Attention-Deficit/Hyperactivity Disorder: Attention, Academic Achievement and the Brain Boss

Similar documents
Determining Medication Treatment. Neuropsychological Impairment Matter?

Dorsolateral and Orbital Frontal Subcortical. Differential Diagnosis and Treatment

The Frontal Lobes. Anatomy of the Frontal Lobes. Anatomy of the Frontal Lobes 3/2/2011. Portrait: Losing Frontal-Lobe Functions. Readings: KW Ch.

The Neurobiology of Attention

Attention Deficit Hyperactivity Disorder A Neuro-Anatomical Approach to diagnosis and treatment

Anatomy of the basal ganglia. Dana Cohen Gonda Brain Research Center, room 410

Dr. Farah Nabil Abbas. MBChB, MSc, PhD

Cognition in Parkinson's Disease and the Effect of Dopaminergic Therapy

correlates with social context behavioral adaptation.

9/13/2018. Neurobiological Aspects of Attention Deficit Hyperactivity Disorder (ADHD) DSM-5 Diagnostic Criteria


Biological Risk Factors

Attention-deficit/hyperactivity disorder (ADHD) is characterized

For more information about how to cite these materials visit

THE BRAIN HABIT BRIDGING THE CONSCIOUS AND UNCONSCIOUS MIND

Chapter 2: Studies of Human Learning and Memory. From Mechanisms of Memory, second edition By J. David Sweatt, Ph.D.

Teach-SHEET Basal Ganglia

A Look Inside. Executive Functioning Deficits. Wendy Kelly, M.A., C. Psych. Assoc. Psychological Services, Kawartha Pine Ridge DSB

10/3/2016. T1 Anatomical structures are clearly identified, white matter (which has a high fat content) appears bright.

nucleus accumbens septi hier-259 Nucleus+Accumbens birnlex_727

The Wonders of the Basal Ganglia

Week 2: Disorders of Childhood

神經解剖學 NEUROANATOMY BASAL NUCLEI 盧家鋒助理教授臺北醫學大學醫學系解剖學暨細胞生物學科臺北醫學大學醫學院轉譯影像研究中心.

Citation for published version (APA): Jónsdóttir, S. (2006). ADHD and its relationship to comorbidity and gender. s.n.

Frontal Lobe Functions. Pivotal Case: Phineas Gage. What did change? What did we learn from this? Fredric E. Rose, Ph.D. Winter /13/1848

Depressive disorders in young people: what is going on and what can we do about it? Lecture 1

Attention & Planning. Prevalence. ADHD and Attention. Incidence. Incidence. ADHD: Updates and Practical Suggestions 4/4/2018

COGNITIVE SCIENCE 107A. Motor Systems: Basal Ganglia. Jaime A. Pineda, Ph.D.

SUPPLEMENTARY MATERIAL. Table. Neuroimaging studies on the premonitory urge and sensory function in patients with Tourette syndrome.

ADHD - FACT OR FICTION A NEUROPSYCHIATRIC VIEW

THE PREFRONTAL CORTEX. Connections. Dorsolateral FrontalCortex (DFPC) Inputs

Epidemiology, Genetics, Neurobiology and Developmental Course of Attention Deficit Hyperactivity Disorder with a focus on Adult ADHD.

Difference between ADHD and Executive Functioning. Dr. Josette Abdalla

M P---- Ph.D. Clinical Psychologist / Neuropsychologist

25 Things To Know. Pre- frontal

SUPPORT INFORMATION ADVOCACY

Brain anatomy and artificial intelligence. L. Andrew Coward Australian National University, Canberra, ACT 0200, Australia

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

Parkinsonism or Parkinson s Disease I. Symptoms: Main disorder of movement. Named after, an English physician who described the then known, in 1817.

Lecture 42: Final Review. Martin Wessendorf, Ph.D.

The Central Nervous System I. Chapter 12

Neocortex. Hemispheres 9/22/2010. Psychology 472 Pharmacology of Psychoactive Drugs. Structures are divided into several section or lobes.

