THE EFFECT OF POSITIVE PRESSURE VENTILATORY PATTERNS ON POST-BYPASS LUNG FUNCTIONS

Similar documents
A Comparative Study for the Lung Mechanics during One-Lung Ventilation in Thoracic Surgeries Using Two Different Modes of Mechanical Ventilation

Respiratory insufficiency in bariatric patients

One Lung Ventilation in Obese patients

HEMODYNAMIC PROFILE DURING LAPAROSCOPIC CHOLECYSTECTOMY VERSUS LAPAROSCOPIC BARIATRIC SURGERY

W. J. RUSSELL*, M. F. JAMES

Propofol or etomidate: Does it genuinely matter for induction in cardiac surgical procedures?

Weaning from Mechanical Ventilation. Dr Azmin Huda Abdul Rahim

CPAP Reduces Hypoxemia After Cardiac Surgery (CRHACS Trial). A randomized controlled trial

Department of Anaesthesiology, Erasmus University Medical Center, Rotterdam, The Netherlands

Cardiothoracic Fellow Expectations Division of Cardiac Anesthesia, Beth Israel Deaconess Medical Center

British Journal of Anaesthesia 104 (5): (2010) doi: /bja/aeq080 Advance Access publication March 30, 2010

Cardiac anaesthesia. Simon May

SECTION 1: INCLUSION, EXCLUSION & RANDOMISATION INFORMATION

Charisma High-flow CPAP solution

Sleep Apnea and ifficulty in Extubation. Jean Louis BOURGAIN May 15, 2016

1. When a patient fails to ventilate or oxygenate adequately, the problem is caused by pathophysiological factors such as hyperventilation.

Lung dysfunction after cardiac surgery still remains an

INTRODUCTION The effect of CPAP works on lung mechanics to improve oxygenation (PaO 2

APRV Ventilation Mode

Agenda. Mechanical Ventilation in Morbidly Obese Patients. Paolo Pelosi. ESPCOP, Ostend, Belgium Saturday, November 14, 2009.

Section 6 Intra Aortic Balloon Pump

Spontaneous Breathing Trial and Mechanical Ventilation Weaning Process

Management of refractory ARDS. Saurabh maji

IMPROVE PATIENT OUTCOMES AND SAFETY IN ADULT CARDIAC SURGERY.

Immediate pulmonary dysfunction in ischemic heart disease patients undergoing off-pump versus on-pump CABG

Intra-operative Echocardiography: When to Go Back on Pump

Supplementary Online Content

Surviving Sepsis Campaign. Guidelines for Management of Severe Sepsis/Septic Shock. An Overview

Lung Recruitment Strategies in Anesthesia

Anesthesia of robotic thoracic surgery

MD (Anaesthesiology) Title (Plan of Thesis) (Session )

Resistive Heating during Off-Pump Coronary Bypass Surgery

Patient-Ventilation Asynchrony Causing Negative Pressure Pulmonary Edema in an Intubated Obese Patient

Study Of Effects Of Varying Durations Of Pre-Oxygenation. J Khandrani, A Modak, B Pachpande, G Walsinge, A Ghosh

Postoperative Respiratory failure( PRF) Dr.Ahmad farooq

Going on Bypass. What happens before, during and after CPB. Perfusion Dept. Royal Children s Hospital Melbourne, Australia

Rauf et al. The evidence for this effect is equivocal. Studies of volunteers and non-cardiac surgery patients have concluded that there is no toleranc

Index. Note: Page numbers of article titles are in boldface type

Hee Young Kim 1, Seung-Hoon Baek 1, Hyung Gon Je 2, Tae Kyun Kim 1, Hye Jin Kim 1, Ji Hye Ahn 1, Soon Ji Park 1. Introduction

INDEPENDENT LUNG VENTILATION

Case scenario V AV ECMO. Dr Pranay Oza

Veno-Venous ECMO Support. Chris Cropsey, MD Sept. 21, 2015

INternational observational study To Understand the impact and BEst practices of airway management in critically ill patients CASE REPORT FORM

Is severe re-expansion pulmonary edema still a lethal complication of closed thoracostomy or thoracic surgery?

