Can p63 serve as a biomarker for giant cell tumor of bone? A Moroccan experience

Similar documents
Disclosures. Giant Cell Rich Tumors of Bone. Outline. The osteoclast. Giant cell rich tumors 5/21/11

MARK D. MURPHEY MD, FACR. Physician-in-Chief, AIRP. Chief, Musculoskeletal Imaging

The Radiology Assistant : Bone tumor - well-defined osteolytic tumors and tumor-like lesions

Bone Tumors Clues and Cues

GIANT CELL TUMOR OF BONE

A Study of Giant Cell Lesions of Bone. Pramukh Swami Medical College, Shree Krishna Hospital Karamsad, Gujarat, India 2 ABSTRACT

Grading of Bone Tumors

Symptoms and signs associated with benign and malignant proximal fibular tumors: a clinicopathological analysis of 52 cases

Salivary Gland FNA ATYPICAL : Criteria and Controversies

Case report. Giant cell reparative granuloma of the hallux following enchondroma. Open Access

Clinical Study Primary Malignant Tumours of Bone Following Previous Malignancy

The Radiology Assistant : Bone tumor - ill defined osteolytic tumors and tumor-like lesions

Quality Assurance and Quality Control in the Pathology Dept.

Prostate cancer ~ diagnosis and impact of pathology on prognosis ESMO 2017

ISSN: DISTRIBUTION OF BONE AND CARTILAGINOUS TUMORS IN PEDIATRIC AGE GROUP IN WESTERN UTTAR-PRADESH: AN EVALUATIVE STUDY

Aneurysmal Bone Cyst Fine-Needle Aspiration Findings in 23 Patients With Clinical and Radiologic Correlation

Fine Needle Aspiration of Bone Tumours

Bone/Osteoid Producing Lesions

Combined use of AFP, CEA, CA125 and CAl9-9 improves the sensitivity for the diagnosis of gastric cancer

Primary bone tumors > metastases from other sites Primary bone tumors widely range -from benign to malignant. Classified according to the normal cell

Diplomate of the American Board of Pathology in Anatomic and Clinical Pathology

SQUAMOUS ODONTOGENIC TUMOUR: REPORT OF FIVE CASES FROM NIGERIA AND REVIEW OF LITERATURE

PLEOMORPHIC ADENOMA ( BENIGN MIXED TUMOR )

ACCURACY OF IMMUNOHISTOCHEMISTRY IN EVALUATION

Inti Zlobec 1*, Viktor H Koelzer 1,2, Heather Dawson 1,2, Aurel Perren 1,2 and Alessandro Lugli 1,2

A new score predicting the survival of patients with spinal cord compression from myeloma

Synonyms. Nephrogenic metaplasia Mesonephric adenoma

04/09/2018. Salivary Gland Pathology in the Molecular Era Old Friends, Old Foes, & New Acquaintances

Myxo-inflammatory Fibroblastic sarcoma

Salivary gland tumor cytologic and histologic correlation: Algorithmic and risk stratification based approaches

Gross appearance of nodular hyperplasia in material obtained from suprapubic prostatectomy. Note the multinodular appearance and the admixture of

Presentation material is for education purposes only. All rights reserved URMC Radiology Page 1 of 98

Re-growth of an incomplete discoid lateral meniscus after arthroscopic partial resection in an 11 year-old boy: a case report

Differential Diagnosis of Oral Masses. Palatal Lesions

J of Evolution of Med and Dent Sci/ eissn , pissn / Vol. 3/ Issue 19/May 12, 2014 Page 5307

Research Article Stromal Expression of CD10 in Invasive Breast Carcinoma and Its Correlation with ER, PR, HER2-neu, and Ki67

Introduction to Musculoskeletal Tumors. James C. Wittig, MD Orthopedic Oncologist Sarcoma Surgeon

Coordinate Expression of Cytokeratins 7 and 20 in Prostate Adenocarcinoma and Bladder Urothelial Carcinoma