Basal Ganglia General Info

Prof. Saeed Abuel Makarem & Dr.Sanaa Alshaarawy

Neuropsychology of Attention Deficit Hyperactivity Disorder (ADHD)

The Neuroscience of Addiction: A mini-review

Understanding Students with Attention-Deficit/ Hyperactivity Disorder

NEUROFEEDBACK FOR AFFECT DYSREGULATION AND IMPAIRMENT IN EXECUTIVE FUNCTIONING Hilary Hodgdon, Ph.D. & Ainat Rogel, Ph.D.

Anatomy and Physiology (Bio 220) The Brain Chapter 14 and select portions of Chapter 16

A Peek Inside the Mystery. ADD/ADHD Students. June, 2015 Presented by: Bryan Harris, Ed.D.

The Emotional Nervous System

Course Booklet. We have felt the pain that Neuroscience is giving you.

Huntington s Disease COGS 172

Attention- Deficit Hyperactivity Disorder (ADHD) Parent Talk. Presented by: Dr. Barbara Kennedy, R.Psych. Dr. Marei Perrin, R.Psych.

Handout for the Neuroscience Education Institute (NEI) online activity: ADHD and Cognition

BASAL GANGLIA. Dr JAMILA EL MEDANY

Basal Ganglia. Introduction. Basal Ganglia at a Glance. Role of the BG

Making Things Happen 2: Motor Disorders

Learning Objectives.

Cronicon EC NEUROLOGY. Mini Review. Alzheimer s Living with the Disease- Understanding the Brain. Caron Leid* Aspen University, Aspen, Colorado, USA

Chapter 3. Structure and Function of the Nervous System. Copyright (c) Allyn and Bacon 2004

Orbitofrontal cortex. From Wikipedia, the free encyclopedia. Approximate location of the OFC shown on a sagittal MRI

Financial Decision-Making: Stacey Wood, PhD, Professor Scripps College

The Neuroscience of Music in Therapy

Damage on one side.. (Notes) Just remember: Unilateral damage to basal ganglia causes contralateral symptoms.

Resistance to forgetting associated with hippocampus-mediated. reactivation during new learning

UNIVERSITY OF BOLTON SCHOOL OF EDUCATION AND PSYCHOLOGY PSYCHOLOGY PATHWAYS SEMESTER 2 EXAMINATIONS 2015/2016

Ch 8. Learning and Memory

Exam 2 PSYC Fall (2 points) Match a brain structure that is located closest to the following portions of the ventricular system

Chapter 18: The Brain & Cranial Nerves. Origin of the Brain

Structural and Functional Neuroimaging of Restricted and Repetitive Behavior in Autism Spectrum Disorder

Methods to examine brain activity associated with emotional states and traits

BINGES, BLUNTS AND BRAIN DEVELOPMENT

Ippeita Dan on behalf of RISTEX ADHD Diagnosis Consortium Chuo University, Tokyo, Japan

Hocus, Pocus, Focus! Springfield Park Elementary Christina Vitek, School Psychologist

Neurodevelopment of ADHD: Significance for Assessment and Therapy

Brain-based disorders in children, teens, and young adults: When to know there is a problem and what to do

The Brain on ADHD. Ms. Komas. Introduction to Healthcare Careers

Standing strong in the roaring 40s ANZFPS November HOBART. Credit: Tourism Tasmania and Garry Moore

Outline of the next three lectures

Basal ganglia Sujata Sofat, class of 2009

NS219: Basal Ganglia Anatomy

Working memory: A cognitive system that supports learning?

THE BRAIN HABIT BRIDGING THE CONSCIOUS AND UNCONSCIOUS MIND. Mary ET Boyle, Ph. D. Department of Cognitive Science UCSD

The human brain. of cognition need to make sense gives the structure of the brain (duh). ! What is the basic physiology of this organ?