International Journal of Medical and Health Sciences

Intra-operative Effects of Cardiac Surgery Influence on Post-operative care. Richard A Perryman

Handling Common Problems & Pitfalls During. Oxygen desaturation in patients receiving mechanical ventilation ACUTE SEVERE RESPIRATORY FAILURE

POSTGRADUATE INSTITUTE OF MEDICINE UNIVERSITY OF COLOMBO

Coronary Artery Bypass Graft: Monitoring Patients and Detecting Complications

Interventions designed to improve intensive care unit

Bronchoalveolar lavage (BAL) with surfactant in pediatric ARDS

Cardiorespiratory Physiotherapy Tutoring Services 2017

² C Y E N G R E M E ssignac Cardiac Arrest Resuscitation Device uob

Extracorporeal Membrane Oxygenation (ECMO)

University of Bristol - Explore Bristol Research

Jennifer A. Brown The Cleveland Clinic School of Perfusion Cleveland, Ohio

Effects of pressure controlled and volume controlled ventilation on respiratory mechanics and systemic stress response during prone position

Conventional CABG Or On Pump Beating Heart: A Difference In Myocardial Injury?

SARASOTA MEMORIAL HOSPITAL NURSING DEPARTMENT POLICY

Images have been removed from the PowerPoint slides in this handout due to copyright restrictions.

A Comparison between High Frequency Positive Pressure Ventilation and Intermittent Positive Pressure Ventilation during Closed Mitral Valvotomy

Use of the Intubating Laryngeal Mask Airway

SECTION 1: INCLUSION, EXCLUSION & RANDOMISATION INFORMATION

Original Article. * Received for Publication: January 10, 2012 * Accepted: February 22, 2012

Retrospective Study Of Redo Cardiac Surgery In A Single Centre. R Karthekeyan, K Selvaraju, L Ramanathan, M Rakesh, S Rao, M Vakamudi, K Balakrishnan

Optimize vent weaning and SBT outcomes. Identify underlying causes for SBT failures. Role SBT and weaning protocol have in respiratory care

Fast Track Cardiac Anaesthesia

Biphasic Capnogram in a Single Lung Transplant Recipient A Case Report

I. Subject: Continuous Positive Airway Pressure CPAP by Continuous Flow Device

Oxygenation Failure. Increase FiO2. Titrate end-expiratory pressure. Adjust duty cycle to increase MAP. Patient Positioning. Inhaled Vasodilators

Anaesthetic considerations for laparoscopic surgery in canines

Lung Injury and Protection in the Perioperative Period

CERVICAL PLEXUS BLOCK FOR CAROTID ENDARTERECTOMY FOLLOWED BY GENERAL ANESTHESIA FOR ABDOMINAL AORTIC SURGERY

NON-INVASIVE VENTILATION. Lijun Ding 23 Jan 2018

Capnography Connections Guide

Index. Note: Page numbers of article titles are in boldface type.

Evaluation of Low Tidal Volume During General Anesthesia in Prone Position on Respiratory Functions

P V Praveen Kumar 1*, P. Archana 2. Original Research Article. Abstract

The effect of a pediatric heat and moisture exchanger on dead space in healthy pediatric anesthesia

Prepared by : Bayan Kaddourah RN,MHM. GICU Clinical Instructor

Mechanical Ventilation Principles and Practices

Hypotension after induction, corrected with 20 mg ephedrine x cc LR EBL 250cc Urine output:

Baroreflex Integrity: A Comparative Study between Propofol and Propofol with Sevoflurane Anesthesia

Comparison of automated and static pulse respiratory mechanics during supported ventilation

