Analysis of Rosuvastatin in Dried Blood Spot and Plasma Using ACQUITY UPLC with 2D Technology

Similar documents
A High Sensitivity UPLC/MS/MS Method for the Analysis of Clopidogrel and Clopidogrel Carboxylic Acid Metabolite in Human K 2 EDTA Plasma

Matrix Factor Determination with the Waters Regulated Bioanalysis System Solution

UPLC-MS/MS Analysis of Azole Antifungals in Serum for Clinical Research

Rapid Analysis of Water-Soluble Vitamins in Infant Formula by Standard-Addition

Analysis of Testosterone, Androstenedione, and Dehydroepiandrosterone Sulfate in Serum for Clinical Research

UPLC/MS Monitoring of Water-Soluble Vitamin Bs in Cell Culture Media in Minutes

O O H. Robert S. Plumb and Paul D. Rainville Waters Corporation, Milford, MA, U.S. INTRODUCTION EXPERIMENTAL. LC /MS conditions

A Novel Solution for Vitamin K₁ and K₂ Analysis in Human Plasma by LC-MS/MS

Rapid and Accurate LC-MS/MS Analysis of Nicotine and Related Compounds in Urine Using Raptor Biphenyl LC Columns and MS-Friendly Mobile Phases

A RAPID AND SENSITIVE ANALYSIS METHOD OF SUDAN RED I, II, III & IV IN TOMATO SAUCE USING ULTRA PERFORMANCE LC MS/MS

Rapid, Simple Impurity Characterization with the Xevo TQ Mass Spectrometer

Meeting Challenging Requirements for the Quantitation of Regulated Growth Promoters Dexamethasone and Betamethasone in Liver and Milk

Quantification of Budesonide Using UPLC and Xevo TQ-S

Reducing Sample Volume and Increasing Sensitivity for the Quantification of Human Insulin and 5 Analogs in Human Plasma Using ionkey/ms

Rapid Analysis of Bisphenols A, B, and E in Baby Food and Infant Formula Using ACQUITY UPLC with the Xevo TQD

[ APPLICATION NOTE ] UPLC-MS/MS Analysis of 45 Amino Acids Using the Kairos Amino Acid Kit for Biomedical Research INTRODUCTION APPLICATION BENEFITS

[ APPLICATION NOTE ] Oasis PRiME HLB Cartridge for Cleanup of Infant Formula Extracts Prior to UPLC-MS/MS Multiresidue Veterinary Drugs Analysis

A Definitive Lipidomics Workflow for Human Plasma Utilizing Off-line Enrichment and Class Specific Separation of Phospholipids

Providing a Universal, One-step Alternative to Liquid-Liquid Extraction in Bioanalysis

Simultaneous Analysis of Intact Human Insulin and Five Analogs in Human Plasma Using μelution SPE and a CORTECS UPLC Column

Detection of Cotinine and 3- hydroxycotine in Smokers Urine

Direct Analysis of Urinary Opioids and Metabolites by Mixed-Mode µelution SPE Combined with UPLC/MS/MS for Forensic Toxicology

A Robustness Study for the Agilent 6470 LC-MS/MS Mass Spectrometer

Determination of 6-Chloropicolinic Acid (6-CPA) in Crops by Liquid Chromatography with Tandem Mass Spectrometry Detection. EPL-BAS Method No.

Performance of an ultra low elution volume 96-well plate

LC-MS/MS Method for the Determination of Tenofovir from Plasma

[ APPLICATION NOTE ] High Sensitivity Intact Monoclonal Antibody (mab) HRMS Quantification APPLICATION BENEFITS INTRODUCTION WATERS SOLUTIONS KEYWORDS

Analysis of Food Sugars in Various Matrices Using UPLC with Refractive Index (RI) Detection

Removal of Triton X-100 from Plasma Samples Using Mixed-Mode Solid Phase Extraction (SPE)

Dr. Erin E. Chambers Waters Corporation. Presented by Dr. Diego Rodriguez Cabaleiro Waters Europe Waters Corporation 1