Basal Ganglia. Today s lecture is about Basal Ganglia and it covers:

Human Nervous System

Translational Clinical Science

The Neuropsychology of

The Nervous System. Neuron 01/12/2011. The Synapse: The Processor

Brain Mechanisms of Emotion 1 of 6

EXECUTIVE FUNCTION IN CHILDREN WITH TYPICAL AND ATYPICAL DEVELOPMENT: TOWARDS AN ECOLOGICAL ASSESSMENT

Ch 8. Learning and Memory

Higher Cortical Function

EFFECTS OF ADHD ON EARLY LEARNING AND ACDEMIC PERFORMANCE 1

Supplementary appendix

Course Calendar

PSY 315 Lecture 11 (2/23/2011) (Motor Control) Dr. Achtman PSY 215. Lecture 11 Topic: Motor System Chapter 8, pages

Russell M. Bauer, Ph.D. February 27, 2006

A CONVERSATION ABOUT NEURODEVELOPMENT: LOST IN TRANSLATION

Transcription:

Attention-Deficit/Hyperactivity Disorder: Attention, Academic Achievement and the Brain Boss James B. Hale, PhD, MEd, ABSNP, ABPdN Visiting Professor of Educational Neuroscience Division of Psychology and Centre for Research and Development in Learning TeachingBrainLiteracy@gmail.com Tuesday, 11 August 2015 11:45am 1:00pm Learning Hub @ South Spine LT (LHS-01-04)

What is ADHD? Cool and Hot Brain Boss Circuits in Learning, Emotions, and Behaviour Tuesday, 11 August 2015 11:45am 1:00pm Learning Hub @ South Spine LT (LHS-01-04)

What is Attention? Everyone knows what attention is. It is the taking possession by the mind, in clear and vivid form, of one out of what seem several simultaneously possible objects or trains of thought. Focalization, concentration, of consciousness are of its essence. It implies withdrawal from some things in order to deal effectively with others, and is a condition which has a real opposite in the confused, dazed, scatterbrained state. William James Principles of Psychology (1890) Is this primary attention or executive function? How do we separate cortical tone, primary attention, and executive attention?

Executive Function Programming, Regulating, and Verifying Mental Activity Supplementary Motor Association Motor Premotor Expressive Language External Control EXECUTIVE FUNCTIONS Internal Control Working Memory, Memory Encoding & Retrieval (HERA) Plan, Organize, Strategize, Monitor, Evaluate, Modify, & Change Behavior Attention, Concentration, & Impulse Control The Brain Manager

Frontal-Subcortical Circuits: Executive Control Decisions, Keeping track, Doing things quickly Cingulate Motor Oculomotor Running, Drawing Watching Things, Reading Basal Ganglia/ Thalamus Managing life, Completing Tasks, Writing How does circuit impairment lead to ADHD and other psychopathologies? Controlling Own Emotions and Behaviour

Motor Circuit Supplementary Motor Cortex Primary Motor Cortex Somatosensory Cortex Premotor Cortex Putamen Globus Pallidus Thalamus Substantia Nigra Motor circuit control of praxis, motor coordination, and activity

Oculomotor Circuit Frontal Eye Fields Posterior Parietal Cortex Prefrontal Cortex Caudate Nucleus Globus Pallidus Thalamus Substantia Nigra Oculomotor circuit control of visual saccade, attention, and tracking for motor control

Cingulate Circuit Anterior Cingulate Limbic Striatum Nucleus Accumbens Caudate Nucleus Putamen Olfactory Tubule Globus Pallidus Substantia Nigra Thalamus Cingulate circuit control of arousal, decision-making, and performance monitoring

Dorsolateral Circuit Dorsolateral Prefrontal Cortex Caudate Nucleus Globus Pallidus Thalamus COOL EXECUTIVE Substantia Nigra Dorsolateral circuit control of planning, organizing, monitoring, evaluating, shifting, and modifying behaviour, including COGNITIVE response inhibition Dorsolateral circuit control of working memory, memory encoding, and retrieval

Orbital Circuit Orbital Prefrontal Cortex Caudate Nucleus Globus Pallidus Thalamus HOT EXECUTIVE Substantia Nigra Orbital circuit control of self-governed emotion regulation Lateral orbital circuit more behaviour regulation EMOTIONAL response inhibition Medial orbital region important for emotion regulation reward processing and theory of the mind-empathy (perception of emotional state more posterior)