Intraoperative application of Cytosorb in cardiac surgery

Post Resuscitation (ROSC) Care

Journal of Anesthesia & Clinical

ARDS: an update 6 th March A. Hakeem Al Hashim, MD, FRCP SQUH

CCAS CPB Workshop Curriculum Outline Perfusion: What you might not know

CISATRACURIUM IN CARDIAC SURGERY

Regional versus general anesthesia in patients underwent hip fracture surgery over 80 years old: A retrospective cohort study

Available online at ORIGINAL RESEARCH. Medicine Science 2018; ( ):

Evaluation of routine postoperative chest X-rays in the management of the cardiac surgical patient 1

Airway Management in a Patient with Klippel-Feil Syndrome Using Extracorporeal Membrane Oxygenator

Original Article Effects of prone position on lung function of patients undergoing mechanical ventilation under total intravenous anesthesia

University of Florida Department of Surgery. CardioThoracic Surgery VA Learning Objectives

You are caring for a patient who is intubated and. pressure control ventilation. The ventilator. up to see these scalars

ECMO vs. CPB for Intraoperative Support: How do you Choose?

Pain & Sedation Management in PICU. Marut Chantra, M.D.

Transcription:

THE EFFECT OF POSITIVE PRESSURE VENTILATORY PATTERNS ON POST-BYPASS LUNG FUNCTIONS MOHAMED ESSAM A-MEGUID *, EMAD EL-DIN MANSOUR * AND KHALED M. ABDULLAH ** Abstract Background: This study aimed at evaluating the effect of application of different patterns of positive ventilatory pressure either during or after cardiopulmonary bypass (CPB), on lung functions. Methods: 30 patients undergoing coronary artery revascularisation under the management of CPB were randomly allocated into 3 groups. Group I (VCM) 10 patients were subjected to manual vital capacity manoeuvre (VCM) before weaning off the CPB. Group II (CPAP) 10 patients were subjected to continuous positive airway pressure (CPAP) of 10 cmh 2 O during CPB. Group III (PEEP) 10 patients were subjected to positive end expiratory pressure (PEEP) of 7 cmh 2 O after weaning off the CPB. Measurements included the PO 2, PCO 2, together with derived calculated parameters as the alveolar-arterial oxygen difference [P (A-a) DO 2 ] and shunt fraction, as well as the dynamic lung compliance being recorded directly from the anesthetic and ventilatory equipments. All readings were taken on closed chest and on FiO 2 of 0.5. Intraoperative anesthetic and surgical data as well as postoperative extubation time and length of ICU stay were also evaluated. Results: Statistical analysis of ventilatory parameters showed no From King Khalid Univ. Hospital King Saud Univ., Riyadh. KSA. * MD, Consultant Cardiac Anesth. ** AB, MD, Consultant Cardiac Anesth. Corresponding Author: Dr. Mohamed Essam Abdel-Meguid, MD, Consultant Cardiac Anaesthesia. Anaesthesia Department, King Khalid University Hospital, King Saud University, Riyadh, KSA. P.O. Box: 7805 internal 41, Code 11472. Tel: Work +966 14671597. Fax: +966 14679463. Mobile: +966 507840983. E-mail: memeguid@hotmail.com. 1059 M.E.J. ANESTH 18 (6), 2006

