutes at a sitting position and subsequently performed 3 underhand front shot throws from a squat position (14, Figure 1). One minute of rest was allowed between each trial. Men used a 6-kg implement, whereas women used a 4-kg implement. This relatively simple throwing action was selected because the subjects participating in the study had only basic shot put skills (18). The same throwing test was repeated immediately after the performance of the drop jumps (e.g., 3 trials with 1-minute rest between). The time between the last drop jump and the first squat underhand shot throw was 20 seconds. The best underhand throwing performance before and the best underhand throwing performance after the drop jumps were used for further analysis. Subjects were vocally encouraged to perform their best during the shot throws. Also, distance targets were used to further stimulate subjects performance. Drop Jumps. Three minutes rest was allowed after the initial 3 underhand throws and before the performance of the drop VOLUME 23 NUMBER 9 DECEMBER 2009 2593

Postactivation Potentiation in Throwing jumps. Subjects were moved 10 m away from the shot put circle and performed 5 consecutive drop jumps from a concrete level of 40 cm height to a landing area made of concrete. All subjects were familiar with drop jumping through their participation in university courses. They were instructed to land stiff, with the least possible knee bending, and jump as high as possible after their landing. No rest was allowed after each drop jump. After the fifth drop jump, subjects walked quickly to the shot put circle and performed 3 underhand throws as described earlier. The time between the last drop jump and the first squat underhand shot throw was 20 seconds. Subjects were vocally encouraged to jump as high as possible during the drop jumps. Leg Press 6RM. All subjects were familiar with the leg press exercise through their participation in university courses. Assessment of 6RM muscular strength in leg press was performed according to previous reports (1,19). Briefly, after a short warm-up on a stationary bicycle and stretching exercises, subjects performed incremental submaximal efforts with 6 to 8 repetitions until they were unable to lift a heavier weight for 6 repetitions. Three minutes of rest was allowed between sets. In all cases, 2 of the authors were present and vocally encouraged each trial of each subject. Muscle Biopsies and Histochemistry Muscle samples were obtained from the middle portion of vastus lateralis (2), 20 cm from mid patella of the right leg, 1 week after the throwing performance tests. Samples were aligned; placed in embedding compound; and frozen in isopentane, which was precooled to its freezing point. All samples were kept in liquid nitrogen until the day of analysis. Serial cross-sections, 10-mm thick, were cut at 220 C and stained for myofibrillar ATPase after preincubation at ph 4.3 (4,5,15). Biopsy slices from all subjects were stained at the same time in the same jar. A mean of 798 6 86 muscle fibers were classified as type I or II from each sample. The crosssectional area of all the classified fibers from each sample was measured with an image analysis system (ImagePro, Media Cybernetics Inc, Silver Spring, Maryland, U.S.A.) at a known and calibrated magnification. TABLE 1. Initial squat underhand front shot throwing performance, 6RM in leg press, and fiber-type composition in men (n = 8) and women (n = 8) (mean 6 SD). Shot weight in men and women: 6 kg and 4 kg, respectively. CSA: muscle fiber crosssectional area. males and females and between the groups of subjects distinguished by high or low percentages of type II muscle fibers and 6RM leg press strength. p # 0.05 was used as a 2-tail level of significance. A subgroup of subjects (n =6) repeated the throw drop jumping throw sequence testing, on a different day, for reliability determination. Intraclass coefficients for the throwing performance before and after the drop jumps were R. 0.91. RESULTS Men Women Underhand shot throw (m) 8.94 6 1 7.56 6 1 6RM leg press (kg) 210 6 39 152 6 28 Type II fibers (%) 60.5 6 15 49.1 6 13 Type II area (%) 66.4 6 13 50.2 6 15 CSA type I (mm 2 ) 4,926 6 340* 4,150 6 565 CSA type II (mm 2 ) 6,537 6 1,029* 4,368 6 1,018 *p, 0.05. p, 0.01. The percentage of type II muscle fibers in vastus lateralis for the whole group of subjects was 54.8 6 15%. However, men had a