Endovascular Treatment of Active Bleeding after Liver Transplant

Similar documents
Causes of Arterial Bleeding After Living Donor Liver Transplantation and the Results of Transcatheter Arterial Embolization

Renal Artery Embolization in Post Traumatic Vascular Lesions

TIAN AND OTHERS common hepatic artery. For LDLT, a microvascular technique was employed to anastomose the donor artery to either the right or left hep

Case 37 Clinical Presentation

Stenoses of Vascular Anastomoses After Hepatic Transplantation: Treatment with Balloon Angioplasty

NYU School of Medicine Department of Radiology Rotation-Specific House Staff Evaluation

Visceral aneurysm. Diagnosis and Interventions M.NEDEVSKA

An Overview of Post-EVAR Endoleaks: Imaging Findings and Management. Ravi Shergill BSc Sean A. Kennedy MD Mark O. Baerlocher MD FRCPC

Post-operative complications following hepatobiliary surgery: imaging findings and current radiological treatment options

Embolization of Spontaneous Rupture of an Aneurysm of the Ovarian Artery Supplying the Uterus with Fibroids

Kenneth L. Croutch, * R q L. Gordon, * Ernest J. Ring, * Robert K. Kerlan Jr., * Jeanne M. LclBerge, * andjohn P. Roberts t. Patients and Methods

Percutaneous Transluminal Angioplasty and Stenting for Hepatic Vessel Stenosis after Orthotopic Liver Transplantation

Interventional Radiology in Trauma. Vikash Prasad, MD, FRCPC Vascular and Interventional Radiology The Moncton Hospital

Diagnosis and Management of Femoral Access Site Complications IV: Novel Techniques for Endovascular Rescue

Liver Transplantation in Children: Techniques and What the Surgeon Wants to Know from Imaging

Dual Catheter Placement Technique for Treatment of Biliary Anastomotic Strictures After Liver Transplantation

Current status of hepatic surgery in Korea

How to manage TAVI related vascular complications. Paul TL Chiam MBBS, FRCP, FESC, FACC, FSCAI

RadRx Your Prescription for Accurate Coding & Reimbursement Copyright All Rights Reserved.

2019 ABBOTT REIMBURSEMENT GUIDE CMS Physician Fee Schedule

Bronchobiliary fistula treated with histoacryl embolization under bronchoscopic guidance: A case report

The Incidence, Timing, and Management of Biliary Tract Complications After Orthotopic Liver Transplantation

Ruptured aberrant internal carotid artery pseudoaneurysm presenting with spontaneous massive ear bleeding following a single sneeze: a case report

Refractory Bleeding: Role of Angiographic Intervention

Thrombin injection vs Conventional Surgical Repair in Treatment of Iatrogenic Post-cath Femoral Artery Pseudoaneurysm (IFAP)

Arterial Map of the Thorax, Abdomen and Pelvis 2017 Edition

Originally Posted: November 15, 2014 BRUIT IN THE GROIN

RadRx Your Prescription for Accurate Coding & Reimbursement Copyright All Rights Reserved.

Management of Extensive Portal Vein Thrombosis

CLINICAL PRESENTATION OF HEPATIC ARTERY THROMBOSIS AFTER LIVER TRANSPLANTATION IN THE CYCLOSPORINE ERA1,2

The role for contrast-enhanced ultrasonography outside of focal liver lesions

Hepatic Artery Reconstruction in Living Donor Liver Transplant Experience at King Hussein Medical Center

Doppler Ultrasonography Findings of Splenic Arterial Steal Syndrome After Liver Transplant

Faculty Disclosure. Glue, Particulates, Thrombin, Coils and the Kitchen Sink for Type II Endoleak Management. Background.

Interventional Radiology in Liver Cancer. Nakarin Inmutto MD

Sac Angiography and Glue Embolization in Emergency Endovascular Aneurysm Repair for Ruptured Abdominal Aortic Aneurysm

An endoleak is radiographic or ultrasonic evidence

Complete Guide for Interventional Radiology

Vascular complications in percutaneous biliary interventions: A series of 111 procedures

Thrombectomy, open, arteriovenous fistula without revision, autogenous or nonautogenous dialysis graft (separate procedure)

Hemobilia and Occult Cystic Artery Stump Bleeding after a Laparoscopic Cholecystectomy: Endovascular Treatment with N-butyl Cyanoacrylate

Experience with Transradial and Transulnar Abdominal Angiography and Intervention.