SICOT Online Report E057 Accepted April 23th, in Fibula and Rib

Senior of Histopathology Department at Khartoum, Radiation and Isotopes Center

USCAP 2012: Companion Meeting of the AAOOP. Update on lacrimal gland neoplasms: Molecular pathology of interest

Note: The cause of testicular neoplasms remains unknown

Immunohistochemistry in Bone and Soft Tissue Tumors. Sahar Rassi Zankoul, MD

Update in Salivary Gland Pathology. Benjamin L. Witt University of Utah/ARUP Laboratories February 9, 2016

Mesothelioma: diagnostic challenges from a pathological perspective. Naseema Vorajee August 2016

Prostate Immunohistochemistry. Literature Interpretation: Caveats. Must be aware of staining pattern of antibody in the relevant tissue

Dual-time-point FDG-PET/CT Imaging of Temporal Bone Chondroblastoma: A Report of Two Cases

Diagnostic Cytology of Cancer Cases

Bone Tumours - a synopsis. Dr Zena Slim SpR in Histopathology QAH 2009

Immunohistochemical Staining for Claudin-1 Can Help Distinguish Meningiomas From Histologic Mimics

Intraosseous hemangioma is an uncommon benign

Clear Cell Chondrosarcoma of the Sacrum

ACCME/Disclosures ALK FUSION-POSITIVE MESENCHYMAL TUMORS. Tumor types with ALK rearrangements. Anaplastic Lymphoma Kinase. Jason L.

Papillary Lesions of the Breast A Practical Approach to Diagnosis. (Arch Pathol Lab Med. 2016;140: ; doi: /arpa.

A case of giant cell tumour of soft parts in a horse Francesco Cian 1, Sarah Whiteoak 2, Jennifer Stewart 1

2. Assessment of interobserver variability and histological parameters to improve. central cartilaginous tumours.

Management of Campanacci type III giant cell tumor

Human Papillomavirus and Head and Neck Cancer. Ed Stelow, MD

International Society of Gynecological Pathologists Symposium 2007

Comparison of CD10 expression in stroma of epithelial and mesenchymal tumors of the breast

JMSCR Vol 3 Issue 11 Page November 2015

Increased numbers of P63-positive/ CD117-positive cells in advanced adenoid cystic carcinoma give a poorer prognosis

Cytology of Neoplasms that Occur on the Limbs Rick Alleman, DVM, PhD, DABVP, DACVP

Distribution and evaluation of primary bone and soft tissue tumors admitted from Malatya province and surrounding provinces

# Best Practices for IHC Detection and Interpretation of ER, PR, and HER2 Protein Overexpression in Breast Cancer

3/24/2017 DENDRITIC CELL NEOPLASMS: HISTOLOGY, IMMUNOHISTOCHEMISTRY, AND MOLECULAR GENETICS. Disclosure of Relevant Financial Relationships

Division of Pathology

APMA 2018 Radiology Track Bone Tumors When to say Gulp!

Intraductal carcinoma of the prostate on needle biopsy: histologic features and clinical significance

FRACTURE CALLUS ASSOCIATED WITH BENIGN AND MALIGNANT BONE LESIONS AND MIMICKING OSTEOSARCOMA

ROLE OF PROSTATIC BASAL CELL MARKER IN DIAGNOSIS OF PROSTATIC LESIONS

Bubbly Lesions of Bone

Mammary analogue secretory carcinoma of salivary gland A case report of new entity

Benign Fibrous Histiocytoma with Cystic Change of the Femur: a Case Report

Morphologic Criteria of Invasive Colonic Adenocarcinoma on Biopsy Specimens

A multiplanar complex resection of a low-grade chondrosarcoma of the distal femur guided by K-wires previously inserted under CT-guide: a case report

p53 expression in invasive pancreatic adenocarcinoma and precursor lesions

WHAT IS MDM2? (MDMTWOMICS) MDM2 IN SARCOMAS? (MDMTWOMAS) MDM2MICS? NO CONFLICT OF INTERESTS 5/07/2018 MDM2 IN SOFT TISSUE AND BONE SARCOMAS

Rare Breast Tumours. 1. Breast Tumours. 1.1 General Results. 1.2 Incidence

Solitary Fibrous Tumor of the Kidney with Massive Retroperitoneal Recurrence. A Case Presentation

A. Nahal MD,* A. Ajlan MD, T. Alcindor MD, and R. Turcotte MD P A T H O L O G Y ABSTRACT 2. CASE DESCRIPTION KEY WORDS 1.

