PEDIATRIC ORIGINAL ARTICLE

Similar documents
PERINATAL AND CHILDHOOD ORIGINS OF CARDIOVASCULAR DISEASE

Nutritional and Health-Related Environmental Studies (NAHRES)

Happy Holidays. Below are the highlights of the articles summarized in this issue of Maternal and Infant Nutrition Briefs. Best Wishes, Lucia Kaiser

The prevalence of obesity is increasing in the United

Maternal and Infant Nutrition Briefs

Impact of infant feeding on growth trajectory patterns in childhood and body composition in young adulthood

Optimal Child Growth and critical periods for the prevention of childhood obesity

Breastfeeding and obesity at 14 years: A cohort study

Rapid weight gain in early infancy is associated with adult body fat percentage in young women

Research Article Adolescent Metabolic Syndrome Risk Is Increased with Higher Infancy Weight Gain and Decreased with Longer Breast Feeding

INFANT FEEDING AND OBESITY Reddy V Former Director, National Institue of Nutrition, Hyderabad, India

Application of the WHO Growth Reference (2007) to Assess the Nutritional Status of Children in China

The Relationship Between Breast Feeding and Body Mass Index and Blood Pressure in Pre-School Children

Comparison of the WHO Child Growth Standards and the CDC 2000 Growth Charts 1

Childhood BMI trajectories and the risk of developing young adult-onset diabetes

Birth weight and risk of type 2 diabetes, abdominal obesity and hypertension among Chinese adults

Breast Feeding and Obesity Prevention in Children

THE PREVALENCE OF OVERweight

Screening and Diagnosis of Diabetes Mellitus in Taiwan

Nutrition & Physical Activity Profile Worksheets

ARTICLE. Prevalence of Obesity Among US Preschool Children in Different Racial and Ethnic Groups

Metabolic Programming. Mary ET Boyle, Ph. D. Department of Cognitive Science UCSD

PROJECT Ntshembo: Improving adolescent health and interrupting mother-infant transfer of health risk in Africa. INDEPTH Network

4. EFFECT OF BREASTFEEDING ON CHRONIC DISEASES

1. Introduction LA 70808, USA. Correspondence should be addressed to Gang Hu;

Prevalence of overweight and obesity among young people in Great Britain

Edinburgh Research Explorer

BREASTFEEDING TO PREVENT DOUBLE BURDEN OF MALNUTRITION

India is one of the diabetes capitals of the world and at the same time the capital

290 Biomed Environ Sci, 2016; 29(4):

Timing and tempo of first year growth in relation to cardiovascular and metabolic risk profile in early adulthood

Predictors of Obesity in a Cohort of Children Enrolled in WIC as Infants and Retained to 3 Years of Age

ARTICLE. Crossing Growth Percentiles in Infancy and Risk of Obesity in Childhood

Paul Hofman. Professor. Paediatrician Endocrinologist Liggins Institute, The University of Auckland, Starship Children Hospital, Auckland

The Impact of Intrauterine Exposure to Gestational Diabetes Mellitus on Early Childhood Body Mass Index Trajectories

Prospective study on nutrition transition in China

WHO Growth Grids/ 2012 Risk Changes. Diane Traver Joyce Bryant

Breast-Feeding and Risk for Childhood Obesity. Does maternal diabetes or obesity status matter? 3,4,5

BREAST MILK COMPONENTS AND POTENTIAL INFLUENCE ON GROWTH

Nutrition and Health of Low-income Populations: Changes Over Time

IUGR AND LONG TERM CV FUNCTION

Relationship between Breastfeeding and Obesity in Childhood

Socioeconomic inequalities in lipid and glucose metabolism in early childhood

Gestational and Early Life Influences on Infant Body Composition at 1 Year

Gestational Diabetes: Long Term Metabolic Consequences. Outline 5/27/2014

Differences in nutritional experience during limited, sensitive periods in early

Childhood Obesity Predicts Adult Metabolic Syndrome: The Fels Longitudinal Study

WHO Child Growth Standards

Vishwanath Pattan Endocrinology Wyoming Medical Center

Obesity prevalence, disparities, trends and persistence among US children <5 y

The effects of Aerobic Exercise vs. Progressive Resisted Exercise on body composition in obese children Dr.U.Ganapathy Sankar, Ph.