RadRx Your Prescription for Accurate Coding & Reimbursement Copyright All Rights Reserved.

Endovascular Treatment of Hepatic Artery Stenosis following Liver Transplantation

'fi. Special Article. Vascular Complications After Liver Transplantation: A 5-Year Experience

Results of Choledochojejunostomy in the Treatment of Biliary Complications After Liver Transplantation in the Era of Nonsurgical Therapies

Primary to non-coronary IVUS

SANWICH TECHNIQUE TO REDUCE COMPLICATIONS WHEN TREATING BILATERAL INTERNAL ILIAC ARTERY

Diagnosis and Endovascular Treatment of Common Vascular Complications in the Post Liver Transplant Patient: A Pictorial Essay

BILIARY TRACT COMPLICATIONS IN HUMAN ORTHOTOPIC LIVER TRANSPLANTATION 1,2

Spontaneous Recanalization after Complete Occlusion of the Common Carotid Artery with Subsequent Embolic Ischemic Stroke

DEPARTMENT OF HEALTH & HUMAN SERVICES Public Health Service

Postpancreatectomy Hemorrhage: Imaging and Interventional Radiological Treatment

The gastroduodenal artery: Radiological anatomy, imaging and endovascular intervention

CY2017 Hospital Outpatient: Vascular Procedure APCs and Complexity Adjustments

Management of Endoleaks. Michael Meuse, M.D Vascular and Interventional Radiology 12/14/09

RUBY. Large Volume Detachable Coil. Copyright 2014 Penumbra, Inc. All rights reserved. 7516, Rev.A

Successful Application of Supraceliac Aortohepatic Conduit Using Saphenous Venous Graft in Right Lobe Living Donor Liver Transplantation

CPT Code Details

CAROTID ARTERY ANGIOPLASTY

RadRx Your Prescription for Accurate Coding & Reimbursement Copyright All Rights Reserved.

For Personal Use. Copyright HMP 2013

Visceral Artery Aneurysms Endovascular vs. Open?

Percutaneous Transarterial Embolization of Pseudoaneurysm Secondary to Pancreatitis: a case report

Coronary to Bronchial Artery Fistula Causing Massive Hemoptysis in Patients with Longstanding Pulmonary Tuberculosis

Renal Artery Embolization for the Treatment of Renal Artery Pseudoaneurysm Following Partial Nephrectomy

Brachytherapy for In-Stent Restenosis: Is the Concept Still Alive? Matthew T. Menard, M.D. Brigham and Women s Hospital Boston, Massachussetts

Treatment options for endoleaks: stents, embolizations and conversions

Copyright HMP Communications

Subclavian artery Stenting

GEST 2016: Case-Based Discussion: GI Bleeding of Arterial Origin

Vascular Complications of Hepatic Artery After Transcatheter Arterial Chemoembolization in Patients With Hepatocellular Carcinoma

Endoleak Sealing after AAA Endovascular Repair. When and How?

MINIMALLY INVASIVE MANAGEMENT OF RENOVASCULAR COMPLICATIONS AFTER RENAL GRAFT TRANSPLANTATION

THE first human liver transplantation was performed in 1963 (1).

Interventional Treatment for Complete Occlusion of Arteriovenous Shunt: Our Experience in 39 cases

BRTO: Updates to Techniques

of bile leakage after liver resecti

Portal vein stent placement for the treatment of postoperative portal vein stenosis: long-term success and factor associated with stent failure

Original Report. AJR:178, May Received January 19, 2000; accepted after revision November 1, Géneral Leclerc, 92118, Clichy, France.

Interprovincial Billing Out-Patient Rates Effective for Visits on or After April 1, 2017

Overall Goals and Objectives for Transplant Hepatology EPAs:

CY2015 Hospital Outpatient: Endovascular Procedure APCs and Complexity Adjustments

The SplitWire Percutaneous Transluminal Angioplasty Scoring Device. Instructions for Use

Case Report Idiopathic Giant Hepatic Artery Pseudoaneurysm

An unusual source of right upper quadrant pain

Prospective, randomized controlled study of paclitaxel-coated versus plain balloon angioplasty for the treatment of failing dialysis access

Cordis EXOSEAL Vascular Closure Device

Sample page. POWER UP YOUR CODING with Optum360, your trusted coding partner for 32 years. Visit optum360coding.com.

The authors have declared no conflicts of interest.