1060 MOHAMED A-MEGUID ET. AL significant differences for both PO 2 and PCO 2 in between the studied groups. Alveolar-Arterial oxygen difference mean values were comparable in the 3 studied groups. The mean values of intrapulmonary shunt fraction showed a significant difference in relation to the baseline values in Group I (VCM) and Group III (PEEP) at 30 minutes after ICU admission and 4 hours post CPB with estimated P value <0.01 and <0.05 respectively, while in Group II (CPAP) mean values started to be significant after chest closure with a P value <0.05, but there was no significant intergroup differences with a P value >0.01. Dynamic lung compliance mean values showed no intergroup statistical significance. Conclusion: Maintenance of ventilatory parameters was achieved in all the positive pressure ventilatory methods applied, either being applied during or after CPB. Key words: Cardiopulmonary bypass; Vital capacity manoeuvre; CPAP; PEEP. Introduction Pulmonary dysfunction after cardiopulmonary bypass (CPB) is considered one of the major consequences in cardiac surgery that results either from increased lung water content or development of postoperative atelectasis. Both will result in decreased lung compliance and in return result in deficient gas exchange as a result of increased shunt fraction 1. The main clinical manifestation of post-pump lung syndrome is defective oxygenation that may result in a spectrum of consequences resulting in prolonged postoperative mechanical ventilation and failure of fast tracking concept in cardiac surgery. Atelectasis and decreased lung compliance is the main feature of post-pump lung syndrome 2, thus with prevention of those consequences proper oxygenation could be achieved and hence shortening of intubation time postoperatively as well as shortening of length of ICU stay. Application of positive ventilatory pressure using continuous positive airway pressure (CPAP) during CPB was proved to have beneficial effects on maintenance of oxygenation parameters 2,3. Manual application of positive ventilatory pressure on the

EFFECT OF PPV ON POST-BYPASS LUNG FUNCTION 1061 conclusion of CPB using the vital capcity manoeuvre (VCM) showed significant improvement in ventilatory parameters when compared to deflated lungs throughout the CPB interval 4. In the present study comparison was made between different patterns of positive ventilatory pressure applied either during or after CPB, including the application of positive end expiratory pressure (PEEP) after weaning off CPB. This was not studied before on humans. Patients and Methods After obtaining our Hospital Research Review Board approval, the study was performed between November 2003 and May 2004. An informed patient consent was taken from eligible patients before being enrolled to the study. In a randomised prospective observational study, 30 patients scheduled for elective cardiac revascularisation procedure that was previously determined to be under the management of cardiopulmonary bypass (CPB) whether by the tepid CPB method or by the on pump beating heart technique, were enrolled to the sutdy. Randomisation of patients was taken through sealed envelops. Exclusion criteria included pre-existing pulmonary disease, poor LV function with EF <30%, morbid obese patients with a BMI >30, lengthy CPB time >120 min, severe hemodynamic instability necessitating either a high inotropic support or application of a ventricular assist device as intra-aortic balloon pump (IABP), or prolonged ventilatory support due to any other reason rather than ventilatory derangements. Patients were randomly allocated into 3 groups. Group I (VCM) 10 patients were subjected to manual ventilation using the vital capacity manoeuvre (VCM) just before weaning off the CPB and before resuming mechanical ventilation while lungs being deflated all through the CPB interval. VCM was achieved by manually ventilating lungs to an airway pressure of 40 cmh 2 O for 15 seconds. In group II (CPAP) 10 patients were subjected to a CPAP of 10 cmh 2 O all through CPB interval, then to resume mechanical ventilation directly without applying VCM. In group M.E.J. ANESTH 18 (6), 2006

1062 MOHAMED A-MEGUID ET. AL III (PEEP) 10 patients were subjected to a PEEP of 7 cmh 2 O on resuming mechanical ventilation provided that hemodynamic parameters permit the application of such pressure. PEEP was continued throughout the postoperative period till weaning from mechanical ventilation down to 5 cmh 2 O before extubation. Data collection of ventilatory parameters involved PO 2 and PCO 2, alveolar-arterial oxygen difference [P (A-a) DO 2 ], shunt fraction and dynamic lung compliance (DLC). Shunt fraction was calculated based on the three-compartment model proposed by Riley and colleagues 5,6. Dynamic lung compliance (DLC) in ml/cmh 2 O was directly recorded from the anesthetic and ventilatory equipments. Data were collected at the following specified time points: Baseline reading after induction of anesthesia and before sternotomy. After chest closure 30 min after admission to ICU 4 hours post CPB 1 hour post-extubation Times from ICU admission to extubation as well as the length of ICU stay were also recorded. All patients received premedication in the form of lorazepam 2 mg orally at night of the operation in addition to intramuscular morphine sulphate 0.1 mg/kg 1 h prior to transfer to the operating room (OR). On receiving patient in OR, standard monitoring connected and a large bore peripheral venous as well as 20-gauge radial arterial cannulae were inserted. Induction followed with Sufentanil 1-1.5 µg/kg, Midazolam 0.05-0.1 mg/kg and Rocuronium 0.9 mg/kg. Patients were anesthetically maintained on total intravenous infusion of same inducing agents supplemented with Sevoflurane guided by the Bispectral index (Aspect industries, USA) monitoring in a range of reading 40-60. The lungs were mechanically ventilated with controlled mode delivering a tidal volume of 8 ml/kg while the respiratory rate was adjusted to keep end tidal CO 2 of 32-36 mmhg. Ventilatory parameters were recorded through the