Body Mass Index and Blood Pressure in Adult Type 2 Diabetic Patients in Taiwan

It s Never Too Early To Prevent Diabetes: The Lasting Impact of Gestational Diabetes on Mothers and Children

Note: for non-commercial purposes only

Latent Protective Effects of Breastfeeding on Late Childhood Overweight and Obesity: A Nationwide Prospective Study

Case Study #1: Pediatrics, Amy Torget

Assessing Overweight in School Going Children: A Simplified Formula

NEW WHO GROWTH CURVES Why in QATAR? Ashraf T Soliman MD PhD FRCP

Staff Quiz. 1. Serial measurements are necessary for identification of growth trends in children. TRUE / FALSE

ARTICLE. Diabetologia (2011) 54:87 92 DOI /s

Cancer Survivors: - Asian Perspective

ARTICLE. Breastfeeding and Asthma in Young Children

Prevalence of diabetes and impaired fasting glucose in Uygur children of Xinjiang, China

ISSN X (Print) Research Article. *Corresponding author P. Raghu Ramulu

World Health Organization Growth Standards. BC Training Module PowerPoint Speaking Notes

Records identified through database searching (n = 548): CINAHL (135), PubMed (39), Medline (190), ProQuest Nursing (39), PsyInFo (145)

Feeding the Small for Gestational Age Infant. Feeding the Small for Gestational Age Infant

Risk factors for childhood obesity in a Greek paediatric population

PAPER Time trends of obesity in pre-school children in China from 1989 to 1997

Exclusive Breastfeeding Is Inversely Associated with Risk of Childhood Overweight in a Large Chinese Cohort 1 3

Complimentary Feeding

A Population-based Study on the Prevalence and Factors Associated with Obesity in Selangor

Epidemiology of Obesity in Japan

Association of BMI on Systolic and Diastolic Blood Pressure In Normal and Obese Children

1389 (54 )1 - *** *** *** ** *** * * ** *** ( ) : /8/26 : 88/2/1 : (WC) (BMI) :.. (CVD) - : :

Maternal and Infant Nutrition Briefs

BMI may underestimate the socioeconomic gradient in true obesity

THE FIRST NINE MONTHS AND CHILDHOOD OBESITY. Deborah A Lawlor MRC Integrative Epidemiology Unit

Submitted 4 February 2009: Accepted 24 August 2009: First published online 7 October 2009

Hypertriglyceridemia and the Related Factors in Middle-aged Adults in Taiwan

World Health Organization Growth Standards. First Nations and Inuit Health Alberta Region: Training Module May 2011

Epidemiology and Prevention

Different worlds, different tasks for health promotion: comparisons of health risk profiles in Chinese and Finnish rural people

Analysis of Related Factors of Overweight and Obesity among Secondary School Students in Chongqing, China

There has been an increase in the prevalence of obesity in preschool children,

The evects of birth weight and postnatal linear growth retardation on blood pressure at age years

Biomed Environ Sci, 2016; 29(3): LI Jian Hong, WANG Li Min, LI Yi Chong, ZHANG Mei, and WANG Lin Hong #

RATES OF OVERWEIGHT AMONG

Maternal and Infant Nutrition Briefs

University Journal of Medicine and Medical Specialities

Infant feeding and atopic eczema risk. Possible allergy prevention by nutritional intervention

Journal of American Science 2013;9(12) Elevated Body Mass Index in Expectation of Gestational Diabetes Mellitus

Breast Feeding and Type 2 Diabetes in Youth of Three Ethnic Groups: The SEARCH for Diabetes in Youth Case-Control Study

Comparison of Abnormal Cholesterol in Children, Adolescent & Adults in the United States, : Review

Early Nutrition: the opportunity for childhood obesity prevention

CHILDHOOD OBESITY CONTINues

Ma. Erlinda Tarrayo, Imelda Agdeppa, Ph.D., Carmina DD. Cuarteros

Methodological issues in the use of anthropometry for evaluation of nutritional status

2018 Standard of Medical Care Diabetes and Pregnancy

Pregnancy outcomes in Korean women with diabetes

Transcription:

PEDIATRIC ORIGINAL ARTICLE Macrosomia is associated with high weight-for-height in children aged 1 3 years in Shanghai, China ZYu 1, JQ Sun 2, JD Haas 3,YGu 4,ZLi 4 and X Lin 1 1 Institute for Nutritional Sciences, Shanghai Institutes for Biologic Sciences, Chinese Academy of Sciences, Shanghai, P.R. China; 2 Department of Nutrition, Huadong Hospital, Shanghai, P.R. China; 3 Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA and 4 Huangpu Hospital on Women s and Children s Health, Shanghai, P.R. China Objective: To investigate the association between macrosomia and high weight-for-length/height in 1 3 years old Chinese infants. Design: A retrospective longitudinal study. Subjects: 918 children aged 1 3 years in Shanghai, China. Measurements: Body weight and length/height, illness status and feeding modalities were obtained during follow-up. Macrosomia was defined as birth weight X90th percentile of sex specific birth weight distribution. High weight-for-length/ height was defined as a weight-for-length/height z-score X1.68 using the WHO growth reference. Results: The odds ratios (ORs) for high weight-for-length/height were 3.60 (95% confidence interval (CI), 1.74 7.42) for boys and 1.39 (95% CI, 0.51 3.81) for girls who were macrosomic compared with the nonmacrosomic counterparts after adjustment for age. The ORs were attenuated to 3.48 (95% CI, 1.63 7.43) for boys and were still nonsignificant for girls (OR, 1.38; 95% CI, 0.49 3.91) after further controlling for illness status, the age of breast-feeding cessation and the age at introduction of complementary foods. From the analysis of boys and girls combined, the ORs were 2.48 (95% CI, 1.40 4.40) with adjustment for age and sex and 2.33 (95% CI, 1.29 4.22) with all covariates. Conclusion: Macrosomia is an important predictor for high weight-for-length/height in Chinese children aged 1 3 years. (2008) 32, 55 60; doi:10.1038/sj.ijo.0803765; published online 27 November 2007 Keywords: infant obesity; macrosomia; China; birth weight; infant growth (2008) 32, 55 60 & 2008 Nature Publishing Group All rights reserved 0307-0565/08 $30.00 www.nature.com/ijo Introduction The obesity epidemic is currently a critical global concern, in part because obese individuals are at increased risk of developing type 2 diabetes mellitus (T2DM), cardiovascular disease (CVD) and cancer. 1 3 Obese children are more likely to have impaired glucose tolerance 4 and to become obese adults. 5 A study by Vanhala et al. 6 reported that individuals who are both obese as a child and as an adult have a high probability having metabolic syndrome, that is, abdominal obesity, hypertension, dyslipidaemia and insulin resistance, a clustering of CVD risk factors. Higher birth weights have been shown to be associated with higher levels of body weight and body mass index Correspondence: Dr X Lin, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 294 Tai Yuan Lu, Shanghai 200031, P.R. China. E-mail: xlin@sibs.ac.cn and Dr JQ Sun, Department of Nutrition, Huadong Hospital, 221 Yan An Xi Lu, Shanghai 200040, P.R. China. Email: jianqins@gmail.com Received 28 December 2006; revised 14 October 2007; accepted 21 October 2007; published online 27 November 2007 (BMI) in childhood. 7 10 A rapidly increased rate of newborn macrosomia (birth weight X4000 g) has been documented since last two decades. For instant, In Yantai, China, the percentages of newborn macrosomia increased from 2.6% in the 1970s to 13.2% in the 1990s. 11 In Shanghai, the percentages of newborn macrosomia increased by 50 percent from 1989 to 1999 12 with the greatest increase being observed in urban areas. 13 Similar trends were also observed for the prevalence of childhood overweight and obesity in the same period of time. From 1985 to 2000, the prevalence of overweight increased 28-fold and the prevalence of obesity increased fourfold among Chinese children aged 7 18 years with the most marked increase being apparent for boys. 14 However, few studies have been made into the relationship of newborn macrosomia and body weight in earlier years of life in the Chinese children. The aim of the present study was to investigate whether macrosomia is associated with high weightfor-length/height in children 1 3 years of age in Shanghai, China. In addition, we estimated the influence of illness status and infant feeding modalities on this association.

