Influence of Different Prebiotics and Probiotics on Selective Intestinal Pathogens

Similar documents
FIBER HEALTH BENEFITS

NEERJA HAJELA, PhD Head Science Yakult Danone India Pvt. Ltd.

In vitro study of antibacterial activity of Carissa carandas leaf extracts

Prebiotics vs. Probiotics

Chapter 4. Anti-bacterial studies of PUFA extracts from Sardinella longiceps and Sardinella fimbriata. 4.1 Introduction

Asian Journal of Pharmaceutical Analysis and Medicinal Chemistry Journal home page:

Understanding probiotics and health

Research Article. The effects of hyaluronic acid on the morphological physiological differentiation of Lactobacillus

SCREENING LACTIC ACID BACTERIA FOR ANTIMICROBIAL COMPOUND PRODUCTION K. KHALISANNI, K. LEE HUNG

Screening of Antimicrobials of some Medicinal Plants by TLC Bioautography

Prebiotics in Aquaculture: New Strategy for Larviculture Improvment?

Puducherry. Antimicrobial activity, Crude drug extraction, Zone of Inhibition, Culture Media, RVSPHF567.

Best use of a probiotic supplement (Symprove TM )

Indigenous fermented milk products: A microbiological study in Bhagalpur town

Standardization of Technology for Preparation of Functional Frozen Misti Dahi

Effect of inulin on growth and antimicrobial activity of Lactobacillus spp.

השפעת חיידקים פרוביוטיים

Int.J.Curr.Microbiol.App.Sci (2018) 7(7):

Received: 20 th Feb Revised: 24 th Feb-2012 Accepted: 28 th Feb-2012 Research article

Poultry The unique probiotic

The effect of probiotics on animal health: a focus on host s natural intestinal defenses

Higher plants produced hundreds to thousands of diverse chemical compounds with different biological activities (Hamburger and Hostettmann, 1991).

INTESTINAL MICROBIOTA EXAMPLES OF INDIVIDUAL ANALYSES

Lactobacillus bulgaricus

Growth of Lactic Acid Bacteria in Milk for the Preparation of Functional Frozen Misti Dahi (Sweet Curd)

International Journal of Research in Pharmaceutical and Nano Sciences Journal homepage:

International Journal of Food Nutrition and Safety, 2012, 1(2): International Journal of Food Nutrition and Safety

THE MISSING PIECE IN AUTISM DIAGNOSIS: COULD WE BE OVERLOOKING THE GUT MICROBIOME?

Module Four: The GI System Module Five: The Gut Microbiome. The GI System. LLiana Shanti, CN

Pathogenicity of Infectious Diseases

Bioprospecting of Neem for Antimicrobial Activity against Soil Microbes

PROBIONA. PROBIOTICS with 5 bacterial strains. Suitable during and after the use of antibiotics to restore intestinal microflora.

The role of nutrition in optimum gastrointestinal health

International Journal of Pharma and Bio Sciences A COMPARITIVE STUDY OF ANTIMICROBIAL ACTIVITY OF SOME HERBS AND THEIR SYNERGISTIC EFFECT ABSTRACT

Effect of fructooligosaccharide fortification on quality characteristic of some fruit juice beverages (apple &orange juice)

Lavanya Nutankalva,MD Consultant: Infectious Diseases

Laboratorios CONDA, S.A. Distributed by Separations

Hassan Pyar Kok-Khiang Peh *

Research Journal of Pharmaceutical, Biological and Chemical Sciences

FACTORS AFFECTING THE GROWTH OF MICRO-ORGANISMS IN FOODS

International Journal of Scientific & Engineering Research, Volume 7, Issue 8, August ISSN

Synergistic Effects of Vitamin B12 and Creatine on Microbes. Jake Rocchi CCHS, 11th grade 2nd year in PJAS

Reduction of Population Levels of Some Indigenous Bacteria by Lactobacilli in the Gastrointestinal Tract of Gnotobiotic Rats

Koi feed '17/'18. Dedicated to your performance. Koi CLAY. Sinking feed Contains Actigen. Floating feed. Prebiotic and/or Probiotic

HARMONISED PHARMACOPOEIA DEHYDRATED CULTURE MEDIA FOR SUPPORTING REGULATORY COMPLIANCE AVAILABLE NOW P O RTF O LIO.