2017 Cardiology Survival Guide

Autogenous arteriovenous fistula for hemodialysis complicated with a giant venous aneurysm

Transcatheter Arterial Embolization of Nonvariceal Upper Gastrointestinal Bleeding with N-Butyl Cyanoacrylate

IN.PACT AV Access IDE Study Full Baseline Data. Robert Lookstein, MD MHCDL New York, NY On Behalf of the IN.PACT AV ACCESS Investigators

Index. average stress 146. see ACIS

Liver Transplantation for Biliary Atresia: 19-Year, Single-Center Experience

Percutaneous Axillary Artery Access For Branch Grafting for complex TAAAs and pararenal AAAs: How to do it safely

Paediatric Liver Transplant Programme Wits Donald Gordon Medical Centre

Interprovincial Billing Out-Patient Rates Effective for Visits on or After April 1, 2018

Transcription:

Endovascular Treatment of Active Bleeding after Liver Transplant Ali Harman, 1 Fatih Boyvat, 1 Baris Hasdogan, 1 Cuneyt Aytekin, 1 Hamdi Karakayali, 2 Mehmet Haberal 2 Objectives: To evaluate the incidence of active bleeding complications following transplant and the efficacy of interventional radiologic management. Materials and Methods: Between June 2000 and February 2007, 14 liver transplant patients with active bleeding were treated via endovascular techniques (coils, glue, or graft-covered stents). Active bleeding was spontaneous in 6 patients through the inferior epigastric artery (n=1), the inferior phrenic artery (n=1), the superior mesenteric artery (n=2), the internal mammary artery (n=1), and the hepatic artery (n=1). In 8 patients, active bleeding was due to transhepatic biliary or endovascular interventions. Hemobilia (n=2) due to pseudoaneurysm formation after transhepatic biliary interventions was embolized with coils. Hepatic artery rupture was observed in 6 patients during endovascular interventions performed on hepatic artery stenosis or thrombosis that had been treated with graft-covered stents. Technical success, clinical improvement, and complications were documented. Results: Active bleeding was stopped by endovascular intervention in 13 of 14 patients. Embolizations with coils or glue were successful. In 1 patient with hepatic artery bleeding, the graftcovered stent failed to seal the rupture site, and this patient underwent reoperation. Conclusion: Arterial bleeding complications after liver transplant during the early and late postoperative period, due either to spontaneous active bleeding or to percutaneous or endovascular Departments of 1 Radiology and 2 General Surgery, Başkent University Faculty of Medicine, Ankara, Turkey Address reprint requests to: Ali Harman, MD, Department of Radiology, Başkent University Faculty of Medicine, Fevzi Çakmak Caddesi 10. Sokak No:45 06940, Bahçelievler, Ankara, Turkey Phone: 00 90 312 212 68 68 Fax: 00 90 312 223 73 33 E-mail: aliharman@baskent-ank.edu.tr Experimental and Clinical Transplantation (2007) 1: 596-600 interventions, can be successfully managed with interventional radiologic techniques. Key words: Hepatic transplantation, Graft, Hemorrhage Liver transplant is a successful treatment for patients with end-stage liver cirrhosis and acute liver failure. Improvements in immunosuppression, perioperative management, and surgical techniques have led to survival rates of more than 90% at 1 year and 70% to 80% at 10 years [1]. However, postoperative complications that range from minor to severe may occur. Postoperative hemorrhage is a frequent complication after liver transplant. The time frame of its occurrence can vary from immediately after the surgery to months after transplant. Approximately 10% to 15% of liver-transplanted patients require reoperation to control postoperative hemorrhage [2, 3]. The most important risk factor for developing early postoperative hemorrhage is the seriously compromised preoperative patient with severe coagulopathy and thrombocytopenia. Causes for early and late postoperative hemorrhage include a compromised preoperative patient condition with serious coagulopathy and thrombocytopenia, initial poor graft function, initial graft nonfunction, violation and laceration of the liver surface, anastomotic leak, heparin-induced, interventions including liver biopsy and percutaneous biliary or endovascular procedures, mycotic aneurysm, and hepatic artery stenosis and thrombosis [1]. Although the incidence and the mortality rate of arterial bleeding after liver transplant have not been precisely determined, it has been reported to cause death [4]. To our knowledge, there has been little published data about posttransplant hemorrhage, its diagnosis with angiography, and subsequent treatment using endovascular techniques. Most cases of arterial bleeding following liver transplant have been treated primarily by repeat surgery [4, 5]. During the last several years at our institution, Copyright Başkent University 2007 Printed in Turkey. All Rights Reserved.