56 Materials and methods Study population Children who were singletons and born between 1 January 1998 to 31 May 2001, lived in Huangpu District, Shanghai, China and who received routine health care at one of eight local health centers in the district were included in this study. As a part of routine health care, trained public health workers provided guidance on infant feeding practices, performed physical examinations and anthropometric measurements of children during the first 3 years. All of the newborn infants attend their local health center for routine health care according to the population registration system in China. Thus, this study includes the complete population of singleton live births who remained alive during the study period. Children were presented at the local health centers with their parents and/or grandparents during the first and second month after the delivery. Thereafter during the first year they attended the center every 2 months followed by semiannual visits until the age of 3 years. A total of 1978 children (1011 boys and 966 girls) participated in the study. Of them, 918 children (471 boys and 447 girls) were older than 1 year by 31 May 2001 and were included as subjects for this investigation. Anthropometric measurements Birth weight and crown-heel length were obtained from the birth certificates. As mean birth weight in boys was significantly higher than that of girls (3424±489 g vs 3283±442 g, Po0.001), macrosomia was defined as birth weight X90th percentile of the sex specific birth weight distribution. This corresponds to a birth weight greater than 3995 g for boys and 3840 g for girls. Body weight and length measurements were taken at each postnatal physical examination. Body weight was measured with a beam balance scale with subjects wearing light indoor clothing without shoes. Body length was measured as recumbent length by a neonatometer if children were younger than 2 years of age or as standing height by a stadiometer if children were 2 years or older. Weight was measured to the nearest 0.1 kg and height to the nearest 0.1 cm. The children were classified as having high weight-for-length/height when his/her weightfor-length/height z-score at the last physical examination was more than the 90th percentile of the participants weight-for-length/height z-scores using the WHO growth reference. 15 The cut-off point was 1.68. Health status and feeding style Information on health status and feeding mode was recorded for each physical examination. This information included self-reported illness during the previous month, if the mother was currently breastfeeding the infant, and when the infant was introduced to any of the following complementary foods: cereals, eggs, vegetables, fruits and soybean products. According to the responses, health status was dichotomized as (a) ill or (b) not ill, breastfeeding as (a) never and less than 6 months or (b) more than 6 months, introduction of each complimentary food as (a) before or (b) after the sixth month. Introduction of soybean products was classified as (a) never, as well as (b) before or (c) after 6 months. Statistical analysis We tested the differences in weight, height, z-scores for weight-for-age, length/height-for-age and weight-for-length/ height, illness status and feeding modalities between nonmacrosomic and macrosomic children by univariate analysis of variance for the continuous variables and logistic regression for the categorical variables while controlling for age and sex. Multiple logistical regression models were employed to assess the odds ratios (ORs) of macrosomic infants having high weight-for-length/height at the last physical examination compared with their counterparts who were not macrosomic. The analyses were done separately for each sex and then were combined for both sexes as there was no statistically significant interaction for the risk of high weight-for-length/height between sex and macrosomic status in both the simple and multiple adjusted models. The analyses were also repeated by excluding infants with a low birth weight (birth weight o2500 g, 20 boys and 18 girls) and by defining macrosomia as birth weight X4000 g. The statistical inference was made when Po0.05 (two sided). Statistics were analyzed with the SPSS (version 14.0) and SAS (version 9.1). Results Macrosomic newborns were significantly heavier and taller than nonmacrosomic infants (Table 1). Infants who were macrosomic at birth had significantly higher body weight and length or height than nonmacrosomic infants at 1 3 years of age. At the last physical examination, z-scores of weight-for-age, length/height-for-age and weight-for-length/ height were significantly higher in infants who were macrosomic at birth than those who were nonmacrosomic. Children who were macrosomic at birth were more likely to be fed cereals at a relatively younger age. The age adjusted ORs were 3.60 (95% confidence interval (CI), 1.74 7.42) for macrosomic boys and 1.39 (95% CI, 0.51 3.81) for macrosomic girls for high weight-for-length/ height compared with the nonmacrosomic boys and girls, respectively (Table 2). The ORs were attenuated to 3.48 (95% CI, 1.63 7.43) for boys after further controlling for illness status, the timing of cessation of breastfeeding, the timing of the introduction of cereals, eggs, vegetables, fruits and soybeans; whereas the association remained nonsignificant for girls (OR, 1.38; 95% CI, 0.49 3.91) after the multivariate adjustment. When data for boys and girls were combined,