Cool and Hot Circuits and Psychopathology: The Search for Balance Tuesday, 11 August 2015 11:45am 1:00pm Learning Hub @ South Spine LT (LHS-01-04)

Cool ADHD vs. Schizophrenia vs. Hot Conduct Disorder vs. Anxiety Disorder Attention deficit not diagnostic, since all neuropsychiatric disorders have poor attention ADHD right dorsolateral hypoactivity leads to external distraction Schizophrenia left dorsolateral hypoactivity leads to internal distraction Conduct disorder orbital hypoactivity leads to poor emotional control and indifference to others Anxiety disorder orbital hyperactivity leads to emotional overcontrol and excessive concern for others Externalizing disorders overuse initiation structures and underuse inhibitory ones Internalizing disorders overuse inhibitory structures and underuse initiation structures (see Arnsted & Rubia, 2012, Milad & Rauch, 2007; Rubia, 2011; Hale & Fitzer, 2015)

Frontal-Subcortical Circuits and Psychopathology: Are the Scales Tipped? Intervention

Circuit Balance Theory and Psychopathology (Hale et al., 2009) Inattention/ Distractibility Brain Inattention/ Fixation Impulsive Behavior Hyperactivity Circuit Underactivity Manager Repetitive Behavior Hypoactivity Circuit Overactivity Regulation problem of cortical-subcortical circuits

Balance Theory and Comorbidity If one circuit is dysfunctional, does the other provide compensatory balance? Example: Anxiety comorbid with depression Decreased dorsolateral and increased amygdala in depression (Siegle et al., 2007) Increased orbital frontal, amygdala, and anterior cingulate in GAD (McClure et al., 2007) Optimal Executive Function Requires Frontal-Subcortical Circuit Balance!

Emotional Executive Function and Self-Control

Orbital Prefrontal Circuit and Theory of Mind Hale & Fitzer, 2015; Applied Neuropsychology: Child Theory of Mind The ability to take the perspective of others or feel empathy Does empathy only require perception, or does it also require action? Posterior systems linked to affect perception Parietal lobe and mirror neurons Temporal lobe and face recognition Why is theory of mind linked to the frontal systems? Pars opercularis and imitation Medial orbital cortex and theory of mind Balancing orbital function critical, too little or too much is a problem! Balancing perception and action in social relationships

Cool and Hot Frontal-Subcortical Circuits and Stimulant Response in ADHD Tuesday, 11 August 2015 11:45am 1:00pm Learning Hub @ South Spine LT (LHS-01-04)

American Academy of Pediatrics Standard of Care ADHD Medical Practice 1) Primary care physician should evaluate any child with academic or behavioural problems and inattention, hyperactivity, or impulsivity symptoms 2) ADHD diagnosis: DSM-IV criteria, 2 settings, and multisource information for rule outs 3) Coexisting conditions assessment 4) Treatment includes medications and/or evidence-based behavior therapy, both best 5) Titrate maximum medication dose with minimum adverse effects

Childhood s Greatest Behaviour Problem : Persistent Academic Achievement Deficits ADHD is a neurodevelopmental disorder defined by behavioural criteria, leading to neuropsychological heterogeneity and attenuated treatment efficacy Are academic deficits the common pathway? Poorer grades, grade retention, special education likely in ADHD (especially if executive deficits) WHAT CAUSES ADHD ACADEMIC DEFICITS? OR Poor Availability For Learning? Executive Deficits Impair Learning?