COMPARATIVE ANTI MICROBIAL STUDY OF SHUDDHA KASISA AND KASISA BHASMA

Microbiology - Problem Drill 21: Microbial Diseases of the Digestive System

Effects of Ethyl Alcohol on Microbial Survivorship. Tim Olson 9th Grade Central Catholic High School

Antimicrobial Effects of Vinegar. Daniel Crawford Grade 9 Central Catholic High School

Chandan Prasad.et.al. Int. Journal of Engineering Research and Application ISSN : , Vol. 7, Issue 9, ( Part -6) September 2017, pp.

SCREENING THE BIOACTIVE POTENTIAL OF PROTEIN ISOLATED FROM CYPRINUS CARPIO. Iyyanuchamy, S.K and A. Periyanayagasamy*

Probiotic and prebiotic properties of lactic acid bacteria isolated from cassava fermentations

Survival of Aerobic and Anaerobic Bacteria in

Koi feed '18/'19. Dedicated to your performance. Koi CLAY. Sinking feed Contains Actigen. Floating feed. Prebiotic and/or Probiotic

A direct and sensitive method for screening fructooligosaccharides-digesting microorganisms useful in food and health science

Antimicrobial activity of fabrics treated with Quercus Infectoria extract for foot odour control. V.Yamuna, S.Sudha*

ANTIBACTERIAL EFFECTS OF CRUDE EXTRACT OF Azadirachta indica AGAINST Escherichia coli and Staphylococcus aureus

International Journal of Pharma and Bio Sciences IMPACT OF PLANT EXTRACT, COCCINIA GRANDIS ON DIGESTIVE TRACT MICROFLORA ABSTRACT

Summary of Product Characteristics

EFFECTS OF ALETA IN PROMOTING THE GROWTH OF PROBIOTIC BACTERIA: IN VITRO STUDY

Current International Regulatory Positions on Prebiotics

Anti-microbial Properties of Thai Traditional Flower Vegetable Extracts

BACTERIAL EXAMINATION OF WATER

CHARACTERISTICS. Recovery rate. Spore of Bacillus licheniformis

Carbohydrates effects on the production of reuterin by Lactobacillus reuteri

THE EFFECT OF SOME MICROORGANISMS IN GASTRO-INTESTINAL TRACTS ON THE NUTRITIVE VALUE OF BROILER DIETS

Probiotic properties of Lactobacillus plantarum BG24, isolated from naturally fermented cereal beverage

ANTIBACTERIAL ACTIVITY OF GYMNEMA SYLVESTRE HYDROALCOHOLIC LEAF EXTRACT.

THE STUDY OF CARBOHYDRATES FERMENTATION ABILITY OF B.LACTIS IN MILK

Standardization and Evaluation of Probiotic Shrikhand

Antimicrobial activity of Terminalia chebula

Comparative study of the disinfection capacity of different floor cleaning solutions on ventilated room floor

S. O. Oyedemi*, A. I. Okoh, L. V. Mabinya, G. Pirochenva and A. J. Afolayan

Biacid: A EU approved natural growth promoter for Broilers

2/3/2011. Adhesion of Bifidobacterium lactis HN019 to human intestinal

Antimicrobial Activities of Bitter Kola (Garcina Kola) Extract on Salmonella typhi

DIRECT FED MICROBIAL AND FUNGAL ADDITIVES IN RUMINANTS

The use of medium chain fatty acids as alternatives to antibiotic use in pigs

Sensory, Chemical and Microbial Quality of Fermented Probiotic Cereal Based Health Drink