Method Development for the Analysis of Endogenous Steroids Using Convergence Chromatography with Mass Spectrometric Detection

SPE-LC-MS/MS Method for the Determination of Nicotine, Cotinine, and Trans-3-hydroxycotinine in Urine

Analysis of Cholesterol-Lowering Drugs (Statins) Using Dried Matrix Spot Technology

[ APPLICATION NOTE ] Profiling Mono and Disaccharides in Milk and Infant Formula Using the ACQUITY Arc System and ACQUITY QDa Detector

Dienes Derivatization MaxSpec Kit

Probing for Packaging Migrants in a Pharmaceutical Impurities Assay Using UHPLC with UV and Mass Detection INTRODUCTION

Challenges in Developing an Ultra-Sensitive Bioanalytical Method for Ethinylestradiol in Human Plasma

Determination of β2-agonists in Pork Using Agilent SampliQ SCX Solid-Phase Extraction Cartridges and Liquid Chromatography-Tandem Mass Spectrometry

DETERMINATION OF CANNABINOIDS, THC AND THC-COOH, IN ORAL FLUID USING AN AGILENT 6490 TRIPLE QUADRUPOLE LC/MS

Development of a Bioanalytical Method for Quantification of Amyloid Beta Peptides in Cerebrospinal Fluid

Development of a High Sensitivity SPE-LC-MS/MS Assay for the Quantification of Glucagon in Human Plasma Using the ionkey/ms System

Vitamin D Metabolite Analysis in Biological Samples Using Agilent Captiva EMR Lipid

4.5 Minute Analysis of Benzodiazepines in Urine and Whole Blood Using LC/MS/MS and an Ultra Biphenyl Column

Applying a Novel Glycan Tagging Reagent, RapiFluor-MS, and an Integrated UPLC-FLR/QTof MS System for Low Abundant N-Glycan Analysis

Rapid Lipid Profiling of Serum by Reverse Phase UPLC-Tandem Quadrupole MS

Analysis of anti-epileptic drugs in human serum using an Agilent Ultivo LC/TQ

Determination of Amantadine Residues in Chicken by LCMS-8040

LC-MS/MS Method for the Determination of 21 Opiates and Opiate Derivatives in Urine

Extraction of 25-hydroxy Vitamin D from Serum Using ISOLUTE. PLD+ Prior to LC-MS/MS Analysis

Extraction of a Comprehensive Steroid Panel from Human Serum Using ISOLUTE. SLE+ Prior to LC/MS-MS Analysis

Extraction of Multiple Mycotoxins From Nuts Using ISOLUTE Myco prior to LC-MS/MS Analysis

Analysis of the Non-Ionic Surfactant Triton-X Using UltraPerformance Convergence Chromatography (UPC 2 ) with MS and UV Detection

Extraction of Multiple Mycotoxins From Grain Using ISOLUTE Myco prior to LC-MS/MS Analysis

Comprehensive Study of SLE as a Sample. Preparation Tool for Bioanalysis

High Throughput Extraction of Opiates from Urine and Analysis by GC/MS or LC/MS/MS)

Comparison of a UPLC Method across Multiple UHPLC Systems

Application Note. Author. Abstract. Introduction. Food Safety

Shuguang Li, Jason Anspach, Sky Countryman, and Erica Pike Phenomenex, Inc., 411 Madrid Ave., Torrance, CA USA PO _W

Fast, Robust and Reliable Method for the Identification and Quantitation of Sildenafil Residue in Honey using LC-MS/MS

Analyze Barbiturates in Urine with Agilent 6430 LC/MS/MS and Poroshell 120 EC-C18

Comprehensive Forensic Toxicology Screening in Serum using On-Line SPE LC-MS/MS

LC-MS/MS analysis of Chlorates in Milk and Whey Powder using the Agilent 6470 QQQ

Integration of steroids analysis in serum using LC-MS/MS with full-automated sample preparation

The Investigation of Factors Contributing to Immunosuppressant Drugs Response Variability in LC-MS/MS Analysis

Accuracy and Precision. Intra- and inter-assay accuracy and precision for both rifapentine