Methylphenidate (MPH) Treatment and ADHD MPH effective in 60 to 90% of children with ADHD, but just what does response mean Dopamine agonists (block DA reuptake to reduce frontal-striatal hypoactivity) Improves classroom behaviour and peer interactions, but not long-term academic achievement Few serious side effects, but zombie effect noted in some children Best dose for cognition appears to be lower than best dose for behavior in good responders (see Arnsten & Pliszka, 2011; Berridge et al., 2006; Hale et al., 2011; Kubas et al., 2012)

Modeling the Frontal-Subcortical Circuits

Relevance of ADHD Executive Deficits and Medication Response: Cortical-Subcortical Circuit Confirmatory Factor Analysis WCST Perseverative Responses -.43 Stroop Color- Word Correct Trails B Time Conners CPT-II Omissions.73 -.55 -.53 -.62 Executive- Working Memory (Dorsolateral- Dorsal Cingulate Circuits) -.76.51.40 WCST Perseverative Errors Stroop Color-Word Correct Hale Cancellation Task Time.64.67 Trails B Errors WSRT-Consistent Word Retrieval TOMAL Digits Backward COWAT Letters (FAS).48.70 Behavioural Inhibition- Self Regulation (Orbital-Ventral Cingulate Circuits).47 -.68 -.78 Conners CPT-II Commissions Hale Cancellation Task-Correct Go-No Go Correct Sources: Hale et al., (2011) Journal of Learning Disabilities. Kubas et al. (2012) Postgraduate Medicine

Participants Frontal-Subcortical Impairment and Diagnosis 14 Inattentive Type 12 Combined Type 10 8 6 4 2 0 None (+1 SD or more) Low (+.99 to 0) Moderate (0 to -.99) High (-1 SD or less)

Is DSM All You Need?

Neuropsychological Tests and DSM-V Criteria Correlations Carmichael et al., 2015; Applied Neuropsychology: Child Baseline Executive Measures Inattention r (r 2 ) DSM-V Criteria Hyper-Impulsive r (r 2 ) Total Symptoms r (r 2 ) HDCT Correct -.15 (.021) -.08 (.006) -.15 (.023) SRTM Consistent Retrieve.03 (.001) -.32 (.104) -.27(.072) Go-No Go -.08 (.006) -.22 (.048) -.24 (.058) CPT Omissions.17 (.030).13 (.016).21 (.044) CPT Commissions.13 (.018) -.06 (.004).02 (.000) CPT Block Change.19 (.035).20 (.038).28 (.078) Stroop Raw -.17 (.030) -.31 (.096 ) -.37 (.138) Stroop Errors.01 (.000).15 (.022).13 (.018) TMTB Time.33 (.106).19 (.036).35 (.125) TMTB Errors.41 (.170).31 (.096).51 (.258) Back Digits.18 (.031) -.28 (.076) -.15 (.021) Low correlations between DSM-IV and neuropsychological measures, BUT

Neuropsychological Data, DSM-V Criteria, and MPH Response (Carmichael et al., in press; Applied Neuropsychology: Child) Measure Cognitive Medication Response r (r 2 ) Behavioural Medication Response r (r 2 ) DSM-IV Inattention Ratings (Parent Report).09 (.008).03 (.000) DSM-IV Hyperactivity- Impulsivity Ratings (Parent Report.30* (.090).25 (.063) Dorsolateral-Dorsal Cingulate Cool Circuit Functions Factor.44** (.194).33* (.109) Orbital-Ventral Cingulate Hot Circuit Functions Factor.45** (.203).31* (.097)

Differential ADHD Dose-Response Relationships

Mean Rank Mean Rank Mean Rank Mean Rank 3.5 No (Apparent) Impairment 3.5 Low Executive Impairment 3.0 Cognitive Behavioral 3.0 Cognitive Behavioral 2.5 2.5 2.0 2.0 1.5 1.5 3.5 B P L H Condition Moderate Executive Impairment 3.5 B P L H Condition High Executive Impairment 3.0 Cognitive Behavioral 3.0 Cognitive Behavioral 2.5 2.5 2.0 2.0 1.5 1.5 B P L H Condition B P L H Condition B = Baseline; P = Placebo; L = Low Dose MPH; H = High Dose MPH. Lower ranks = better performance and behavior (see Hale et al., 2011).