Slide seminar. Asist. Prof. Jože Pižem, MD, PhD Institute of Pathology Medical Faculty, University of Ljubljana

Original Article Primary malignant mixed tumor of bone: a case report

Cluster designation 5 staining of normal and non-lymphoid neoplastic skin*

Pathology of the Prostate. PathoBasic Tatjana Vlajnic

Stromal Fat Content of the Parathyroid Gland

57th Annual HSCP Spring Symposium 4/16/2016

4Ps LUMPS AND BUMPS B.L.&T. BUMPS, LUMPS, AND TATTOOS. Most Common BUMP in the oral cavity Fibroma INTERDENTAL PAPILLAE LESIONS

Multifocal fibrous Dysplasia with enchondroma-like areas: Fibrocartilaginous Dysplasia

Sarcomatoid (spindle cell) carcinoma of the cricopharynx presenting as dysphagia

Endovascular and surgical treatment of giant pelvic tumor

Giant cell tumour of the sternum-two cases

Langerhans cell histiocytosis (LCH), formerly

COPYRIGHT 2004 BY THE JOURNAL OF BONE AND JOINT SURGERY, INCORPORATED

Benign, Reactive and Inflammatory Lesions of the Breast

Carcinoma mammario: le istologie non frequenti. Valentina Guarneri Università di Padova IOV-IRCCS

GIANT CELL TUMOR OF LOWER END OF FEMUR IN A SKELETALLY IMMATURE-A RARE CASE

Salivary Glands 3/7/2017

Case Report Denosumab Chemotherapy for Recurrent Giant-Cell Tumor of Bone: A Case Report of Neoadjuvant Use Enabling Complete Surgical Resection

Scrotum-like protrusion of lipoma arising from the proximal thigh

Transcription:

Hammas et al. Diagnostic Pathology 2012, 7:130 RESEARCH Open Access Can p63 serve as a biomarker for giant cell tumor of bone? A Moroccan experience Nawal Hammas 1*, Chbani Laila 1, Alaoui Lamrani My Youssef 2, El Fatemi Hind 1, Taoufiq Harmouch 1, Tizniti Siham 2 and Amarti Afaf 1 Abstract Background: Multinucleated giant cell-containing tumors and pseudotumors of bone represent a heterogeneous group of benign and malignant lesions. Differential diagnosis can be challenging, particularly in instances of limited sampling. The purpose of this study was to evaluate the contribution of the P63 in the positive and differential diagnosis of giant cell tumor of bone. Methods: This study includes 48 giant cell-containing tumors and pseudotumors of bone. P63 expression was evaluated by immunohistochemistry. Data analysis was performed using Epi-info software and SPSS software package (version 17). Results: Immunohistochemical analysis showed a P63 nuclear expression in all giant cell tumors of bone, in 50% of osteoid osteomas, 40% of aneurysmal bone cysts, 37.5% of osteoblastomas, 33.3% of chondromyxoide fibromas, 25% of non ossifiant fibromas and 8.3% of osteosarcomas. Only one case of chondroblastoma was included in this series and expressed p63. No P63 immunoreactivity was detected in any of the cases of central giant cell granulomas or langerhans cells histiocytosis. The sensitivity and negative predictive value (NPV) of P63 immunohistochemistry for the diagnosis of giant cell tumor of bone were 100%. The specificity and positive predictive value (PPV) were 74.42% and 59.26% respectively. Conclusions: This study found not only that GCTOB expresses the P63 but it also shows that this protein may serve as a biomarker for the differential diagnosis between two morphologically similar lesions particularly in instances of limited sampling. Indeed, P63 expression seems to differentiate between giant cell tumor of bone and central giant cell granuloma since the latter does not express P63. Other benign and malignant giant cell-containing lesions express P63, decreasing its specificity as a diagnostic marker, but a strong staining was seen, except a case of chondroblastoma, only in giant cell tumor of bone. Clinical and radiological confrontation remains essential for an accurate diagnosis. Virtual slides: The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/ vs/1838562590777252. Keywords: P63, Bone, Giant cell tumor, Immunohistochemistry * Correspondence: nawal-h111@hotmail.com 1 Department of Pathology, HASSAN II University Hospital, Km 2.200 Route de Sidi. Harazem, Fez 30000, Morocco Full list of author information is available at the end of the article 2012 Hammas et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Hammas et al. Diagnostic Pathology 2012, 7:130 Figure 1 Histological findings of giant cell tumor of bone: the tumor is composed of round mononuclear stromal cells and uniformly scattered multinucleated giant cells, many of which contain a large number of nuclei. Characteristically, the nuclei of both stromal and giant cells are very similar. (hematoxylin-eosin stain, original magnification 200). Introduction Giant cell tumour of bone (GCTOB) is the prototype of giant cell rich neoplasms of the skeleton. The term giant cell tumour was coined by Bloodgood in 1912 [1] and it was not until 1940 that Jaffe distinguished giant cell tumour of bone from other bone tumours containing many osteoclast-like giant cells [2]. This lesion represents 4% to 5% of all primary bone tumors and mainly occurs in skeletally mature patients (peak incidence between ages 20 and 45 years) with a slight female predominance [3-5]. It most commonly arises at the epiphyses of long bones like the distal femur, proximal tibia, distal radius and proximal humerus [6]. This tumor can be locally aggressive with a tendency for recurrence. Lung metastases occur infrequently; more rarely, this tumor behaves as a sarcoma [4,7]. Because of Figure 2 Histological findings of aneurysmal bone cyst: the tumor is composed of blood-filled cystic spaces lined by fibrous septa that are composed of uniform fibroblasts and multinucleated giant cells (hematoxylin-eosin stain, original magnification 200). Page 2 of 6 its different evolution and prognosis, GCTOB must be distinguished from other multinucleated giant cellcontaining tumors and pseudotumors. Differential diagnosis can be challenging, particularly in instances of limited sampling such as with needle-core biopsies. It is based not only on histology, but also on clinical and radiological data. There is currently no well-accepted diagnosis marker available for GCTOB, but recent studies using immunohistochemistry and molecular methods have demonstrated overexpression of p63 in the stromal cells of most giant cell tumors of bone and advocate its use as a diagnostic marker [3,4,6]. P63 was identified in 1998 [8]. It belongs to the family of transcription factors that also includes p53 and p73 [9]. It is mostly used as a diagnostic aid in breast, prostate, and salivary gland cancer because of its high sensitivity and specificity for mammary and salivary myoepithelial cells and prostatic basal cells [3,10-12]. It can be a useful tool in distinguishing urothélial carcinoma from prostatic carcinoma [13] and it can also be used as a prognosis factor as in adenoid cystic carcinoma [14]. The purpose of this study is to determine whether GCTOB expresses p63, and whether p63 can be used as a biomarker to discriminate GCTOB from other giant cell-rich tumors. Methods This study concerns 48 giant cell-containing tumors and pseudotumors of bone that were retrieved from department of pathology of Hassan II University Hospital in Fez, from January 2009 to February 2012. They include 12 osteosarcomas, 8 osteoblastomas, 5 GCTOB (Figure 1), 5 aneurysmal bone cysts (ABCs) (Figure 2), 4 osteoid osteomas (OO), 4 central giant cell granulomas (CGCGs) (Figure 3), 4 non ossifiant fibromas Figure 3 Histological findings of central giant cell granuloma: the tumor consists of spindled fibroblasts admixed with numerous multinucleated giant cells that tend to be arranged in small clusters. They contain fewer nuclei than seen in giant cell tumour of bone. Scattered lymphocytes are present (hematoxylineosin stain, original magnification 200).