A Comprehensive Screening of Illicit and Pain Management Drugs from Whole Blood Using SPE and LC/MS/MS

Rapid and Robust Detection of THC and Its Metabolites in Blood

The setup and validation of an LC-MS/MS assay of Androstenedione & Testosterone a labs experience

LC/MS/MS Analysis of Metabolites of Synthetic Cannabinoids JWH-018 and JWH-073 in Urine

The Raptor HILIC-Si Column

Fast and simultaneous analysis of ethanol metabolites and barbiturates using the QTRAP 4500 LC-MS/MS system

Quantification of lovastatin in human plasma by LC/ESI/MS/MS using the Agilent 6410 Triple Quadrupole LC/MS system

Extraction of 11-nor-9-carboxy-tetrahydrocannabinol from Hydrolyzed Urine by ISOLUTE. SLE+ Prior to GC/MS Analysis

Reduced Ion Suppression and Improved LC/MS Sensitivity with Agilent Bond Elut Plexa

Analytes. Sample Preparation Procedure. Introduction. Format: Sample Pre-treatment. Sample Loading. Analyte Extraction and Derivatization.

LC-Based Lipidomics Analysis on QTRAP Instruments

A RAPID AND SENSITIVE UPLC/UV/MS METHOD FOR SIMVASTATIN AND LOVA S TAT IN IN SU P P O RT O F C L E A NING VA L I DAT IO N S T U DIES

Development and Validation of an UPLC-MS/MS Method for Quantification of Mycotoxins in Tobacco and Smokeless Tobacco Products

Robust extraction, separation, and quantitation of structural isomer steroids from human plasma by SPE-UHPLC-MS/MS

USP Method Transfer of Ziprasidone HCl from HPLC to UPLC

Supplementary Information

INTRODUCTION CH 3 CH CH 3 3. C 37 H 48 N 6 O 5 S 2, molecular weight Figure 1. The Xevo QTof MS System.

Fig. 1: Chemical structure of arachidonic acid COOH CH 3

[ APPLICATION NOTE ] APPLICATION BENEFITS INTRODUCTION WATERS SOLUTIONS KEYWORDS

Extraction of Aflatoxin M1 From Infant Formula Using ISOLUTE Myco SPE Columns prior to LC-MS/MS Analysis

Dry eye disease commonly known as atopic keratoconjunctivitis is an autoimmune disease of

Rapid and sensitive UHPLC screening for water soluble vitamins in sports beverages

Application Note LCMS-108 Quantitation of benzodiazepines and Z-drugs in serum with the EVOQ TM LC triple quadrupole mass spectrometer

John Haselden 1, Gordon Dear 1, Jennifer H. Granger 2, and Robert S. Plumb 2. 1GlaxoSmithKline, Ware, UK; 2 Waters Corporation, Milford, MA, USA

High-Throughput, Cost-Efficient LC-MS/MS Forensic Method for Measuring Buprenorphine and Norbuprenorphine in Urine

[ APPLICATION NOTE ] The Separation of 8 -THC, 9 -THC, and Their Enantiomers by UPC 2 Using Trefoil Chiral Columns INTRODUCTION APPLICATION BENEFITS

Using Hydrophilic Interaction Chromatography (HILIC) for the Retention of Highly Polar Analytes

Identification and Quantification at ppb Levels of Common Cations and Amines by IC-MS

Quantitative Analysis of Vit D Metabolites in Human Plasma using Exactive System

A UPLC/MS Approach for the Diagnosis of Inborn Errors of Metabolism

Mass-Based Purification of Natural Product Impurities Using an Agilent 1260 Infinity II Preparative LC/MSD System

A Metabolomics Approach to Profile Novel Chemical Markers for Identification and Authentification of Terminalia Species

Fast quantitative Forensic Analysis of THC and its Metabolites in Biological Samples using Captiva EMR- Lipid and LC/MSMS

Transcription:

Analysis of Rosuvastatin in Dried Blood Spot and Plasma Using ACQUITY UPLC with 2D Technology Claude Mallet, 1 Jennifer Simeone, 2 Paul Rainville 3 1 Workflow Integration Group, Separations Technologies, Waters Corporation, Milford, MA USA 2 Separations Marketing Laboratory, Waters Corporation, Milford, MA USA 3 Pharmaceutical Business Operation, Waters Corporation, Milford, MA USA APPLICATION BENEFITS Elimination of evaporation and reconstitution step Robust sample preparation Excellent reproducibility INTRODUCTION In the field of bioanalysis, the analysis of a target analyte and its metabolites in biological fluids (urine, plasma, and blood) is predominantly the main activity during animal and human trials. As such, a wide range of extraction and analytical techniques are used for qualitative and quantitative analysis. For accurate quantification, the target analyte must be isolated from the matrix, 1,2 from which a clean and concentrated extract can be analyzed by GC-MS or LC-MS for trace level detection (ng/ml). During method development, it is quite common to include an enrichment step if the analytical protocol requires sub-level (ppb) detection. Therefore, large sample quantities are required during the extraction process. For human and large animal trials, adequate sample size (volume or mass) can be made available for trace level analysis. However, for pre-clinical trials, sample volume drawn from small rodents (rats, mice, guinea pigs, etc.) is significantly lower and can limit the sampling frequency. As a result, the concept of micro-sampling has gained an interest as a potential alternative. From a logistical standpoint, handling and shipping of liquid samples adds an additional level of difficulty. As such, the concept of Dried Blood Spot (DBS) allows the collection of micro (<2 µl) sampling directly onto a sorbent support card. After an adequate air drying period, the dried sample can be stored and shipped under ambient temperatures. Once the DBS card has reach the laboratory, the challenge now resides in the isolation of the target analyte from the dried matrix. WATERS SOLUTIONS ACQUITY UPLC with 2D-LC Technology KEY WORDS Dried blood spot, plasma, 2D chromatography, at-column dilution The extraction procedure of a DBS card requires the removal of bounded materials from the support structure, most often cellulose, using a punch cutting technique. The punch cutting technique utilizes a circular cutter to cut a fixed surface of the DBS card. The round disk is then subjected to a solid-liquid extraction with water or organic solvents (IPA, MeOH, ACN, etc.). With aqueous extraction, if the extract is of good quality, a small aliquot (1 µl) is used for analysis by LC-MS/MS. However, in most instances, the extraction efficiency gives better recoveries with organic solvents. 1