Study on The Inhibition Effect of Nisin

Summary and Conclusion

SCREENING OF ANTIMICROBIAL ACTIVITY OF OILS FROM DIFFERENT SPECIES OF OSCIMUM AGAINST PATHOGENIC BACTERIAL STRAINS

CAMELLIA SINENSIS AS A NATURAL MEAT PRESERVATIVE IN ASSOCIATION WITH ITS TOTAL POLYPHENOL CONTENT

Sivakami and Subhashree, IJPSR, 2011; Vol. 2(12): ISSN: FORMULATION OF SYNBIOTIC DRINK TO ENHANCE INTESTINAL GUT FLORA

Probiotics : What we Know and Where we are Going Next

CHAPTER 8 ANTIBACTERIAL ACTIVITY OF THE CRUDE ETHANOLIC EXTRACT AND THE ISOLATED COMPOUNDS FROM THE STEM OF COSTUS IGNEUS

The prebiotic potential of Australian honeys. Nural Cokcetin, Shona Blair & Patricia Conway The University of New South Wales Sydney, Australia

Comparative Efficacy of Peroxyacetic Acid and Sodium Hypochlorite Bleach against Enterobacteria, E. coli and Yeasts Molds on Cherries

PRODUCTION OF PLAIN YOGHURT ADDING HAIRY BASIL MUCILAGE AS PREBIOTICS Piyanoot Noiduang, 1, * Areerat Ittakornpan 1, Vasinee Marukatat 1 1

Mark Manary MD. International Symposium on Understanding Moderate Malnutrition in Children for Effective Interventions

International Journal of Informative & Futuristic Research ISSN:

A new selective blood agar medium for Streptococcus pyogenes and other haemolytic streptococci

DIGESTON-1B. Produktionsgemeinschaft F.u.H. Egger Ges.m.b.H. A-8413 Mitterlabill 19, Tel , Fax ,

Let s get cultured - Understanding our biome

Normal Flora. CLS 212: Medical Microbiology

Gut Microbiota and IBD. Vahedi. H M.D Associate Professor of Medicine DDRI

Microbial load and prevalence of pathogens on surface of fresh vegetables in local market yards across Junagadh district of Gujarat

NOVASTREAK. Microbial Contamination Monitoring Device TYPICAL CULTURAL MORPHOLOGY Baird Parker Agar. S. aureus growth on Baird Parker Agar

Bacterial Mechanisms of Pathogenicity. 2 nd Lecture

Principles of Disease and Epidemiology

Transcription:

ISSN: 2319-7706 Volume 3 Number 10 (2014) pp. 657-663 http://www.ijcmas.com Original Research Article Influence of Different Prebiotics and Probiotics on Selective Intestinal Pathogens Anayata Sharma 1* and Dadhich 2 1 Department of biotechnology, D.A.V College, Abohar-152123, India 2 Officiating Principal & Dean Academics, Dolphin P.G.College of Life Sciences- Mohali, India *Corresponding author A B S T R A C T K e y w o r d s Probiotics, Prebiotics, Escherichia coli, Salmonella typhi, Lactobacillus, Lactobacillus rahm, Streptococcus Probiotics are living micro organism used as food supplements, which provide health benefit when consumed, by improving intestinal microbial balance of host. Probiotics had high antagonistic activity, antimicrobial activity. Prebiotics had the ability to enhance the growth of probiotics. The probiotic strain Lactobacillus, Lactobacillus rahm, Lactobacillus and Streptococcus phillus were isolated and tested for antagonistic activity. The combination of variable concentration of prebiotics on the growth was observed upto 96 hrs. Among various prebiotics used Garlic and Soya beans showed higher effects on growth of probiotics. Among these microbes Lactobacillus & Lactobacillus rahm showed higher antagonism against Escherichia coli& Salmonella typhi. Probiotics reduce the risk of intestinal disease like diarrhea and typhoid, probably due to their role in suppressing the activity of certain bacterial enzymes with the production of bacteriocins or with the help of lowering the ph by producing certain acids like lactic acid and acetic acid. Thus probiotic treatment will offer a promising alternative to the use of antibiotics in healthcare. Hence prebiotics are enhancers of our savers (probiotics). The FAOhas defined probiotics as living microorganisms when consumed in adequate amounts as a part of diet confer a health benefit on the host. Introduction Probiotics and prebiotic formulations are proving very popular and it has been documented on television, in consumer press and inshelvs of the health food stores. This is because, unlike many nutrition trends, the evidence that they promote good health is strong (Gibson, 2003). Not only do they help us digest our food, but they may also help reduce the severity of food poisoning and reduce effects of food intolerance. Users report that formulations also help improve general well-being and they may help improve performance in sports due to improved digestion of food and, therefore increased availability of nutrients. Diarrhea occurs in about 20% of patients who receive antibiotics. Antibiotics may directly affect the indigenous gut micro biota by 657