significantly higher fiber cross-sectional area and percentage of type II fiber area as compared to women (Table 1). Squat underhand shot throw performance was significantly increased after drop jumping in all subjects as a group (before: 8.25 6 1.1 m, after: 8.63 6 1.3 m, p, 0.01, Figure 2). However, shot put performance was significantly increased in men (before: 8.94 6 1 m, after: 9.60 6 0.9 m, p, 0.01) but Statistical Analyses Means 6 SD were used to describe variables. Pearson s (r) product moment correlation coefficient was used to explore the relationships among different variables. Independent student t-test was used to investigate differences between Figure 2. Underhand shot throw performance before and immediately after five consecutive drop jumps from 40 cm, in moderately trained men and women (n = 16, * = p, 0.05). the 2594

the www.nsca-jscr.org throw performance before and after drop jumping (r = 0.50, p, 0.05). When subjects were divided in 2 equally numbered groups according to their 6RM leg press strength (. or,170 kg), regardless of their gender, the percentage change in performance before and after drop jumping did not differ significantly. Finally, the percentage change in squat underhand shot throw performance before and after drop jumping was not correlated significantly with the squat underhand shot throw performance, either before or after the drop jumps in men or in women, respectively. Figure 3. Correlation between the percentage of type II fiber area in vastus lateralis and the percentage change in underhand shot throw performance after five consecutive drop jumps from 40 cm, in moderately trained men and women (n = 16). not in women (before: 7.56 6 1 m, after: 7.67 6 0.9 m, ns) immediately after drop jumping. A close and significant relationship was found between the percentage of type II muscle fiber area and the percentage change in performance before and after drop jumping (r = 0.76, p, 0.01, Figure 3). Moreover, when subjects were divided in 2 equally numbered groups according to their percentage of type II muscle fiber area (. or,55 % type II fiber area), regardless of their gender, the percentage change in performance before and after drop jumping was higher in the group with the higher type II muscle fiber area (% change in shot put performance 0.6 6 5% vs. 8.7 6 4%, p, 0.01, Figure 4). A moderate relationship was found between 6RM leg press strength and the percentage change in squat underhand shot Figure 4. Percentage change in underhand shot throw performance before and after drop jumping. Subjects were divided in two groups according to their percentage of type II muscle fiber area of vastus lateralis (. or, 55% type II muscle fiber area), regardless of their gender (* = p, 0.01). DISCUSSION The main finding of the present study was that a simple throwing action, such as the squat underhand front shot throw, was enhanced after the performance of 5 consecutive drop jumps from 40 cm in moderately trained subjects. This result might be attributed to the phenomenon of postactivation potentiation, which has been described before in humans and in animals (8,9,12). According to this phenomenon, the force of a twitch contraction is enhanced after the implementation of a maximal voluntary contraction (8). Previous studies have shown that maximum voluntary contraction can induce an increase in explosive lower-body power performance (7) and that heavy squat exercise can cause an acute increase in power output of the lower extremities (21). Moreover, a powerful muscular action, such as the snatch, can lead to an acute increase in jumping performance (13). Similarly, the present results suggest that powerful muscular actions, such as the drop jumps, can cause an acute increase in another powerful muscular action such as throwing the shot, at least in moderately trained subjects. The increase in squat underhand front shot throw performance after the drop jumps was closely related to the percentage of type II muscle fiber area in vastus lateralis. Similar results have been reported previously in laboratory studies investigating the acute effect of maximum voluntary contractions on subsequent twitch contractions (8,20). However, 1 previous study concluded that fiber-type composition in vastus lateralis is not related to postactivation potentiation caused by a maximum voluntary contraction (16). The discrepancy between the results of the