EFFECT OF PPV ON POST-BYPASS LUNG FUNCTION 1063 anesthesia machine ventilatory monitoring system (Datex-Ohmeda, Type). All ventilatory and oxygenation data were recorded on FiO 2 of 0.5 and in closed chest to provide proper standardization. Anticoagulation was induced with 300 units/kg of unfractionated heparin IV push before cannulation of the aorta where a celite-activated coagulation time of >400 sec must be achieved. The CPB circuit consisted of a membrane oxygenator (Medtronic cardiovascular, Brooklyn Park, MN), non-occlusive roller pump and arterial filter. The oxygenator was primed with 2000 ml of crystalloid solution, 100 ml mannitol 20%,NaHCO 3 50 meq, unfractionated heparin and solu-medrol 500 mg. Tepid technique was used while maintaining temperature at 32-33 Cº with a pump flow rates of 2.4-2.8 L/min/m 2 to maintain a mean arterial pressure of 60-80 mmhg. Myocardial preservation was achieved through warm blood cardioplegia, the tepid CPB technique, while in other cases normothermic on pump beating heart technique was used for revascularisation. During CPB, the lungs were deflated in group I (VCM) and group III (PEEP), while in group II (CPAP) a CPAP was adjusted to 10 cmh 2 O using the pop-off valve. On going weaning off the CPB, patients in group I resumed mechanical ventilation after application of VCM, patients in group II resumed mechanical ventilation directly without application of VCM, while patients in group III resumed mechanical ventilation with application of PEEP of 7 cmh 2 O. Ventilation was adjusted as pre-bypass parameters to be continued in the ICU until fulfilling the criteria for weaning from mechanical ventilation. That included appropriate sensorium, hemodynamic stability with CI of 2.1 L/min/m 2, minimal chest tube output, urine output >0.5 ml/kg/hr, temperature >35.5º C and stable ventilatory parameters with PO 2 >60 mmhg, PCO 2 <40 mmhg, ph 7.36-7.4 and SpO 2 >95%. All this while maintained on pressure support ventilation for at least of 15 min and maintaining stability. Statistical Analysis Data were analysed using a statistical software package (GraphPad InStat version 3.00 for Windows, GraphPad Software Inc., San Diego, M.E.J. ANESTH 18 (6), 2006

1064 MOHAMED A-MEGUID ET. AL California, USA). Data was expressed as mean (SD) unless otherwise indicated. One way analysis of variance (ANOVA) was used to compare the mean values between the studied groups. For significant finding a post-anova pair wise comparisons of means was conducted. Chi-square test and student s t-test were applied when appropriate. P values <0.05 were considered significant. Results Results showed that the three groups were comparable with regard to patient demography (Table 1), anesthetic requirements, and surgical management (Number of grafts and Total CPB time) (Table 2). Table 1 Patient Demography [mean (SD) or ratio] Group I (VCM group) Group II (CPAP group) Group III (PEEP group) P value Age (years) 49 (6) 52 (3) 50 (2) 0.257 Gender (Male/Female) 8/2 9/1 7/3 0.535 BW (Kg) 73 (6.4) 78 (3.7) 77 (4.2) 0.072 BSA (m 2 ) 1.74 (0.3) 1.69 (0.3) 1.82 (0.4) 0.688 VCM = vital capacity manoeuvre; CPAP = continuous positive airway pressure; PEEP = positive end-expiratory pressure; n = number; P value < 0.05 considered significant Total Anesthetic Doses Table 2 Intraoperative Data [mean (SD)] Group I (VCM group) Group II (CPAP group) Group III (PEEP group) P value Midazolam (mg) 13 (2.1) 12 (3.2) 12 (3.1) 0.666 Sufentanil ( g) 139 (23.8) 148 (26.7) 147 (25.4) 0.688 Rocuronium (mg) 232 (54.2) 228 (51.3) 239 (59.7) 0.903 CPB Total Time (minutes) 111 (56.8) 108 (48.4) 109 (46.7) 0.991 Surgical Number of Grafts 2.3 (0.4) 2.6 (0.6) 2.1 (0.3) 0.061 VCM = vital capacity manoeuvre; CPAP = continuous positive airway pressure; PEEP = positive end-expiratory pressure; n = number; P value < 0.05 considered significant