Moderate and Severe Frontal-Subcortical Impairment And Statistical Medication Response Participants 20 18 16 14 12 10 8 6 4 2 0 No Response Cognitive Response Only Behavioral Response Only Medication Response Cognitive and Behavioral Response

What Neuropsychological Functions Are Most Impaired on High Dose Stimulants? Working Memory

Neuropsychological Impairment, Behavioural Diagnosis, and ADHD Medication Response 10 8 No MPH Response Cog or Beh MPH Response Cog and Beh MPH Response 6 4 2 0 ADHD-Inattentive Type ADHD-Combined Type

What Can A Busy Clinican Do? Use DSM-V, Behavioural Ratings, and Screen for Executive Deficits

University of Calgary-Alberta Children s Hospital ADHD Biphentin Study

Double-Blind Placebo Biphentin Protocol Children diagnosed by physician, confirmed by psychologist, consent, and random assignment Standard of Care control group = baseline, best dose, 6 months; open trial Experimental group = baseline, randomized placebo, low dose, high dose, best dose, 6 months, blinded trial Neuropsychological tests and parent/teacher behaviour ratings, academic baseline and 6 months; neuroimaging baseline-best dose only Data rank ordered across conditions with nonparametric randomization tests to determine cognitive and behavioural response separately Graphic and statistical response reported to physician/parent for clinical decision-making

Drug Trial Example: Lisa 11 year, 7 month-old friendly and outgoing girl with love for adventure and being outdoors Academic and social concerns: Inattentive, easily distracted, fidgety Frequently off-task Poor writing skills Noncompliant behaviour Limited social skills Comprehensive neuropsychological evaluation revealed neuropsychological, academic and behavioural data consistent with ADHD Following consultation with parents, pediatrician referred Lisa to double-blind placebo controlled methylphenidate trial

Lisa s Neuropsychological Response to Stimulant Medication Subtest Baseline No Medication Week 2 Placebo Auditory-Verbal Measures Week 1 10 mg Week 3 20 mg WSRT Long-term Storage 72 (3) 73 (1.5) 73 (1.5) 65 (4) WSRT Consistent LT Retrieval 72 (2) 56 (3) 73 (1) 39 (4) WSRT LTS-CLTR Ratio 100%(1.5) 77%(3) 100%(1.5) 60%(4) Go-No Go Correct (30 Possible) 25 (4) 28 (2.5) 28 (2.5) 30 (1) WISC-IV-I Digit Span Backward 20 (4) 33 (1) 28 (2) 26 (3) D-KEFS Inhibition Time 85 (4) 66 (3) 63 (2) 52 (1) D-KEFS Inhibition # of Errors (raw) 8 (4) 2 (3) 1 (1.5) 1 (1.5) Visual-Motor Measures Hale-Denckla Cancellation (Correct) 26 (4) 30 (2) 30 (2) 30 (2) Hale-Denckla Cancellation (Time) 87 (2) 99 (3) 71 (1) 130 (4) WISC-IV-I Spatial Span Backward 43 (2) 23 (4) 28 (3) 44 (1) Trail Making Test-Part B Errors 1 (3.5) 1 (3.5) 0 (1.5) 0 (1.5) Trail Making Test-Part B Time 30 (3.5) 30 (3.5) 19 (1) 20 (2) CPT-II Omissions 47 (2) 49 (4) 47 (2) 47(2) CPT-II Commissions 50 (3) 49 (2) 47 (1) 56 (4) CPT-II Reaction Time 57 (3) 58 (4) 56 (2) 55 (1) CPT-II Reaction Time Standard Error 47 (1) 55 (4) 48 (2) 49 (3) CPT-II Hit Reaction Time Block Change 54 (4) 45 (2.5) 42 (1) 45 (2.5) CPT-II Hit Reaction Time ISI Change 48 (3) 55 (4) 43 (1) 45 (2) AVERAGE COGNITIVE RANK 2.97 2.97 1.64 2.42