compromising colonization resistance and favoring the growth of pathogenic microorganisms. Indigenous intestinal bacteria protect the host from infection by exogenous pathogens and opportunistic bacteria that are present in the gut. Thimechanism of protection is termed colonization resistance. Prebiotics Prebiotics can be defined as nutrients and constituents of food which our gut flora feed upon thus increasing their number. Prebiotics include Fructo Oligo Saccharides, which are found naturally in many plants including onion, wheat, garlic, chicory roots and artichokes where they function as storage carbohydrates and some in some pulses, fruits and some cereal products. These compounds are called as non digestible oligosaccharide (NDOs) These effects include serving as sources of energy, regulation of gene expression and cell differentiation and anti-inflammatory properties. Prebiotics have also been incorporated into supplements and functional foods, in order to exert positive effects on digestion, the immune system. Structurally they are mixture of polymers (chain repeats of same unit molecule) and oligomers comprising branching chains between 10-60 repeat units. Other prebiotics as Inulins, Lactilol, Soyoligosaccharides, Xylo oligosaccharides, Lactulose, Pyrodextrins Materials and Methods Media Required: MRS Agar (Hi Media) at ph 7±2. Microbial culture: Four probiotic strains; Lactobacillus, Lactobacillus rahm, Lactobacillus and Streptococcus phillus were obtained from the National Collection of Dairy cultures, National Dairy Research Institute, Karnal (Haryana). Two strains of pathogens were included in study E.coli,& typhi. Preparation of Inoculum Growth of organism appeared on Lactobacillus MRS Agar Medium after 24-48hrs of incubation, and was inoculated with inoculation loop, transferred to 5% peptone water. The inoculum strength was checked at 540nm and set at OD 0.3 to be used as inoculums when OD is 1.0 the dry weight is 0.28 (Rosenmarei et al, 1989). Effect of Prebiotics on Probiotics Enrichment studies on yakult, Soya Extracts, Garlic were used for given cultures. Various concentrations of akult, Soya Extracts, Garlic 1.25ml, 2.5ml, 5ml were used; in presence of given culture added in media and incubated at 37 C. Results were recorded for four days with 24 hr interval compared with reference to control. Determination of antimicrobial activity of Probiotics test pathogens organisms by well diffusion method and over lay method Well Diffusion Method - Two strains of pathogens were included in study (E.coli, typhi) selective media were used to test the anti microbial activity against these pathogens. 0.1 ml dilution of each pathogen were tested by pour plate method, four holes was made by using sterile cork borer and then pure cultures were added and results were recorded for 3 days incubation with 24 hrs interval. Overlay method: Two strains of pathogens were included in study (E.coli, typhi) 658