Ali Harman et al / Experimental and Clinical Transplantation (2007) 1: 596-600 597 Table 1. Overview of the patient cohort Patient Age Sex Etiology Type of Day of Bleeding Site Bleeding Cause Treatment Type Technical No. (y) Transplant Bleeding* Success 1 36 M HBV LD - RL 22 IEA Spontaneous Coil + glue + 2 41 M AIH LD - RL 14 PA Spontaneous Coil + 3 40 M HBV LD LLS 36 SMA Spontaneous Coil + 4 16 M AIH LD RL 30 SMA Spontaneous Coil + GSP + 5 24 F AIH LD - RL 12 IMA Spontaneous Glue + 6 56 M HCC-HBV DD Whole 162 HA PTBBD Coil + 7 49 M HCC-HBV LD RL 1 HA Spontaneous Stent + 8 36 M HBV LD RL 25 HA PTA Stent + 9 13 M Cryptogenic cirrhosis LD LL 6 HA PTA Stent + 10 3 M PFIC-1 LD LLS 6 HA PTA Stent + 11 9 M BA DD - Whole 1 HA PTA Stent + 12 10 M Wilson s disease LD LLS 11 HA PTA Stent + 13 6 M Fulminant hepatitis LD LLS 433 HA PTBBD Coil + 14 30 M PBS LD RL 9 HA PTA Stent - (SR) *days after transplantation AIH, Autoimmune hepatitis BA, Biliary atresia DD, Deceased donor GSP, Gelatin sponge particles HA, Hepatic artery HBV, Hepatitis B virus HCC, Hepatocellular carcinoma IMA, Internal mammary artery IEA, Inferior epigastric artery LD, Living donor LL, Left lobe LLS, Left lobe lateral segment PA, Phrenic artery PBS, Primary biliary cirrhosis PFIC-1, Progressive familial intrahepatic cholestasis PTA, Percutaneous transluminal angioplasty PTBBD, Percutaneous transhepatic biliary balloon dilatation RL, Right lobe SMA, Superior mesenteric artery SR, Surgical revision endovascular treatment has been the first step in controlling presumed posttransplant arterial bleeding. The aims of this retrospective study were to analyze the etiology of arterial bleeding foci in liver transplant patients and to evaluate the efficacy of endovascular treatment. Materials and Methods Between June 2000 and February 2007, 14 liver transplant patients (13 men, 1 woman; mean age, 26 years; age range, 3-56 years) with active bleeding were treated with endovascular techniques (coils, glue, gelatin sponge particles, or graft-covered stents). The underlying causes of hepatic failure and liver transplant in these patients were hepatitis-b related liver cirrhosis with or without hepatocellular carcinoma (n=5), autoimmune hepatitis (n=3), biliary atresia (n=1), fatal fulminant hepatitis due to Wilson s disease (n=1), progressive familial intrahepatic cholestasis (n=1), cryptogenic cirrhosis (n=1), non-a non-e fulminant hepatitis (n=1), and primary biliary cirrhosis (n=1). The grafts involved in the livingdonor liver transplants included the right lobe (n=7), the left lateral segment (n=5), and the whole liver (n=2). An overview of the patient cohort and baseline characteristics are detailed in Table 1. Active bleeding was spontaneous in 6 patients through the inferior epigastric artery (n=1), the internal mammary artery (n=1) (Figure 1), the inferior phrenic artery (n=1) (Figure 2), the superior mesenteric artery (n=2), and the hepatic artery (n=1) (Figure 3). Provisional identification of the bleeding arteries was made based on the patient s symptoms or signs, red blood cell scans, and the radiologic findings of ultrasound and multidetector computerized tomography angiograms. In 2 patients, active bleeding occurred due to transhepatic biliary interventions. These patients underwent percutaneous conventional and cutting balloon dilatation several times because of resistant biliary strictures during the late postoperative period. Hemobilia (n=2) due to pseudoaneurysm formation after transhepatic biliary interventions was embolized with coils.