Table 1 Characteristics of the study participants Nonmacrosomia Macrosomia P-values 57 Number of participants 824 94 Age at last physical examination (mean (s.d.), in years) 1.4 (0.5) 1.5 (0.5) 0.610 Female sex (no. (%)) 401 (49) 46 (49) 0.960 Birth-weight a (mean (s.d.), in g) 3268 (410) 4121 (204) o0.001 Birth-recumbent length a (mean (s.d.), in cm) 49.6 (1.5) 50.9 (1.2) o0.001 Later body weight b (mean (s.d.), in kg) 11.2 (1.6) 12.2 (1.7) o0.001 Later body length or height b (mean (s.d.), in cm) 81.5 (6.1) 83.6 (6.0) o0.001 Later BMI b (mean (s.d.), in kg m 2 ) 16.9 (1.4) 17.5 (1.7) o0.001 z-scores at last physical examination Weight-for-age b (mean (s.d.)) 0.65 (0.81) 1.34 (0.85) o0.001 Length/height-for-age b (mean (s.d.)) 0.52 (0.98) 1.18 (0.93) o0.001 Weight-for-length/height b (mean (s.d.)) 0.55 (0.83) 1.09 (0.96) o0.001 Having any current illness c (no. (%)) 140 (17) 10 (11) 0.132 Breastfeeding p6 months or never a (no. (%)) 413 (50) 49 (52) 0.703 Introduced cereal foods before 6 months a (no. (%)) 300 (37) 45 (49) 0.026 Introduced eggs before 6 months a (no. (%)) 329 (41) 42 (46) 0.360 Introduced vegetables before 6 months a (no. (%)) 43 (5) 7 (8) 0.374 Introduced fruits before 6 months a (no. (%)) 206 (25) 29 (32) 0.210 Introduced soybean products before 6 months a (no. (%)) 111 (14) 17 (18) 0.217 Abbreviations: BMI, body mass index; no., number; s.d., standard deviation. a Adjusted for sex. b The last measurements of body weight and length/height, and adjusted for age and sex. c Having any illness during the past month of the last physical examination and adjusted for age and sex. Table 2 Odds ratios (ORs) and 95% confidence intervals (CIs) for high weight-for-length/height according to macrosomic status Nonmacrosomia Macrosomia Boys Number of cases/total participants 42/423 13/48 1.00 3.60 (1.74 7.42) (OR (95% CI)) a (OR (95% CI)) b 1.00 3.48 (1.63 7.43) Girls Number of cases/total participants 31/401 5/46 1.00 1.39 (0.51 3.81) (OR (95% CI)) a, 1.00 1.38 (0.49 3.91) (OR (95% CI)) b Boys and girls combined Number of cases/total participants 73/894 18/94 1.00 2.48 (1.40 4.40) (OR (95% CI)) c (OR (95% CI)) c 1.00 2.33 (1.29 4.22) a Adjusted for age. b Adjusted for age, illness status, the timing of cessation of breastfeeding, the timing of introduction of eggs, cereal foods, vegetables, fruits and soybean products. c Further adjusted for sex. and adjustments were made for age and sex in one model and then the addition of other diet and health covariates in a second model, the ORs were 2.48 (95% CI, 1.40 4.40) and 2.33 (95% CI, 1.29 4.22), respectively. Excluding children with a low birth weight, the ORs were 2.39 (95% CI, 1.35 4.25) after adjusting for age and sex, and 2.23 (95% CI, 1.23 4.03) after adjusting further for other covariates. Defining macrosomia as birth weight X4000 g, the ORs were 3.64 (95% CI, 1.98 6.69) with adjustment for age and sex and 3.25 (95% CI, 1.73 6.11) after further controlling for the covariates, respectively. With sexes combined, the multivariate adjusted relationships were significant in children without any reported illness in the previous month (OR, 2.33; 95% CI, 1.24 4.35) and in those who were breastfed more than 6 months (OR, 2.45; 95% CI, 1.06 5.67). Significant associations were also presented in children who were introduced to cereals or fruits before the age of 6 months (OR, 3.58; 95% CI, 1.53 8.40 for earlier cereal food introduction and OR, 4.24; 95% CI, 1.52 11.82 for earlier fruit introduction). The association was also apparent among infants who were introduced to eggs at the age of 6 months or more (OR, 2.33; 95% CI, 1.03 5.28). Among boys, those who were macrosomic at birth or introduced to cereal foods before 6 months were more likely to have high weight-for-length/height compared with those who were nonmacrosomic and introduced to cereals at the age of 6 months or more (P for trend ¼ 0.0001; Table 3). Discussion In the present study, we found that children who had a higher birth weight were associated with high weight-forlength/height at 1 3 years of age. Controlling for illness status and feeding styles attenuated slightly the strength of the association, especially for boys. To our knowledge, this is the first study reporting the association between macrosomia and high weight-for-length/height in earlier years of life in