selective media were used to test the anti microbial activity against these pathogens. 0.1 ml dilution of each pathogen were tested by pour plate method, incubated anaerobically for 4 days for growth, then an another layer of media having either pure culture and isolated culture was over laid over it, results were recorded after 4 days anaerobic incubation Metabolite Characterization To determine if lactic acid solely responsible for inhibition The MRS broth supplemented with 1% lactic acid (ph 4 and 6), the MRS broth supplemented with the 1% acetic acid (ph 4), the MRS broth (ph 6.4) and were inoculated test pathogens incubated for 4 days at 27 0 C. Growth was recorded at 550 nm. To determine effect of ph on anti microbial activity The cell free supernatants were adjusted to ph 4.5, 5.0, 5.5, 6.0 & were inoculated with test pathogens incubated for 4 days at 27 0 C. Growth was recorded at 550 nm. To determine heat stability With all standard and optimal conditions, cell free supernatants were treated at 50 0, 70 0, 90 0, and 121 0 C for 30 min and were inoculated with test pathogens, and incubated for 4 days at 27 0 C. Growth was recorded at 550 nm. Culture Supernatant Minimum Inhibitory Concentration With all standard and optimal conditions, cell free supernatant of probiotic cultures were diluted 4:1, 2:1, 1:1, 1:2and 1:4 in MRS broth and inoculated with test pathogens incubated for 4 days at 27 0 C. Growth was recorded at 550 nm. Results and Discussion Effect of Prebiotics on Probiotics The cell biomass production in response to variable concentrations of yakult, Soya beans and Garlic were examined. The combination of variable concentration of these prebiotics was used. According to data presented in tables there is linear increase in growth upto 96 hr incubation period. Determination of antimicrobial activity of Probiotics Test pathogens organisms by Well Diffusion Method and Overlay method Data presented in table given below involves the use of agar well method with reference to sensitivity of test pathogens in presence of pathogens.antimicrobial sensitivity showing zone of inhibition against E.coli Result of the agar overlay method showed that all of the probiotic strains were showing inhibiton against test microbial isolates.the spectrum of their antimicrobial activity varied. Metabolite Characterization To determine if lactic acid solely responsible for inhibition Results are summarized in table 4.5.1 (a) demonstrate that low ph alone inhibits growth of test pathogen with either 1% lactic acid or 1% acetic acid To determine effect of ph on anti microbial activity. Table 4.5.2 (a), (b), (c), (d) shows ph neutralization effects on anti microbial properties of cell free supernatant for,,, 659

phillus against test pathogen respectively. Adjustments were made in ph (0.5 increments) to supernatant between starting ph6.0 to ph4.5 before inoculation with test pathogens. supernatant retained anti bacterial activity against E. coli and typhi at ph-6. supernatant retained anti bacterial activity against E. coli at ph-4.5 and against typhi at ph 5.5. supernatant retained anti bacterial activity against E. coli and typhi at ph-4.5. phillus supernatant retained anti bacterial activity against E. coli and typhi at ph-6. Culture supernatant minimum inhibitory concentration According to table given below,dilutions of culture supernatant (4:1,2:1,1:1,1:2,and1:4) were prepared in MRS broth to determine the minimum concentration of metabolites that will inhibit at a 1:2 dilution for, L, L. and no inhibition in phillus Conc.of SOYA BEANS (%) Table.2 Biomass concentration using Soya beans 1.5% 2.5% 5% Time period(hr) Cell Biomass (mg dry wt/ml) 24 0.40 0.66 0.31 0.21 0.42 0.60 0.31 0.28 0.43 0.65 0.20 0.21 48 0.57 0.65 0.65 0.39 0.73 0.63 0.65 0.57 0.53 0. 63 0.64 0.60 72 0.66 0.84 0.66 0.74 0.64 0.82 0.66 0.69 0.63 0.75 0.81 0.74 96 0.66 1.20 0.68 0.75 0.64 1.21 0.66 0.75 0.64 1.21 0.82 0.78 Figure.2 Biomass concentra tion using Soya bean 660