598 Ali Harman et al / Experimental and Clinical Transplantation (2007) 1: 596-600 Exp Clin Transplant A B C Figure 1. A 26-year-old-woman who had undergone a living-related liver transplant with a right lobe graft. A. Selective right internal mammary artery injection shows contrast extravasation of the medial distal branch. B. Superselective angiography with microcatheter demonstrates the active bleeding site. C. Postembolization arteriography after glue injection demonstrates occlusion of the bleeding artery. A B Figure 2. A 32-year-old man who had undergone a living-related liver transplant with a right lobe graft. A. Selective right inferior epigastric artery injection demonstrating active bleeding at the distal branch. B. Postembolization with glue shows occlusion. Using the right or left common femoral artery, a 5-Fr or a 6-Fr vascular sheath was introduced using the Seldinger technique. Catheters were used based on the attending interventional radiologist s preference. All angiograms were obtained using digital subtraction angiography. Once the bleeding site had been identified, superselective catheterization was performed with a 3-Fr microcatheter (Fast Tracker, Target Therapeutics, Fremont, CA, USA; or Renegade HI-FLO, Boston Scientific, Natick, MA, USA) inserted coaxially through the guiding angiographic catheter. A steerable 0.016- inch guide wire (Glidewire, Terumo, Tokyo, Japan) was used coaxially through the microcatheter to direct its positioning in the small distal branch. Attempts were made to position the catheter just proximal to the bleeding site, allowing for superselective arteriography and embolization. Embolizations in 6 patients were performed using microcoils (complex, helical-fibered platinum coil; Boston Scientific) ranging in size from 2 20 mm to 3 30 mm. In 2 patients, in addition to the microcoils, a secondary embolic agent consisting of gelatin sponge particles (Gelfoam, Upjohn, Kalamazoo, MI, USA) (n=1) and glue (N-butyl cyanoacrylate, histoacryl, Braun, Melsungen, Germany) (n=1) was used. In 1 patient, only glue was used for embolization. Embolization was performed until no further arterial extravasation was seen. Technical success was defined as cessation of bleeding as demonstrated on angiography. Clinical success was defined as cessation of bleeding without further surgical or endoscopic intervention. In 6 patients, active bleeding occurred owing to hepatic artery rupture at the anastomosis site during percutaneous transluminal angioplasty for hepatic artery stenosis or thrombosis during the early postoperative period. All of these patients been treated with fully polytetrafluoroethylene (PTFE)-covered coronary

Ali Harman et al / Experimental and Clinical Transplantation (2007) 1: 596-600 599 Figure 3. A 57-year-old man with a right lobe graft on postoperative day 1. A-B Multidetector computed tomography images demonstrate active bleeding from the side branch of the hepatic artery. C-D Hepatic arteriography, before (C) and after (D) stent-graft placement in the hepatic artery; bleeding was stopped and good flow was established. stents, ranging in size from 3 16 mm to 3.5 mm 27 mm (Jostent GraftMaster; Abbott Vascular Devices, Redwood City, CA, USA). After placement of the vascular-covered stent graft, bleeding at the rupture site completely resolved, and hepatic arterial flow was preserved. Results In 13 (92%) of 14 patients, active bleeding was stopped by endovascular interventional techniques. All procedures were carried out without serious complications. Different bleeding foci were treated by transcatheter arterial embolizations with coils, glue, or gelatin sponge particles in each session of arteriography conducted for each patient. Control selective angiographic images did not demonstrate recurrent bleeding at the same or any other bleeding foci. In 5 of 6 patients who had been treated with fully PTFE-covered coronary stents, all stent-grafts were positioned in the intended position with immediate cessation of bleeding and initial preservation of satisfactory blood flow. In 1 patient, the graftcovered stent did not seal the rupture site, and this patient underwent surgical revision. Discussion Arterial bleeding after liver transplant is not confined to surgical causes. Surgical bleeding is one of the most common causes of bleeding after liver transplant; however, spontaneous or iatrogenic bleeding (ie, surgical bleeding) also is common, as was the case in our retrospective study. Until graft functioning normalizes, coagulopathy after liver transplant is inevitable for a certain time in most