EFFECT OF PPV ON POST-BYPASS LUNG FUNCTION 1065 Regarding the mean values of PO 2 and PCO 2, results showed no statistical significance to the baseline values of intergroup differences at any time of recording (Table 3). Table 3 Ventilatory Parameters [means (SD)] Group I (VCM group) Group II (CPAP group) Group III (PEEP group) P value PO 2 1 224 (73) 231 (92) 236 (87) 0.950 2 212 (71) 216 (67) 227 (88) 0.900 3 196 (66) 235 (57) 219 (56) 0.356 4 217 (82) 202 (49) 234 (67) 0.575 5 186 (45) 197 (59) 182 (45) 0.788 PCO 2 1 34 (4.3) 36 (5.3) 38 (4.5) 0.185 2 39 (6.7) 41 (7.2) 41 (5.8) 0.738 3 41 (7.3) 38 (6.7) 39 (4.2) 0.554 4 37 (6.2) 39 (6.6) 42 (5.5) 0.203 5 42 (5.4) 38 (4.3) 41 (5.1) 0.190 P (A-a) DO 2 1 228 (34) 231 (39) 224 (54) 0.936 2 248 (33) 239 (45) 231 (58) 0.718 3 253 (49) 228 (57) 229 (55) 0.509 4 251 (50) 241 (58) 206 (49) 0.151 5 245 (48) 223 (64) 228 (56) 0.662 Shunt % 1 3.4 (0.6) 3.1 (0.5) 2.9 (0.6) 0.161 2 4.1 (1.1) 3.9 (0.8) 3.2 (0.7) 0.074 3 4.7 (0.9) ** 4.1 (1.0) * 3.7 (0.8) * 0.061 4 4.5 (1.0) ** 4.4 (0.9) ** 3.8 (1.0) * 0.235 5 --- --- --- --- DLC 1 54 (7.9) 49 (8.1) 51 (7.3) 0.364 2 51 (6.4) 47 (5.5) 49 (7.7) 0.411 3 49 (6.1) 46 (7.9) 50 (8.1) 0.449 4 50 (5.8) 46 (6.9) 47 (6.4) 0.359 5 --- --- --- --- VCM = vital capacity manoeuvre; CPAP = continuous positive airway pressure; PEEP = positive end-expiratory pressure; n = number; 1 = Baseline (after induction and before sternotomy); 2 = After Chest closure; 3 = 30 minutes after ICU Admission; 4 = 4 hours Post-bypass; 5 = 1 hour postextubation; P (A-a) DO2 = alveolo-arterial oxygen tension difference; DLC = Dynamic Lung Compliance; P value < 0.05 considered significant * = P value < 0.05 compared with the baseline (unpaired t-test) ** = P value < 0.01 compared with the baseline (unpaired t-test) M.E.J. ANESTH 18 (6), 2006