Lisa s Behavioural Response to Stimulant Medication Parent Behavior Ratings Scale/Subscale Baseline Placebo 10 mg 20 mg BRIEF Inhibit 86 (3) 84 (2) 89 (4) 68 (1) Shift 77 (3) 81 (4) 66 (1.5) 66 (1.5) Emotional Control 83 (3) 85 (4) 71 (2) 61 (1) Initiate 73 (2.5) 73 (2.5) 76 (4) 66 (1) Working Memory 74 (2) 82 (3.5) 82 (3.5) 65 (1) Plan/Organize 84 (4) 66 (2) 80 (3) 62 (1) Organization of Materials 70 (3.5) 70 (3.5) 67 (2) 55 (1) Monitor 79 (4) 67 (2) 73 (3) 61 (1) HSQR Number of Problems 9 (1.5) 13 (4) 9 (1.5) 11 (3) Mean Severity 5.89 (3) 5.92 (4) 5.67 (2) 2.27(1) Teacher Behaviour Ratings BRIEF Inhibit 53 (4) 49 (2.5) 49 (2.5) 45 (1) Shift 49 (2.5) 49 (2.5) 49 (2.5) 49 (2.5) Emotional Control 46 (2.5) 46 (2.5) 46 (2.5) 46 (2.5) Initiate 65 (3.5) 58 (2) 65 (3.5) 54 (1) Working Memory 68 (4) 61 (2) 65 (3) 54 (1) Plan/Organize 70 (3.5) 58 (2) 70 (3.5) 49 (1) Organization of Materials 69 (3) 69 (3) 57 (1) 69 (3) Monitor 66 (3.5) 52 (2) 66 (3.5) 49 (1) SSQR Number of Problems 3 (3.5) 2 (1.5) 3 (3.5) 2 (1.5) Mean Severity 1.7 (3) 2.0 (4) 1.0 (1.5) 1.0 (1.5) APRS Learning 14 (4) 17 (1) 16 (2.5) 16 (2.5) Impulse Control 18 (3.5) 18 (3.5) 20 (1.5) 20 (1.5) Academic Performance 21 (3.5) 21 (3.5) 24 (2) 25 (1) Social Interest 16 (4) 18 (2) 18 (2) 18 (2) Classroom Observation Restricted Academic Task RAT Off-Task 43% (4) 33% (2) 30% (1) 37% (3) Fidgeting 10% (1.5) 20% (3) 10% (1.5) 37% (4) Vocalization 3% (2) 13% (4) 7% (3) 0% (1) Plays with Objects 17% (2.5) 27% (4) 10% (1) 17% (2.5) Out-of-Seat 33% (4) 10% (2) 13% (3) 7% (1) James B. AVERAGE Hale, PhD, MEd, BEHAVIOURAL ABPdN, ABSNP RANK 3.18 2.78 2.44 1.60

Mean Rank Contrasting Lisa s Neuropsychological and Behavioural Response to Stimulant Medication 4.0 3.0 2.0 1.0 Cognitive Response Behavioural Response 0.0 Baseline Placebo 10mg MPH 20mg MPH Note. Lower Ranks = Better performance and behaviour; Order of conditions = Baseline, Low Dose, Placebo, High Dose

Structure: Cortical Thickness/Regional Brain Volumes

Structure: Diffusion Tensor Imaging

Is Dopamine Insufficiency Insufficient? Neuropsychological Medication Response and Glutamate Left Striatum Right Prefrontal Experimental Group: Neuropsychological Titration Experimental Group: Neuropsychological Titration Standard of Care: Behavioral Titration Standard of Care: Behavioural Titration

Is Cognitive or Behavioural MPH Response More Relevant for Academic Achievement? fmri Tasks Multi-Source Interference Task (Bush, Shin) Momentary Incentive Delay Task (Helfinstein, Kirwan, Benson, Hardin, Pine, Ernst, Fox)

Discussion Are academic achievement deficits due to poor availability for learning or executive deficits? Double-blind placebo medication trials detect neuropsychological and behavioral response Children with executive impairment and ADHD- Combined Type show robust medication response Children with low impairment and ADHD- Inattentive Type less likely to respond Differential dorsal and ventral circuit effects could explain why best dose for cognition lower than best dose for behaviour Neuropsychological and behavioral medication titration and adjunct treatments should optimize both academic and behaviour outcomes

Questions? Comments? Were YOU paying attention? Contact: James B. Hale, PhD, MEd, ABSNP, ABPdN TeachingBrainLiteracy@gmail.com