EXPERIMENTAL Chromatography and MS/MS conditions Loading conditions Column: XBridge C 18, 1 µm Loading: Water ph 7, no additives Flow rate:.8 ml/min At-column dilution: Set at 2 dilution (.2 ml/min pump A and.8 ml/min pump B) UPLC conditions UPLC system: ACQUITY UPLC 2D configured for Trap & Elute with at-column dilution Runtime: 1 min Column: ACQUITY UPLC BEH C 18, 2.1 x 5 mm, 1.7 μm Column temp.: 3 C Mobile phase A: Water +.5 formic acid Mobile phase B: Acetonitrile +.5 formic acid Elution: 5 minutes linear gradient from 5 (B) to 55 (B) Flow rate:.5 ml/min (pump C) Injection volume: 5 μl MS conditions MS system: Xevo TQ-S Ionization mode: ESI Positive Capillary voltage: 1. kv Cone voltage: 6. V Source temp.: 15 C Desolvation temp.: 55 C As a consequence, a solvent conversion step must be added to the extraction protocol. This is achieved by removing the organic solvent using an evaporation and reconstitution step. The evaporation by nitrogen stream is the most popular method, but not without difficulties: it is a well know fact that evaporative loss can occur and create a potential cause for poor recoveries. ACQUITY UPLC with 2D-LC technology 3 allows the option of large-volume injection (up to 1 µl) of aqueous and organic extracts, thus removing all evaporation and reconstitution steps from any extraction protocols. In this application, 15-µL aliquots of blood were spotted onto Whatman DMPK type B support cards. A 3-mm punch disk was suspended in 1 µl methanol. The LC-MS/MS analysis of rosuvastation was performed by using an injection volume of 85 µl enabling a detection limit of.5 ng/ml. Methanol, acetonitrile, formic acid, and ammonium hydroxide were obtained from Sigma-Aldrich Chemicals (St. Louis,MO,USA). Human blood was purchased from Bioreclamation (Hicksville, NY) and stored refrigerated prior to use (blood was used within 7 days of purchase). Human plasma was also purchased from Bioreclamation and was stored at -8 C. Rosuvastatin and the D6 deuterated internal standard were purchased from Toronto Research Chemicals (Ontario, Canada). Rosuvastatin was then prepared by dissolving the required amount of dry powder in methanol and diluting in 1 methanol to prepare standards for spiking into biological fluids. The blood spot samples, calibration curves, and QCs were prepared by spiking authentic standard in solution into fresh human blood. Aliquots of 15 μl of blood were spotted onto Whatman DMPK type B cards. The center of the resulting blood spots were sampled using a 3-mm punch. These sample cores were then suspended in 1 μl of methanol, which was then shaken for one hour. The resulting extract was then centrifuged for five minutes at 13, relative centrifugal force (rcf). The extraction solvent was removed for injection onto the LC-MS/MS system. The plasma samples, calibration curves, and QCs were prepared by spiking the required concentrations of the authentic standards (normal and deuterated) in solution into human plasma. A 1-μL aliquot of plasma was then mixed with 3 μl of acetonitrile and then vortex mixed with the resulting proteinprecipitated sample centrifuged at 13, rcf for five minutes. The supernatant was then removed for injection onto the LC-MS/MS system. Rosuvastatin was monitored using the transition 482 258 and the transition 488 264 was employed for the D6 internal standard. Desolvation gas: Cone gas: 11 L/hr 5 L/hr 2

RESULTS Trace level detection is directly linked to the enrichment factor from the sample preparation protocol and the injection volume utilized for quantification. While reversed-phase chromatography remains the most utilized technique for hydrophilic analysis, the final extract matrix must be compatible with the separation conditions to avoid volume or mass overload during the injection phase. In order to achieve gaussian and well-resolved peak shape, the sample matrix must be compatible with initial mobile phase conditions, usually with a high aqueous percentage (>95). As a consequence, this requirement adds additional labour time during the final stage of sample preparation. In most instances, a target analyte is extracted from its original matrix with a high percentage of organic solvent (IPA, MeOH, ACN, Acetone, etc.). Therefore, the extract must undergo a solvent exchange from high-organic to high-aqueous. This is achieved by adding an evaporation-todryness step, followed by reconstitution in a suitable solvent. The popular method of gentle nitrogen gas stream is not without issue. It is a well-documented fact that evaporation by nitrogen stream can lead to evaporative loss and re-dissolution incompatibility. As such, these finals steps of the extraction protocol make for a very laborious and time consuming process. In the field of multi-dimensional chromatography, the addition of a second dimension will lead to higher performance in terms of peak capacity, separation power, and resolution. The flexibility and scalability of hyphenated chromatography can lead to costeffective methods in terms of performance and workflow process. ACQUITY UPLC with 2D-LC Technology 3 offers the option of a large-volume injection that is compatible with both aqueous and organic extracts. Increased injection volume can increase the detection limit by 1:1 for any optical or destructive detector. The ability to inject aqueous and organic extracts also brings an additional disruptive benefit to the sample preparation protocol. From that option, any or all evaporative and reconstitution steps can be eliminated from the sample preparation protocol. This feature is achieved by de-coupling the initial trapping phase from the separation process when using a single high-resolution dimension. As such, a custom trapping support is positioned between two distinct flow streams. The first stream is composed of a high-aqueous mobile phase with the unique function to operate at high k' for maximum and fast mass transfer from the mobile phase to the stationary phase. In this dimension, the flow rate, ph, and stationary phase retention strength are key parameters for effective retention. With a dual flow stream (at-column dilution or ACD) for the sample loading, aqueous and organic extracts are pre-diluted before reaching the trapping dimension. The effect of a single versus dual stream for a 1-µL injection rosuvastatin extract in 1 methanol is illustrated in Figure 1. Rosuvastatin shows peak distortion for the single stream loading. However, with the at-column dilution option, a higher signal is observed due to improved trapping efficiency. 1 MRM of 3 Channels ES+ 482.2 > 258.144 (rosuvastatin) 1.53e6 1 3.2 3.4 3.6 3.8 4. 4.2 4.4 4.6 4.8 5. 5.2 5.4 5.6 5.8 6. 4.45 4.45 MRM of 3 Channels ES+ 482.2 > 258.144 (rosuvastatin) 1.53e6 3.2 3.4 3.6 3.8 4. 4.2 4.4 4.6 4.8 5. 5.2 5.4 5.6 5.8 6. Figure 1. Comparison of direct injection of rosuvastatin in 1 methanol with and without at-column dilution. 3