58 Table 3 Odds ratios (ORs) and 95% confidence intervals (CIs) for high weight-for-length/height according to macrosomic status and the timing of cereal foods introduction a (OR (95% CI)) Boys Girls Nonmacrosomia and introduced 1.00 1.00 to cereals X6 months (boys/girls, 258/254) b Nonmacrosomia and introduced 1.88 (0.93 3.77) 0.85 (0.37 1.98) to cereals o6 months (boys/girls, 161/139) b Macrosomia and introduced to 2.83 (0.94 8.52) 0.63 (0.08 5.09) cereals X6 months (boys/girls, 27/20) b Macrosomia and introduced to 8.03 (2.70 23.91) 1.81 (0.54 6.08) cereals o6 months (boys/girls, 20/25) b P for trend 0.0001 0.6074 P for interaction c 0.6157 a Adjusted for age, illness status, the timing of cessation of breastfeeding, the timing of introduction of eggs, vegetables, fruits and soybean products. b Number of participants in each category by sex. There are 14 subjects having missing data on the timing of cereal food introduction (5 boys and 9 girls). c Interaction between sex, macrosomic status and the timing of cereal food introduction. Chinese infants. Our data are in agreement with other studies. 7 10 Tanaka et al. 7 reported that there is a positive association between birth weight and BMI at 3 years of age in Japan. A case-control study by Takahashi and colleagues 8 suggested that children who were obese at 3 years of age had higher birth weights compared with their normal weight counterparts. In the study of Whitaker, 9 American children with a large birth weight (X90th percentile) had the higher percentages of obese children at 2 4 years of age, which is more apparent in boys than that in girls. A longitudinal study by Parsons et al. 10 indicated that the association between higher birth weight and higher levels of BMI may persist into adulthood among the participants of a British birth cohort. In our study, the association between prenatal and postnatal development at 1 3 years of age was attenuated after controlling for postnatal illness status and feeding modalities. However, a significant association was only apparent for the timing of cereal food introduction among boys in the multivariate adjusted analyses. Boys who were introduced to cereal foods at the age of 6 months or more were less likely to have high weight-for-length/height later (OR, 0.49; 95% CI, 0.26 0.92) compared with those who were introduced to cereals before the age of 6 months, regardless of the weight status at birth. Infants who were macrosomic at birth were more likely to have an earlier introduction to cereal food than nonmacrosomic infants in this study. There was also a synergistic effect of newborn macrosomia and earlier introduction to cereal foods on the development of high weight-for-length/height in boys. In the Danish National Birth Cohort, 16 infants who had earlier introduction to complementary food had significantly more weight gain from birth to 1 year compared with those who had later introduction to complementary food. It has also been reported that early introduction to solid foods is associated with increased BMI and percentage of body fat in infants of a prospective study in the UK. 17 Study by Ong and colleagues 18 reported that energy intake is significantly higher among infants who were given weaning foods earlier. These infants have higher body weight compared with those who were fed weaning foods later. Our data along with previous studies suggest the important role of the feeding style in the etiology of childhood obesity and its implication for the body composition development in later life. There is evidence suggesting that intrauterine development as indicated by birth weight is a determinant of morbidity and mortality in adulthood. 19 However, environmental factors and lifestyles adopted throughout life may play an important role in adult diseases occurrence. 20,21 Limited studies have reported postnatal environment factors accounting for the association of birth weight and childhood obesity. Although the effects of the complementary foods introduction contributing to childhood obesity have not been fully estimated, the duration and exclusivity of breastfeeding seems to be a protective factor in some studies, 22 24 but not all. 25 Our data seem to indirectly support that prolonged exclusivity of breastfeeding might help maintain a normal body weight among infants in the earlier years of life. Some reports 26 28 suggest that higher birth weight may be a risk factor of both type 1 diabetes and T2DM in children. There is evidence indicating that birth weight may have a J-shape relationship with T2DM during adulthood, adult women who had either low or high birth weight have an increased relative risk of having T2DM in the Nurses Health Study. 29 In the Bogalusa Heart Study, overweight is associated with various cardiovascular risk factors and cardiovascular risk factor clustering even in the children as young as 5 10 years of age. 30 Although there is little evidence that higher levels of childhood BMI associated with higher birth weights may lead to the occurrence of certain diseases, it appears likely that children with higher levels of BMI tend to have an increased risk of being obese in adolescence 31 and adulthood. 4 In this study, to enhance statistical power, we defined macrosomia as birth weight X90th percentile of the sex specific birth weight distribution. However, the 90th percentile for boys was 3995 g that is really close to the classic cut-off point (4000 g); and defining macrosomia as birth weight X4000 g yielded comparable results. Gestational age of our study subjects was not included in this analysis, as the duration of gestation does not seem to have any influence on later infant body weight. 10 Because data was collected at the first postpartum month, the data of maternal prenatal or preconception anthropometric measurements was not available for the current analyses. Maternal prenatal body weight