carefully designed laboratory study of Stuart et al. (16) and the present study could be attributed to the much broader range of fibertype composition among the subjects of our study, as also suggested by Hamada et al. (8). Specifically, Stuart et al. (16) reported a range of type II fiber type percentage between 37 and 65%, whereas Hamada et al. (8) described a wider range of 30 to 84%. The latest was almost identical with the corresponding range documented in the present study (28 80%). Of note, the present data revealed that drop jumps did not enhance shot put performance in females. However, this result might be explained by the significantly lower percentage of type II muscle fiber area in female subjects, as found in our sample (Table 1). VOLUME 23 NUMBER 9 DECEMBER 2009 2595

Postactivation Potentiation in Throwing The phenomenon of postactivation potentiation has been attributed to an increase in the phosphorylation of myosin light chains during the preceding intense muscular action, which is thought to increase the sensitivity of actin-myosin to Ca 2+ during the following muscular action (6,9,17). Such mechanisms would increase the postactivation potentiation in shot put performance in subjects possessing a higher percentage of type II muscle fibers because these fibers might contribute more to such powerful muscular action. The present results revealed that the relationship between the increase in squat underhand front shot throw after drop jumping correlated more with the percentage of the type II fiber area rather than with the percentage number of type II fibers (r = 0.76, p, 0.01 vs. r = 0.69, p, 0.01). This might suggest that the number of type II myosin molecules is more important than the number of type II cells for this relationship. This is in concert with the hypothesis of the increased phosphorylation of the myosin light chain phosphorylation after the initial intense muscular action. Furthermore, it is plausible that a fast and powerful muscular movement, such as the drop jump, might activate strongly the type II muscle fibers, thus enhancing the phosphorylation of myosin light chains in these fibers and subsequently increase the shot put performance in subjects possessing higher percentages of type II muscle fibers. Similar suggestions have been proposed before (6,17). However, this hypothesis requires further investigation. Muscular strength (6RM) was moderately related to the increase in squat underhand shot put performance after drop jumping. It has been previously suggested that muscular strength might influence positively the postactivation potentiation (7,20). In a recent study, a tendency toward an increase in jumping performance immediately after 1 repetition at 90% 1RM of the half or quarter squat was reported (11). In the same study, muscular strength was not related to the change in performance after performing the squat. These results, together with the present results, suggest that fiber-type composition has a stronger influence on postactivation potentiation than muscular strength. Alternatively, it might be possible that the use of 6RM as an index of muscular strength could have underestimated the relationship between strength and increase in underhand shot throw performance. It might be argued that there was a learning effect (e.g., better performance in the last throws) that might explain the increase in performance after drop jumping. However, the subjects were already well familiarized with squat underhand shot throwing. Moreover, most of the subjects (11 out of 16) achieved their maximum performance in the second or third trial before drop jumping and in the first or second trial after drop jumping (12 out of 16). In conclusion, the results of the present study indicate that drop jumping just before a simple shot throwing action induces an increase in performance in moderately trained subjects. This increase in performance was closely related to the percentage of type II muscle fiber area of vastus lateralis and moderately related to the muscular strength of the lower extremities. Gender differences found in this study can be explained by the fiber-type composition of vastus lateralis. PRACTICAL APPLICATIONS The present data suggest that a powerful movement such as the drop jump from 40 cm can be used effectively to acutely enhance the performance in a simple throwing action in moderately trained males and