600 Ali Harman et al / Experimental and Clinical Transplantation (2007) 1: 596-600 Exp Clin Transplant liver transplant recipients. The risk of spontaneous and iatrogenic bleeding is also high during the early postoperative period [6]. Thus, clinicians should make a particular effort to prevent iatrogenic bleeding during percutaneous procedures such as liver biopsies and endovascular or biliary interventions. In our study, all spontaneous arterial bleeding occurred during the early postoperative period, ranging between 1 and 36 days after transplant. In our patients, the most important risk factor for developing early spontaneous postoperative hemorrhage may have been compromised preoperative patient condition with serious coagulopathy and thrombocytopenia. Also, patients with poor initial graft function, in whom the synthesis of coagulation factors is insufficient, are at risk for postoperative hemorrhage. In fact, in our study, bleeding from the hepatic artery due to transluminal angioplasty was the most common cause of bleeding. Hepatic artery stenosis and hepatic artery thrombosis (HAT) following liver transplant are 2 major causes of graft failure and mortality in liver transplant recipients. Mortality is higher when HAT occurs soon after a liver transplant [7]. Treatments for HAT include surgical thrombectomy, revision of the arterial anastomosis, retransplant, thrombolytic therapy, and transluminal angioplasty. The most effective approach remains controversial [8]. Thrombolytic intervention and transluminal angioplasty have been recommended frequently for many arterial obstructive diseases, especially for acute coronary artery thrombosis. However, owing to the fear of massive bleeding complications, thrombolytic intervention and transluminal angioplasty are not recommended in HAT and hepatic artery stenosis occurring in the early postoperative period [9]. Although the long-term usefulness of PTFEcovered coronary stent-graft placement has not been confirmed, we believe that vascular-covered stentgraft placement may be a useful therapy for hepatic artery rupture due to endovascular interventions after liver transplant in the early postoperative period. Hepatic artery pseudoaneurysm is a rare complication occurring in 1% to 2% of patients after liver transplant or major liver surgery [10]. Conventional treatment for a pseudoaneurysm consists of surgical ligation and vascular reconstruction or coil embolization. In our study, 2 patients had hemobilia that occurred in the late postoperative period due to pseudoaneurysm formation after transhepatic biliary interventions. We believe that pseudoaneurysms occurred owing to wall damage of hepatic artery segments adjacent to the bile ducts, which had been dilated with a cutting balloon. We treated the pseudoaneurysms with coil embolization without stopping normal blood supply to the liver because this arterial supply is crucial not only to the liver parenchyma but to the bile ducts as well. Arterial obstruction or thrombosis frequently results in graft failure and increases the incidence of mortality by as much as 50%. In conclusion, arterial bleeding complications after liver transplant during the early and late postoperative period due either to spontaneous active bleeding or to percutaneous or endovascular interventions can be successfully managed with interventional radiologic techniques. References 1. Mueller AR, Platz KP, Kremer B. Early postoperative complications following liver transplantation. Best Pract Res Clin Gastroenterol 2004; 18(5): 881-900 2. Gordon RD, van Thiel DH, Starzl TE. Liver transplantation. In: Schiff L, Schiff E, eds. Diseases of the liver. Vol. 2. Philadelphia, JP Lippincott; 1993, pp 1210-1235 3. Greif F, Bronsther OL, Van Thiel DH, Casavilla A, Iwatsuki S, Tzakis A, et al. The incidence, timing, and management of biliary tract complications after orthotopic liver transplantation. Ann Surg 1994; 219(1): 40-45 4. Ozaki CF, Katz SM, Monsour HP Jr, Dyer CH, Wood RP. Surgical complications of liver transplantation. Surg Clin North Am 1994; 74(5): 1155-1167 5. Testa G, Malago M, Broelsch CE. Bleeding problems in patients undergoing segmental liver transplantation. Blood Coagul Fibrinolysis 2000; 11(suppl 1): S81-S85 6. Kim JH, Ko GY, Yoon HK, Song HY, Lee SG, Sung KB. Causes of arterial bleeding after living donor liver transplantation and the results of transcatheter arterial embolization. Korean J Radiol 2004; 5(3): 164-170 7. Tzakis AG, Gordon RD, Shaw BW Jr, Iwatsuki S, Starzl TE. Clinical presentation of hepatic artery thrombosis after liver transplantation in the cyclosporine era. Transplantation 1985; 40(6): 667-671 8. Marujo WC, Langnas AN, Wood RP, Stratta RJ, Li S, Shaw BW Jr. Vascular complications following orthotopic liver transplantation: outcome and the role of urgent revascularization. Transplant Proc 1991; 23(1 Pt 2): 1484-1486 9. Zajko AB, Campbell WL, Bron KM, Schade RR, Koneru B, Van Thiel DH. Diagnostic and interventional radiology in liver transplantation. Gastroenterol Clin North Am 1988; 17(1): 105-143 10. Marshall MM, Muiesan P, Srinivasan P, Kane PA, Rela M, Heaton ND, et al. Hepatic artery pseudoaneurysms following liver transplantation: incidence, presenting features and management. Clin Radiol 2001; 56(7): 579-587. Erratum in: Clin Radiol 2001; 56(9): 785