For any analytical methods, reaching maximum sensitivity is an integral parameter and must be subject to evaluation. Therefore, the signal of rosuvastatin was measured in aqueous and organic extracts using a 1D and a 2D configuration (See Table 1). The results shows two important aspects. The area counts for six consecutive injections show excellent reproducibility with a coefficient of variation (CV s) below 3. This result indicates no noticeable variations between a 1D and a 2D configuration. The second observation, rosuvastatin shows a higher response with a methanol extract with the 2D configuration. The increase in signal with organic extract indicates a reduction of potential active sites, mostly related to glass vial. Rosuvastatin has sulfur and nitrogen moities in its core chemical structure, and since glass surfaces can exhibit ion exchange capabilities (anion and cation) under aqueous conditions, it is plausible that rosuvastatin is subjected to an additional retention ion exchange mechanism. The switch from aqueous to methanol simply deactivates the ion exchange capability of the glass vial. The rate of retention is largely dependent on the target analyte. In Figures 2 and 3, two test probes were injected under aqueous and methanol conditions with five sequential injections. In Figure 2, the aqueous extract shows a drastic signal reduction after the third injection, which in many cases could be falsely interpreted as potential carry over issue. The extract in methanol shows a stable signal for all five injections, and it is worth pointing out that the signal for both extracts on the first injection are at a similar level. In some other instances, the adsorption rate can be quite fast. In Figure 3, the five consecutive injections for the aqueous extract are constant (e 6 signal), but in methanol the signal shows a 1-fold signal increase (e 7 signal), for the same concentration. Area counts Injection 1D H 2 O 2D H 2 O 2D ACD H 2 O 2D ACD MeOH 1 345 3251 3374 483 2 353 3245 335 3996 3 3562 3425 3591 489 4 3596 3486 363 4114 5 3535 3431 357 48 6 3683 3421 3494 464 AVG 3547.3 3376.5 3486.5 459. STDEV 93.1 12.3 16.1 47.1 CV 2.6 3. 3. 1.2 Table 1. Rosuvastatin area counts for various LC configuration and injection solvent. 4

1 5.72 2.6e4 1 5.73 5.22e5 2. 4. 6. 8. 1. 2. 4. 6. 8. 1. 1 5.78 2.43e4 1 5.2e5 2. 4. 6. 8. 1. 2. 4. 6. 8. 1. 1 5.79 2.35e4 1 5.73 5.9e5 2. 4. 6. 8. 1. 2. 4. 6. 8. 1. 1 4.72e5 1 4.98e5 2. 4. 6. 8. 1. 2. 4. 6. 8. 1. 1 5.76 4.97e5 1 5.7e5 2. 4. 6. 8. 1. 2. 4. 6. 8. 1. Figure 2. Chromatogram with at-column dilution using atrazine-desethyl (early eluter). 1 2.5e7 1 7.52 2.56e7 2. 4. 6. 8. 1. 1 2. 4. 6. 8. 1. 1 2. 4. 6. 8. 1. 1 7.53 2.5e7 2.5e7 2.5e7 2. 4. 6. 8. 1. 1 7.53 2.54e7 2. 4. 6. 8. 1. 1 7.53 2.59e7 2. 4. 6. 8. 1. 1 7.52 2.61e7 2. 4. 6. 8. 1. 2. 4. 6. 8. 1. 1 2.5e7 2. 4. 6. 8. 1. 1 2.61e7 2. 4. 6. 8. 1. 1 x increase Figure 3. Chromatogram with at-column dilution using metolachlor (late eluter). 5