and weight gain was previously reported to influence children s body weight. 9 Understanding the relationship between maternal prenatal nutritional status to children s birth weight and later body weight may help elucidate the natural history of the association between birth weight and body weight during childhood and perhaps in later life. One limitation of this study is that quantitative data on dietary intakes were not available, so we could not assess postnatal dietary differences between the macrosomic and nonmacrosomic infants. We analyzed the data controlling for both illness status and feeding styles in the same models since these two factors are highly correlated. 17 However, the synergistic effects of earlier introduction of cereal foods on high body weight development among macrosomic boys imply that infant feeding modalities might be important modifiable factors for the association between birth weight and body weight during the earlier years of life in Chinese infants. In addition, we do not have data on postnatal physical activity, which might confound the influence of food intake on the association between macrosomia and high weight-for-length/height among infants. In conclusion, our data suggest that high birth weight is an important predictor of excess body weight at the 1 3 years of age in this study population. Postnatal environmental factors, such as illness and especially infant feeding styles, are important confounding factors of the association. Understanding the effect of intrauterine and pediatric nutrition on body weight during infancy may help design targeted intervention for the early prevention of obesity. Acknowledgements This study was supported by Ministry of Science and Technology of China (973 Program, Grant No. 2006CB503900) and Science and Technology Commission of Shanghai Municipality (Grants No. 04DZ14007). We thank all of the participants involved in this study and the health professionals who carried out the physical examination of the children. References 1 Taubes G. Weight increases worldwide? Science 1998; 280: 1368. 2 Manson JE, Willett WC, Stampfer MJ, Colditz GA, Hunter DJ, Hankinson SE et al. Body weight and mortality among women. N Engl J Med 1995; 333: 677 685. 3 Calle EE, Thun MJ, Petrelli JM, Rodriguez C, Heath Jr CW. Bodymass index and mortality in a prospective cohort of U.S. adults. N Engl J Med 1999; 341: 1097 1105. 4 Sinha R, Fisch G, Teague B, Tamborlane WV, Banyas B, Allen K et al. Prevalence of impaired glucose tolerance among children and adolescents with marked obesity. N Engl J Med 2002; 346: 802 810. 5 Guo SS, Wu W, Chumlea WC, Roche AF. Predicting overweight and obesity in adulthood from body mass index values in childhood and adolescence. Am J Clin Nutr 2002; 76: 653 658. 6 Vanhala M, Vanhala P, Kumpusalo E, Halonen P, Takala J. Relation between obesity from childhood to adulthood and the metabolic syndrome: population based study. BMJ 1998; 317: 319. 7 Tanaka T, Matsuzaki A, Kuromaru R, Kinukawa N, Nose Y, Matsumoto T et al. Association between birthweight and body mass index at 3 years of age. Pediatr Int 2001; 43: 641 646. 8 Takahashi E, Yoshida K, Sugimori H, Miyakawa M, Izuno T, Yamagami T et al. Influence factors on the development of obesity in 3-year-old children based on the Toyama study. Prev Med 1999; 28: 293 296. 9 Whitaker RC. Predicting preschooler obesity at birth: the role of maternal obesity in early pregnancy. Pediatrics 2004; 114: e29 e36. 10 Parsons TJ, Power C, Manor O. Fetal and early life growth and body mass index from birth to early adulthood in 1958 British cohort: longitudinal study. BMJ 2001; 323: 1331 1335. 