Hammas et al. Diagnostic Pathology 2012, 7:130 Page 3 of 6 Table 1 Demographic data and location of tumours Case number Diagnosis Age Sex Location 1 osteosarcoma 34 F femur 2 osteosarcoma 40 F femur 3 osteosarcoma 19 M femur 4 osteosarcoma 19 M femur 5 osteosarcoma 12 F femur 6 osteosarcoma 14 F femur 7 osteosarcoma 23 M humerus 8 osteosarcoma 21 F humerus 9 osteosarcoma 20 M humerus 10 osteosarcoma 25 M Tibia 11 osteosarcoma 18 F Tibia 12 osteosarcoma 27 M mandible 13 osteoblastoma 14 M femur 14 osteoblastoma 19 F femur 15 osteoblastoma 20 F radius 16 osteoblastoma 25 F Cuneiform bone 17 osteoblastoma 23 M 5th metatarsal bone 18 osteoblastoma 23 M astragal 19 osteoblastoma 21 M mandible 20 osteoblastoma 57 M vertebrae 21 GCTOB 29 F femur 22 GCTOB 30 M femur 23 GCTOB 21 F 5th metacarpal bone 24 GCTOB 21 F Fibula 25 GCTOB 40 F Tibia 26 ABC 19 F Fibula 27 ABC 14 F Fibula 28 ABC 16 M Femur 29 ABC 13 F Tibia 30 ABC 15 M 1 st metatarsal bone 31 OO 30 F femur 32 OO 28 M femur 33 OO 24 M astragal 34 OO 24 M Fibula 35 CGCG 9 M mandible 36 CGCG 15 M mandible 37 CGCG 48 F Maxilla 38 CGCG 53 F Maxilla 39 NOF 16 F Tibia 40 NOF 19 M Tibia 41 NOF 16 F Tibia 42 NOF 8 M femur 43 CMF 23 M Toe 44 CMF 33 M Tibia Table 1 Demographic data and location of tumours (Continued) 45 CMF 59 F Sphenoid bone 46 FD 19 M Femur 47 chondroblastoma 23 M calcaneus 48 LCH 7 M Ilium M: male; F: female. (NOFs), 3 chondromyxoid fibromas (CMFs), 1 fibrous dysplasia (FD), 1 chondroblastoma and 1 Langerhans cell histiocytosis (LCH). The data were collected prospectively from pathology reports, from forms filled by trauma surgeons, pediatric surgeons and otorhinolaryngologists, and from radiographs. A form was filled for each patient, including the following informations: patient s name, age, sex, tumor location, histological type and P63 expression. The demographic data and location of these cases are shown in Table 1. All specimens were fixed in 10% buffered formalin, embedded in paraffin and 4 micron-thick sections were stained with hematoxylin and eosin for routine histological examination. Immunohistochemical staining P63 expression was evaluated by immunohistochemistry. All immunohistochemical stains were performed on a Ventana Benchmark LT automated immunostainer, on 3 micron-thick sections that were incubated with a mouse monoclonal antibody against p63 (clones 463M-17, prediluated, ready to use, Cell Marque Datasheet). The stained slides were examined without knowing the original histologic diagnosis. As there is no consensual scoring, we evaluated intensity of staining as weak (1+), moderate (2+), and strong (3+), and percentage of staining cells. A case was considered positive when nuclear staining of a single lesional cell or more was found. Statistical analysis The calculation of average age, median age, sex ratio and rate of P63 expression was done using Epi-info software. Sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were calculated in the GCTOB vs. not GCTOB and P63 positive vs. P63 negative groups using the SPSS software package (version 17). Results The patients age ranged between 7 and 59 years with an average of 23.8 years and a median of 21 years. A discrete male predominance was noted (sex ratio = 1.2).