1066 MOHAMED A-MEGUID ET. AL The mean alveolar-arterial oxygen difference [P (A-a) DO 2 ], results revealed insignificant intergroup differences at any time point of assessment or to the baseline values (Table 3). The calculated intrapulmonary shunt fraction, was significantly high in group I (VCM) and group 111 (PEEP) 30 minutes after ICU admission and at 4 hours post-bypass when compared to the baseline values (P <0.01, <0.05 respectively). In group II (CPAP) the mean shunt. fraction increased significantly after chest closure compared with the baseline value (P <0.05). There was no significant intergroup difference at any time point of recording (P >0.05) (Table 3). Regarding the DLC, the 3 studied groups showed insignificant differences whether to baseline values or with intergroup comparison at any definite point of recording (Table 3). The postoperative parameters were comparable in the three studied groups with no significant statistical differences (Figure 1). Fig. 1 Time to Extubation and Length of ICU stay (Hours)

EFFECT OF PPV ON POST-BYPASS LUNG FUNCTION 1067 Discussion There is good evidence that early extubation is safe and well tolerated after cardiac surgery, while it requires identifying eligible patients and adapting both surgical and anesthetic management to serve this process 7. Ventilatory management providing optimum gas exchange parameters is crucial to achieve early extubation, specially when it was proved that impaired pulmonary gas exchange was found to be a major consequence after cardiac surgical procedures performed under the management of CPB 1. Positive ventilatory pressure had been proposed to play a role in the improvement of gas exchange and explained by the reduction in lung water which in return provides a more compliant interstitial space allowing better gas exchange 1. This was supported by many clinical trials. One of which studied 14 patients, 7 subjected to CPAP during CPB, while the other control 7 patients, the lungs were kept deflated all through the CPB time. They demonstrated that application of CPAP 10 cmh 2 O during CPB provides better oxygenation and less shunt fraction than their control group 3. On the other hand, other trials failed to prove such effect of CPAP application during CPB. In one of the clinical studies they failed to demonstrate positive results with application of CPAP of 5 cmh 2 O during CPB 8. Also others found that low levels of CPAP applied during CPB did not improve the oxygenation or the mechanical ventilatory parameters 9. While considering that the VCM which was proved to have a beneficial role in gas exchange and improvement in lung compliance, in an experimental study done on pigs models, demonstrated that VCM effectively prevents post-cpb atelectasis 10,11. Also in another clinical trial on humans undergoing cardiac surgical procedure comparing the VCM to a control group where no re-expansion manoeuvre was used, their results showed a significant difference in ventilatory parameters specially in shunt fraction 4. In the present study, comparison was made between the application of both VCM and CPAP, and our results showed no statistical significant M.E.J. ANESTH 18 (6), 2006

1068 MOHAMED A-MEGUID ET. AL differences in the ventilatory parameters between the two positive pressure ventilatory methods applied, apart from the increase in the shunt fraction which was significantly higher than the baseline in both groups, yet it was within the normal physiological range (2-5%) 1 thus with no clinical significance. The influence of the application of PEEP after CPB has not been previously studied in humans undergoing cardiac surgery, probably due to the fear of its deleterious hemodynamic effects in such a critical period. That was the objective in the present study of applying a minimal pressure of 7 cmh 2 O in a trial to fasten the slow re-expansion of alveoli in the post-bypass period and to compare its ventilatory effects with other ventilatory patterns being applied. PEEP when applied was readily tolerated by the patients and showed a comparable effects on the ventilatory parameters as compared to the other two studied groups. Considering the postoperative parameters recorded, the studied groups were comparable regarding the extubation time and length of ICU stay. From the ventilatory point of view, their parameters were maintained all through the postoperative period, thus fulfilling the criteria for extubation and weaning from mechanical ventilation was conducted. The present study showed that different ventilatory patterns could be applied to maintain lung functions all through the perioperative period. Comparison was done to the VCM as a ventilatory pattern being now the standard technique applied in patients ongoing weaning off CPB and before resuming mechanical ventilation. Based on clinical evidence, a CPAP when applied all through, CPB time will eventually prohibit the conventional endotracheal suctioning before ongoing weaning off the CPB and thus may have a prophylactic role in preventing mechanical lobular and even lobar lung collapse. This suctioning manoeuvre when applied will alleviate all the beneficial effect of CPAP during CPB. On the other hand, application of PEEP in the postbypass period may have undesirable hemodynamic effects in the immediate post-bypass period with its well known criticality from the hemodynamic point of view. Here, the VCM could be considered a safe