11 Liu S, Yao L, Chen Y, Liu Z, Sun M. Study on the trend of changes in fetal macrosomia in Yantai during the past 30 years. Chin J Obstet Gynecol 2002; 37: 469 471 (In Chinese). 12 Zhu L, Qin X, Qian S. Macrosomia and associated risk factors in Shanghai. Chin J Birth Heredity 2001; 9: 81 83 (In Chinese). 13 Sheng M, Zhao X. 10-year trends in incidence of newborn macrosomia and related factors. Shanghai Med J 2002; 25: 513 514 (In Chinese). 14 Wu Y. Overweight and obesity in China. BMJ 2006; 333: 362 363. 15 The World Health Organization. The WHO Child Growth Standards. Available from: http://www.who.int/childgrowth/standards/en/. 16 Baker JL, Michaelsen KF, Rasmussen KM, Sorensen TI. Maternal prepregnant body mass index, duration of breastfeeding, and timing of complementary food introduction are associated with infant weight gain. Am J Clin Nutr 2004; 80: 1579 1588. 17 Wilson AC, Forsyth JS, Greene SA, Irvine L, Hau C, Howie PW. Relation of infant diet to childhood health: seven year follow up of cohort of children in Dundee infant feeding study. BMJ 1998; 316: 21 25. 18 Ong KK, Emmett PM, Noble S, Ness A, Dunger DB, ALSPAC Study Team. Dietary energy intake at the age of 4 months predicts postnatal weight gain and childhood body mass index. Pediatrics 2006; 117: e503 e508. 19 Barker DJ. The fetal and infant origins of adult disease. BMJ 1990; 301: 1111. 20 Eriksson JG, Yliharsila H, Forsen T, Osmond C, Barker DJ. Exercise protects against glucose intolerance in individuals with a small body size at birth. Prev Med 2004; 39: 164 167. 21 Eriksson JG, Forsen TJ, Osmond C, Barker DJ. Pathways of infant and childhood growth that lead to type 2 diabetes. Diabetes Care 2003; 26: 3006 3010. 22 von Kries R, Koletzko B, Sauerwald T, von Mutius E, Barnert D, Grunert V et al. Breast feeding and obesity: cross sectional study. BMJ 1999; 319: 147 150. 23 Gillman MW, Rifas-Shiman SL, Camargo Jr CA, Berkey CS, Frazier AL, Rockett HR et al. Risk of overweight among adolescents who were breastfed as infants. JAMA 2001; 285: 2461 2467. 24 Grummer-Strawn LM, Mei Z. Does breastfeeding protect against pediatric overweight? Analysis of longitudinal data from the Centers for Disease Control and Prevention Pediatric Nutrition Surveillance System. Pediatrics 2004; 113: e81 e86. 25 Victora CG, Barros F, Lima RC, Horta BL, Wells J. Anthropometry and body composition of 18 year old men according to duration of breast feeding: birth cohort study from Brazil. BMJ 2003; 327: 901 906. 26 Dahlquist G, Bennich SS, Kallen B. Intrauterine growth pattern and risk of childhood onset insulin dependent (type I) diabetes: population based case-control study. BMJ 1996; 313: 1174 1177. 27 Virtanen SM, Knip M. Nutritional risk predictors of beta cell autoimmunity and type 1 diabetes at a young age. Am J Clin Nutr 2003; 78: 1053 1067. 59

60 28 Wei JN, Sung FC, Li CY, Chang CH, Lin RS, Lin CC et al. Low birth weight and high birth weight infants are both at an increased risk to have type 2 diabetes among schoolchildren in Taiwan. Diabetes Care 2003; 26: 343 348. 29 Rich-Edwards JW, Colditz GA, Stampfer MJ, Willett WC, Gillman MW, Hennekens CH et al. Birthweight and the risk for type 2 diabetes mellitus in adult women. AnnInternMed1999; 130: 278 284. 30 Freedman DS, Dietz WH, Srinivasan SR, Berenson GS. The relation of overweight to cardiovascular risk factors among children and adolescents: the Bogalusa heart s tudy. Pediatrics 1999; 103: 1175 1182. 31 Wang Y, Ge K, Popkin BM. Tracking of body mass index from childhood to adolescence: a 6-y follow-up study in China. Am J Clin Nutr 2000; 72: 1018 1024.