females. Thus, shot put throwers of a moderate level might be benefited by such an approach. Moreover, throwers with a high percentage of type II muscle fibers in their protagonist lower limb muscles would gain more from such intervention. Drop jumping should be performed immediately before (,30 seconds) the throwing action to be effective. It remains to be investigated whether such a maneuver can enhance performance in well-trained throwers, considering the fact that such athletes possess a relatively high percentage of type II muscle fiber area in the their thigh muscles (3). ACKNOWLEDGMENTS We express our gratitude to the subjects who participated in the study. We also wish to thank D. Vontzalidis, MD, and E. Mastoroglou for excellent technical assistance. This work was partly supported by grants from S.A.R.G. of the U.O.A. to G. Georgiadis and G. Terzis. All experimental procedures used comply with Greek governmental laws for human subjects. This work has never been published anywhere else before, either completely or in part. REFERENCES 1. Beachle, TR, Earle, RW, and Wathen, D. Resistance training. In: Essentials of Strength Training and Conditioning. Beachle, TR, Earle, RW, (eds.). Champaign IL: Human Kinetics, 2000. pp. 395 425. 2. Bergström, J. Muscle electrolytes in man. Scand J Clin Lab Invest 14 (Suppl 68): 1 110, 1962. 3. Billeter, R, Jostarndt-Fögen, K, Günthör, W, and Hoppeler, H. Fiber type characteristics and myosin light chain expression in a world champion shot putter. Int J Sports Med 24: 203 207, 2003. 4. Brooke, M and Kaiser, K. Muscle fiber types. How many and what kind. Arch Neurol 23: 369 379, 1970a. 5. Brooke, M and Kaiser, K. Three myosin ATPase systems. The nature of their ph lability and sulfhydryl dependence. J Histochem Cytochem 18: 670 672, 1970b. 6. Grange, RW, Vandenboom, R, and Houston, ME. Physiological significance of myosin phosphorylation in skeletal muscle. Can J Appl Physiol 18: 229 242, 1993. 7. Gullich, A and Schmidtbleicher, D. MVC-induced short-term potentiation of explosive force. New Stud Athl 11: 67 81, 1996. 8. Hamada, T, Sale, DG, MacDougall, JD, and Tarnopolsky, MA. Postactivation potentiation, fiber type, and twitch contraction time in human knee extensor muscles. J Appl Physiol 88: 2131 2137, 2000a. 9. Hamada, T, Sale, DG, and MacDougall, JD. Postactivation potentiation in endurance-trained male athletes. Med Sci Sports Exerc 32: 403 411, 2000b. the 2596

the www.nsca-jscr.org 10. Hrysomallis, C and Kidgell, D. Effect of heavy dynamic resistive exercise on acute upper-body power. J Strength Cond Res 15: 426 430, 2001. 11. Magnus, BC, Takahashi, M, Mercer, JA, Holcomb, WR, McWhorter, JW, and Sanchez, R. Investigation of vertical jump performance after completing heavy squat exercises. J Strength Cond Res 20: 597 600, 2006. 12. Moore, RL and Stull, JT. Myosin light chain phosphorylation in fast and slow skeletal muscle in situ. Am J Physiol Cell Physiol 247: C462 C471, 1984. 13. Radcliffe, JC and Radcliffe, JL. Effect of different warm-up protocols on peak power output during a single response jump task [Abstract]. Med Sci Sports Exerc 28: S189, 1996. 14. Silvester, J. Complete Book of Throws. Champaign, IL: Human Kinetics, 2003. 15. Staron, RS. Human skeletal muscle fiber types: Delineation, development, and distribution. Can J Appl Physiol 22: 307 327, 1997. 16. Stuart, DS, Lingley, MD, Grange, RW, and Houston, ME. Myosin light chain phosphorylation and contractile performance of human skeletal muscle. Can J Physiol Pharmacol 66: 49 54, 1988. 17. Sweeny, HL, Bowman, BF, and Stull, JT. Myosin light chain phosphorylation in vertebrate striated muscle: Regulation and function. Am J Physiol Cell Physiol 264: C1085 C1095, 1993. 18. Terzis, G, Georgiadis, G, Vassiliadou, E, and Manta, P. Relationship between shot-put performance and triceps brachii fiber type composition and power production. Eur J Appl Physiol 90: 10 15, 2003. 19. Terzis, G, Stratakos, G, Manta, P, and Georgiadis, G. Throwing performance after resistance training and detraining. J Strength Cond Res 22: 1198 1204, 2008. 20. Vandervoort, AA and McComas, AJ. A comparison of the contractile properties of the human gastrocnemius and soleus muscles. Eur J Appl Physiol 51: 435 440, 1983. 21. Young, WB, Jenner, A, and Griffiths, K. Acute enhancement of power from heavy load squats. J Strength Cond Res 12: 82 84, 1998. VOLUME 23 NUMBER 9 DECEMBER 2009 2597