Hammas et al. Diagnostic Pathology 2012, 7:130 Figure 4 Immunohistochemical findings of GCTOB: strong nuclear staining with P63 in mononuclear cells (original magnification 100). Immunohistochemical analysis showed a P63 nuclear expression in all GCTOB (Figure 4), 2 of 4 osteoid osteomas (50%), 2 of 5 ABCs (40%) (Figure 5), 3 of 8 osteoblastomas (37.5%), 1 of 3 CMFs (33.3%), 1 of 4 NOFs (25%), 1 of 12 osteosarcomas (8.3%) and in the single case of chondroblastoma included in this series. The staining was observed only in the nucleus of the mononuclear cells and no staining was present in the multinucleated giant cells. No P63 immunoreactivity was detected in any of the cases of CGCG (Figure 6), LCH, and FD. Strong staining was seen in 40% of GCTOB (2 cases) and in one case of osteoblastomas (33.3% of P63 positive osteoblastomas). Moderate staining was seen in 2 cases of GCTOBs (40%) and in one case of ABCs. In other tumors expressing P63, staining intensity was weak. Staining was seen in 30%-60% of tumor cells in GCTOB and in 20% and 50% of tumor cells in ABCs. In other tumors, percentage of reactive cells was lower (5%-30% in osteoblastomas, 10% in osteoid osteomas, osteosarcomas and CMFs, and 5% in chondroblastoma and NOFs). Figure 5 Immunohistochemical findings of ABC: moderate and focal nuclear staining with P63 in mononuclear cells (original magnification 100). Page 4 of 6 Figure 6 Immunohistochemical findings of CGCG: negative nuclear staining with P63 in mononuclear cells (original magnification 100). The sensitivity and negative predictive value (NPV) of P63 immunohistochemistry for the diagnosis of GCTOB were 100%. The specificity and positive predictive value (PPV) were 74.42% and 59.26% respectively. Discussion In this study, we showed that all GCTOBs express P63. Dickson [4] and Linden [15] found similar results by immunohistochemistry. They reported P63 overexpression in all GCTOB. In De la Rosa s study [3], P63 immunoreactivity was seen in 20 of 23 GCTOBs (86.9%). Similar results were reported by Lee [6] who showed a P63 overexpression by immunohistochemistry in 81% of cases (n=26) with a strong staining in 69% (Table 2). The immunostaining was mostly confined to the mononuclear component [3,4,6]. This strong expression of P63 suggests that this protein may be implicated in the pathogenesis of GCTOB but determining its exact role requires further investigation. The relationship of GCTOB and central giant cell granuloma has long been controversial. The absence of p63 expression in CGCG suggests that these tumors may have a pathogenesis that differs from that of GCTOB. P63 negativity found in all cases of CGCG in our study is consistent with results obtained by Dickson [4] and Lee [6] who found negativity in all cases (n=12 in each series). De la Rosa [3] showed different results with p63 positivity in all cases (n = 4) (Table 2). Only one case (8.3%) of osteosarcomas included in our study showed overexpression of P63. Proportion of immunoreactive cells was less than 10% and staining was 1+ in intensity. The rate of P63 expression in other series remains low (2 cases/13 in Lee s study, with low intensity [6], and 2 cases/4 in De la Rosa s study [3]) (Table 2). In this work, we recorded a single case of chondroblastoma. The immunohistochemical study showed P63