Linearity and Quantification For comparison purposes, the dried blood spot with methanol soak was paired with a plasma matrix analysis using a protein precipitation approach. Both extracts exhibit a similar sample complexity and the interest was to evaluate the robustness of the 2D configuration for low injection volume (<1 µl) and with high-organic percentage. A representative chromatogram at.5 ng/ml for rosuvastatin in dried blood spot and a blank injection is shown in Figure 4. The peak shape is well defined and exhibits a gaussian peak shape. The signal-to-noise ratio was set at 2:1 for a 15-µL starting volume. The assay was validated using a 3-run protocol on 3 successive days in accordance with FDA validation guidelines. 4 The method validation data is shown in Table 2 where the inter-day precision and accuracy showed bias of 14.8 and a CV of 4. at the.5-ng/ml level and bias of 1.4 and a CV of 1.2 at the 8-ng/mL level. Dried blood spot Spike at.5 ng/ml Dried blood spot Blank Figure 4. Chromatogram at LOQ (.5 ng/ml) and blank injected after the LLOQ for the analysis of rosuvastatin from dried blood spot. With the plasma assay, rosuvastatin was spiked into human plasma and treated at a 3:1 precipitation ratio with acetonitrile. A representative chromatogram for the LLOQ standard and the blank immediately following the 5-ng/mL standard are shown in Figure 5. Here we can see that the 2D solution provides excellent chromatographic performance and a very clean chromatogram. The plasma protein precipitation method was subjected to a one-run validation using a 96-well sample plate. The method was demonstrated to be linear over a range of.1 5 ng/ml with an r 2 value of.9995 obtained for the calibration curve using a linear 1/x weighting. Plasma Spike at.5 ng/ml Plasma Blank Figure 5. Chromatogram at LOQ (.5 ng/ml) and blank injected after the LLOQ for the analysis of rosuvastatin in plasma following precipitation with acetonitrile. 6

QC LLOQ.5 ng/ml QC Low 1.5 ng/ml QC Mid 3 ng/ml Table 2. 3-day inter-day accuracy/precision statistic for dried blood spot analysis of rosuvastatin. QC High 8 ng/ml Mean.574 1.55 29.9 81.1 St Dev.23.249.432 1.1 CV 4. 1.6 1.4 1.2 Bias 14.8 3.2 -.2 1.4 Replicates 18 18 18 18 CONCLUSIONS The results obtained for dried blood spots and plasma sample using ACQUITY UPLC with 2D-LC Technology showed the benefit of large-volume injection (high-organic percentage) and the elimination of the evaporation and reconstitution steps from the extraction protocol. The time-saving workflow also demonstrated excellent reproducibility and robustness. Moreover, the methodology showcased an increase in the MS signal with highorganic percentage matrix in comparison to aqueous extract. References 1. Biddlecombe RA, Pleasance S, J Chromatogr B Biomed Sci Appl., 734(2), 257 65, 1999. 2. Biddlecombe RA, Benevides C, Pleasance S, Rapid Commun Mass Spectrom., 15(1), 33 4, 21. 3. Mallet C, De-Coupled Chromatography, A Novel Technique, Waters Corporation, 725125EN, 214. 4. Guidance for Industry, Bioanalytical Method Validation, May 21, http://www.fda.gov/downloads/drugsguidancecomplianceregulatory Information/Guidances/ucm717.pdf. Waters, ACQUITY UPLC, UPLC, XBridge, Xevo, and The Science of What s Possible are registered trademarks of Waters Corporation. All other trademarks are the property of their respective owners. 214 Waters Corporation. Produced in the U.S.A. December 214 725213EN AG-PDF Waters Corporation 34 Maple Street Milford, MA 1757 U.S.A. T: 1 58 478 2 F: 1 58 872 199 www.waters.com