Table.3 Biomass concentration using Garlic Conc.of GARLIC (%) 2.5% 5% 10% Time period (Hr) Cell Biomass (mg dry wt/ml) 24 0.39 0.44 0.31 0.37 0.37 0.72 0.31 0.35 0.43 0.79 0.28 0.34 48 0.52 0.50 0.64 0.55 0.30 0.61 0.65 0.55 0.53 0.60 0.56 0.53 72 0.61 0.64 0.66 0.55 0.64 0.61 0.66 0.59 0.65 0.59 0.69 0.50 96 0.75 0.64 0.69 0.55 0.66 0.60 0.67 0.62 0.69 0.60 0.73 0.68 1.5% Garlic 2.5% Garlic 5% Garlic 0.75 0.66 0.69 0.73 0.69 0.64 0.67 0.6 0.6 0.68 0.62 0.55 Figure.3 Biomass concentration using Garlic a) b) c) d) Figures.4a, b, c & d Results of Agar Well method (figures a&b)and overlay method (Figures c&d) 661

Table.4 Zone of inhibition against test pathogens Test organism ZONE (Diameter) OF INHIBITION raham phillus E.coli 17mm 19mm 15mm 12mm typhi 15mm 10mm 12mm 09mm Table.5 effects of acid on growth of test pathogens. Lactic acid Acetic acid Test ph4 ph6 ph4 Organism 0 hr After 4 days 0 hr After 4 days 0 hr After 4 days incubation incubation incubation typhi 0.56 0.47 0.57 0.55 0.49 0.39 E.coli 0.53 0.38 0.50 0.50 0.49 0.34 Table.6 Effects of ph on growth of E.coli Test pathogen E.coli ph S.phillus 0 hr 3 days 0 hr 3 days 0 hr 3 days 0 hr 3 days 4.5 0.331 0.279 1.585 1.25 0.88 1.58 0.95 1.33 5.0 0.331 0.46 1.43 1.26 0.88 1.70 0.92 1.37 5.5 0.33 0.52 1.26 1.70 0.92 1.33 0.86 1.70 6.0 0.33 0.27 1.36 1.307 0.90 0.74 0.90 0.55 Table.7 Effects of ph on growth of typhi Test pathogen typhi ph S.phillus 0 hr 3 days 0 hr 3 days 0 hr 3 days 0 hr 3 days 4.5 0.331 0.279 1.62 1.10 0.91 1.67 0.82 1.70 5.0 0.331 0.46 1.50 1.90 0.94 1.64 0.86 1.87 5.5 0.33 0.52 1.32 1.02 1.01 1.70 0.91 1.90 6.0 0.33 0.27 1.21 1.10 1.06 0.86 0.89 0.73 Table.8 showing Minimum inhibitory concentration rahm,, & S.phillus against E.coli Test pathogen E.coli Ratio S.phillus 0 hr 2days 0 hr 2 days 0 hr 2 days 0 hr 2 days 1:2 0.88 0.38 0.937 2.38 0.94 0.71 0.81 3.55 1:4 1.15 1.11 0.99 3.18 1.03 3.76 1.5 3.41 1:1 1.09 0.43 1.22 2.4 0.58 2.2 0.81 3.95 2:1 1.21 1.04 1.5 2.62 1.28 2.8 0.77 2.28 4:1 0.93 0.92 1.41 2.87 1.41 2.55 0.69 2.04 662

References Table.9 showing Minimum inhibitory concentration rahm,, & S.phillus against typhi Test pathogen E.coli Ratio S.phillus 0 hr 2days 0 hr 2 days 0 hr 2 days 0 hr 2 days 1:2 1.05 0.49 1.1 2.98 0.87 0.74 0.791 3.52 1:4 0.59 0.53 1.2 2.87 0.4 3.5 1.46 3.35 1:1 0.87 0.4 1.331 2.02 0.58 3.74 0.717 3.09 2:1 0.7 0.69 1.4 2.1 1.22 2.30 0.789 2.71 4:1 0.84 0.401 1.33 2.36 0.95 2.44 0.798 2.16 Gibson, G.R. 2003. Probiotics & Prebiotics and their Function. Functional Nutrition 2 (2): 11 13. 663