Hammas et al. Diagnostic Pathology 2012, 7:130 Page 5 of 6 Table 2 P63 expression of in current series and in other published series Diagnosis Our series Dickson s series [4] De la Rosa s series [3] Lee s series [6] N of cases P63+ cases (%) N of cases P63+ cases (%) N of cases P63+ cases (%) N of cases P63+ cases (%) GCTOB 5 100% 17 100% 23 86.9% 6 81% Osteosarcoma 12 8.3% 0-4 50% 13 15.3% Osteoblastoma 8 37.5% 0-0 - 0 - ABC 5 40% 7 28.6% 8 62.5% 25 20% CGCG 4 0% 12 0% 4 100% 12 0% NOF 4 25% 0-6 16.6% 0 - OO 4 50% 0-0 - 0 - CMF 3 33.4% 0-0 - 12 0% Chondroblastoma 1 100% 10 30% 12 83.3% 15 40% FD 1 0% 0-2 0% 4 0% LCH 1 0% 0-0 - 0 - chondrosarcoma 0-0 - 0-0 - Brown tumor 0-0 - 0-4 0% expression by less than 10% of tumor cells with low intensity. The rate of expression in other studies is variable. In Dickson s study, 3 of 10 chondroblastomas expressed p63 (30.0%); this ranged from 7 75% of cells, and staining was predominantly mild-moderate in intensity [4]. De Larosa found a higher expression (83.3%, 10 of 12 chondroblastomas) with moderate staining in 6 cases, weak staining in 3 cases and strong staining in only one case [3]. Lee showed P63 staining in 40% of cases (6 of 15). To differentiate between chondroblastoma expressing P63 and GCTOB, he used PS100: chondroblastoma shows positive S-100 immunostaining whereas only occasional weak S-100 immunostaining is seen in GCTOB [6]. In the same study, no P63 staining was seen in chondromyxoïd fibromas (n=12) (Table 2). The rate of P63 expression in ABC in Dickson s [4] and Lee s [6] studies is lower than that obtained in our study: 28.6% (2 cases/7) and 20% (5cases/25) respectively. De la Rosa [3] and Linden [15] found higher results: 62.5% and 100% respectively (Table 2). If some cases of ABC are P63 +, they could be a component of a GCTOB. In fibrous dysplasia, our results are concordant with those found by De La Rosa [3] (two cases all negative) and Lee (4 cases all negative) [6]. Non ossifiant fibroma showed P63 expression in one case with weak and focal staining. De la Rosa found similar results with P63 expression in 1 of 6 cases (16.6%) (Table 2). Proportion of positive cells was less than 10% and staining intensity was weak [3]. In current study, 50% of osteoid osteomas and 37.5% of osteoblastomas expressed P63. LCH showed no P63 immunostaining. These tumors were not included in the other studies. P63 contribution in the differential diagnosis between GCTOB and other multinucleated giant cell-containing lesions of bone is variable. Dickson [4] considers that P63 can be useful as a biomarker for the differential diagnosis between GCTOB and other lesions particularly central giant cell granuloma, since these do not express P63. De La Rosa [3] found a high P63 negative predictive value (91.17%) but a low specificity (53.36%) which limits the use of this protein as an immunohistochemical marker for differential diagnosis. Lee [6] considers that the use of P63 can help in histological diagnosis of GCTOB. In current study, the P63 negative predictive value is 100%, this means that in difficult cases, P63 negativity can eliminate a GCTOB. The positive predictive value is low (59.26%). However, except a case of osteoblastoma, a strong staining was found only in GCTOB. Therefore, it is strongly suggestive of this tumor. Conclusion This study shows that P63 may serve as a biomarker for the differential diagnosis between GCTOB and other morphologically similar lesions, particularly CGCG since the latter does not express P63. Other giant cellcontaining lesions express P63, decreasing its specificity as a diagnostic marker, but a strong staining was seen, except a case of chondroblastoma, only in GCTOB. Abbreviations ABC: Aneurysmal bone cyst; CGCG: Central giant cell granuloma; CMF: Chondromyxoid fibroma; FD: Fibrous dysplasia; GCTOB: Giant cell tumor of bone; LCH: Langerhans cell histiocytosis; NOF: Non ossifiant fibroma; OO: Osteoid osteomas. Competing interests The authors declare that they have no competing interests.