EFFECT OF PPV ON POST-BYPASS LUNG FUNCTION 1069 and practical positive pressure ventilatory method if being applied cautiously so that over inflation of the lungs do not interrupt the course of the left internal mammary artery (LIMA) after being harvested and anastomosed to the native coronary vessel. In conclusion, this study has shown that application of VCM at the end of CPB and before resuming mechanical ventilation gives comparable ventilatory parameters to the positive ventilatory pressure whether applied during (CPAP) or after (PEEP). Thus, the application of such manoeuvre will provide safe and reliable maintenance in gas exchange parameters of patients being subjected to CPB. The application of minimal PEEP in the post-bypass period in an attempt to help in alveolar recruitment and prevention of atelectasis still needs further clinical investigations. M.E.J. ANESTH 18 (6), 2006

1070 MOHAMED A-MEGUID ET. AL References 1. SHAPRO BA, LICHTENTHAL PR: Postoperative respiratory management. In Kaplan JA, Reich DL and Konstadt SN (eds): Cardiac Anesthesia, 4 th edition, Philadelphia, Library of Congress; 1215-1232, 1999. 2. AMANY EA AND HALA FH: Continuous positive airway pressure during cardiopulmonary bypass attenuates postoperative pulmonary dysfunction and complications. Eg J Anaesth; 19:345-351, 2003. 3. LOECKINGER A, KLEINASSER A, LINDNER KH, ET AL: Continuous positive airway pressure at 10 cmh 2O during cardiopulmonary bypass improves postoperative gas exchange. Anesth Analg; 91:522-527, 2000. 4. GLENN SM, JOSEPH WS, RONALD DC, ET AL: Influence of vital capacity maneuver on pulmonary gas exchange after cardiopulmonary bypass. J Cardioth Vasc Anesth; 15, No. 3, 2001. 5. RILEY RL, LILIENTHAL JL, PROEMMEL DD, AND FRANKE RE: On the determination of the physiologically effective pressures of oxygen and carbon dioxide in alveolar air. Am J Physiol; 147:191-193, 1946. 6. ESSAM AH, MOHAMED SM, SOLIMAN MA AND AHMED MM: Haemodynamic and pulmonary Shunt Fraction Changes with Sevoflurane or Propofol Anaesthesia during one lung Ventilation for Thoracic Surgery. Eg J Anaesth; 19:233-241, 2003. 7. TIZIANO C, RENE C, ROMANO M AND JEAN-PIERRE R: Clinical experience with adaptive support ventilationf or fast track cardiac surgery. J Cardioth Vasc Anesth; 17, No. 5, 2003. 8. BERRY CB, BUTLER PJ AND MYLES PS: Lung management during cardiopulmonary bypass: is continuous positive airway pressure beneficial? Br J Anaesth; 71:864-868, 1993. 9. GILBERT TB, BARNAS GM AND SEQUIRA AJ: Impact of pleurotomy, continuous positive airway pressure, and fluid balance during cardiopulmonary bypass on lung mechanics and oxygenation. J Cardioth Vasc Anesth; 10:844-849, 1996. 10. MAGNUSSON L, ZEMGULIS V, TENLING A, ET AL: Use of a vital capacity maneuver to prevent atelectasis after cardiopulmonary bypass. Anesthesiology; 88:134-142, 1999. 11. MAGNUSSON L, ZEMGULIS V, WICKY S, ET AL: Effect of CPAP during cardiopulmonary bypass on postoperative lung function, an experimental study. Acta Anaesthesiol Scand; 42:1133-1138, 1998.