Hammas et al. Diagnostic Pathology 2012, 7:130 Page 6 of 6 Authors contributions NH, LC, and AA performed the histological examination of bone lesions and were major contributors to writing the manuscript. HE and TH assisted in histological interpretation. YA and ST performed the radiological examination. All authors read and approved the final manuscript. Acknowledgements The authors thank Batoul Ech-chahdi which participated in the English translation of the manuscript. Author details 1 Department of Pathology, HASSAN II University Hospital, Km 2.200 Route de Sidi. Harazem, Fez 30000, Morocco. 2 Department of Radiology, HASSAN II University Hospital, Km 2.200 Route de Sidi. Harazem, Fez 30000, Morocco. Received: 4 August 2012 Accepted: 23 September 2012 Published: 27 September 2012 References 1. Rosenberg AE, Nielsen GP: Giant cell containing lesions of bone and their differential diagnosis. Curr Diagn Pathol 2001, 7:235 246. 2. Jaffee HL, Lichtenstein L, Portis RB: Giant cell tumour of bone. Its pathologic appearance, grading, supposed variants and treatment. Arch Pathol 1940, 30:993 1013. 3. de la Roza G: p63 Expression in Giant Cell Containing Lesions of Bone and Soft Tissue. Arch Pathol Lab Med 2011, 135:776 779. 4. Dickson BC, Shu-Qiu L, Wunder JS, Ferguson PC, Eslami B, Werier JA, Turcotte RE, Kandel RA: Giant cell tumor of bone express p63. Mod Pathol 2008, 21:369 375. 5. Fletcher CDM, Unni KK, Mertens F: World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of Soft Tissue and Bone. Lyon: IARC Press; 2002:310 312. 6. Lee CH, Inigo E, Kristin CJ, Subbaya S, Shirley XZ, Sushama V, Montgomery KD, Nielsen TO, van de Rijn M, West RB: Gene expression profiling identifies p63 as a diagnostic marker for giant cell tumor of the bone. Mod Pathol 2008, 21:531 539. 7. Mendenhall WM, Zlotecki RA, Scarborough MT, Gibbs CP, Mendenhall NP: Giant cell tumor of bone. Am J Clin Oncol 2006, 29:96 99. 8. Little NA, Jochemsen AG: Molecules in focus: P63. Int J Biochem Cell Biol 2002, 34:6 9. 9. Vincenzo G, Vincenzo DL: Role of p63 in cancer development. Biochim Biophys Acta 2011, 1816(1):57 66. 10. Nakatsuka SI, Harada H, Fujiyama H, Takeda K, Kitamura K, Kimura H, Nagano T, Ito M, Asada Y: An invasive adenocarcinoma of the accessory parotid gland: a rare example developing from a low-grade cribriform cystadenocarcinoma? Diagn Pathol 2011, 6:122. 11. Weinstein MH, Signoretti S, Loda M: Diagnostic utility of immunohistochemical staining for p63, a sensitive marker of prostatic basal cells. Mod Pathol 2002, 15(12):1302 1308. 12. Barbareschi M, Pecciarini L, Cangi MG, Macrì E, Rizzo A, Viale G, Doglioni C: p63, a p53 homologue, is a selective nuclear marker of myoepithelial cells of the human breast. Am J Surg Pathol 2001, 25(8):1054 1060. 13. Srinivasan M, Parwani AV: Diagnostic utility of p63/p501s double sequential immunohistochemical staining in differentiating urothelial carcinoma from prostate carcinoma. Diagn Pathol 2011, 6:67. 14. Quan Z, Hong C, Hongkai Z, Yiding H, Honggang L: Increased numbers of P63-positive/CD117-positive cells in advanced adenoid cystic carcinoma give a poorer prognosis. Diagn Pathol 2012, 7:119. 15. Linden MD: Giant cell lesions of bone and soft tissues: diagnostic value of immunohistochemistry [abstract]. Mod Pathol 2009, 22(suppl 1s):18A. doi:10.1186/1746-1596-7-130 Cite this article as: Hammas et al: Can p63 serve as a biomarker for giant cell tumor of bone? A Moroccan experience. Diagnostic Pathology 2012 7:130. Submit your next manuscript to BioMed Central and take full advantage of: Convenient online submission Thorough peer review No space constraints or color figure charges Immediate publication on acceptance Inclusion in PubMed, CAS, Scopus and Google Scholar Research which is freely available for redistribution Submit your manuscript at www.biomedcentral.com/submit