Cerebrospinal Fluid Lumbar Tapping Utilization for Suspected Ventriculoperitoneal Shunt Under-Drainage Malfunctions

Similar documents
Clinical Study The Value of Programmable Shunt Valves for the Management of Subdural Collections in Patients with Hydrocephalus

Original Article. Emergency Department Evaluation of Ventricular Shunt Malfunction. Is the Shunt Series Really Necessary? Raymond Pitetti, MD, MPH

Seven-year clinical experience with the Codman Hakim programmable valve: a retrospective study of 583 patients

Perioperative Management Of Extra-Ventricular Drains (EVD)

Ventriculo peritoneal Shunt Malfunction with Anti-siphon Device in Normal pressure Hydrocephalus Report of -Three Cases-

Effect of Electromagnetic Navigated Ventriculoperitoneal Shunt Placement on Failure Rates

Clinical Analysis of Results of Shunt Operation for Hydrocephalus Following Traumatic Brain Injury

Infusion studies in clinical practice. Kristian Aquilina Consultant paediatric neurosurgeon Great Ormond Street Hospital London

Ventriculo-Peritoneal/ Lumbo-Peritoneal Shunts

The arrest of treated hydrocephalus in children

Occult Cerebrospinal Fluid Fistula between Ventricle and Extra-Ventricular Position of the Ventriculoperitoneal Shunt Tip

Lumbar infusion test in normal pressure hydrocephalus

Factors Related to the Development of Shunt-Dependent Hydrocephalus Following Subarachnoid Hemorrhage in the Elderly

Multiple Intracranial High Density Foci after Brain Parenchymal Catheterization

Hydrocephalus 1/16/2015. Hydrocephalus. Functions of Cerebrospinal fluid (CSF) Flow of CSF

External Ventricular Drainage & Lumbar Drainage Procedure and Care. Amey R. Savardekar Assistant Professor Neurosurgery, NIMHANS.

Researcher 2018;10(3)

UNDERSTANDING HYDROCEPHALUS

Evaluation of CSF Shunt Function: Value of Functional Examination with Contrast Material

Shunt malfunction and Slight edema surrounding the ventricles: Ten case series

Estimation of Stellate Ganglion Block Injection Point Using the Cricoid Cartilage as Landmark Through X-ray Review

CASE REPORT. Jackson Hayes, Marie Roguski and Ron I Riesenburger *

HIROSHI NAKAGUCHI, M.D., PH.D., TAKEO TANISHIMA, M.D., PH.D., Clinical Material and Methods

Comparison of Incidence and Risk Factors for Shunt-dependent Hydrocephalus in Aneurysmal Subarachnoid Hemorrhage Patients

Quality Metrics. Stroke Related Procedure Outcomes

Risk Factors of Delayed Intracranial Hemorrhage Following Ventriculoperitoneal Shunt

Evaluation of Shunt Malfunction Using Shunt Site Reservoir

A Less Invasive Approach for Ruptured Aneurysm with Intracranial Hematoma: Coil Embolization Followed by Clot Evacuation

N ormal pressure hydrocephalus was first described by

The Comparison of the Result of Epiduroscopic Laser Neural Decompression between FBSS or Not

Clinical Study Endoscopic Third Ventriculostomy in Previously Shunted Children

Brain AVM with Accompanying Venous Aneurysm with Intracerebral and Intraventricular Hemorrhage

Anesthetic Management of Laparoscopic Surgery for a Patient with

About Your Programmable VP Shunt for Pediatric Patients

Radiological evaluation of ventriculoperitoneal shunt systems

Transient obstructive hydrocephalus due to intraventricular hemorrhage: A case report and review of literature

S ome hydrocephalic patients with extracranial shunts

Unfortunately, shunt malfunction is one of the

Treatment of Acute Hydrocephalus After Subarachnoid Hemorrhage With Serial Lumbar Puncture

Moyamoya Syndrome with contra lateral DACA aneurysm: First Case report with review of literature

Stereotactic Burr Hole Aspiration Surgery for Spontaneous Hypertensive Cerebellar Hemorrhage

Azygos anterior cerebral artery aneurysm with subarachnoid hemorrhage

Communicating Hydrocephalus Accompanied by Arachnoid Cyst in Aneurismal Subarachnoid Hemorrhage

Body position and eerebrospinal fluid pressure. Part 2' Clinical studies on orthostatic pressure and the hydrostatic indifferent point

Imaging appearances of programmable ventricular shunt systems : What the radiologist needs to know

Insertion of an external ventricular drain (EVD) is a

Pediatric hydrocephalus, affects 125,000 children in. Nonprogrammable and programmable cerebrospinal fluid shunt valves: a 5-year study

Hydrocephalus in children. Eva Brichtova, M.D., Ph.D., Department of Pediatric Sugery, Orthopaedics and Traumatology, University Hospital Brno

Procedures commonly seen at Vanderbilt Medical Center PACU s: Cervical, thoracic, lumbar, and sacral spine surgeries. Goes to 6N

Pterional-subolfactory Approach for Treatment of High Positioned Anterior Communicating Artery Aneurysms

The Meaning of the Prognostic Factors in Ruptured Middle Cerebral Artery Aneurysm with Intracerebral Hemorrhage

Title. CitationJapanese Journal of Veterinary Research, 58(2): 137- Issue Date DOI. Doc URL. Type. File Information /jjvr.58.2.

Endovascular Treatment of Cerebral Arteriovenous Malformations. Bs. Nguyễn Ngọc Pi Doanh- Bs Đặng Ngọc Dũng Khoa Ngoại Thần Kinh

Complex Hydrocephalus

Research Article Predictions of the Length of Lumbar Puncture Needles

NEUROSURGEON VS. HOSPITALIST Pediatric Hospital Medicine meeting Nashville, TN July 21, 2017*±

Comparison between the lumbar infusion and CSF tap tests to predict outcome after shunt surgery in suspected normal pressure hydrocephalus.

Mark R. Kraemer, MD, Carolina Sandoval-Garcia, MD, Taryn Bragg, MD, and Bermans J. Iskandar, MD

뇌동맥류수술시기와방법에따른 Shunt 수술의빈도 : 뇌동맥류파열 514 예분석 *

Diagnosis of Subarachnoid Hemorrhage (SAH) and Non- Aneurysmal Causes

Extent of subarachnoid hemorrhage and development of hydrocephalus

WHITE PAPER: A GUIDE TO UNDERSTANDING SUBARACHNOID HEMORRHAGE

CODING SHEET HYDROCEPHALUS REIMBURSEMENT. All Medicare information is current as of the time of printing.

Surgical techniques and procedures for cerebrovascular surgery. Surgery for the AVF at the cranio-cervical junction and high cervical spine

Standardized Thyroid Cancer Mortality in Korea between 1985 and 2010

Serial Mini-Mental Status Examination to Evaluate Cognitive Outcome in Patients with Traumatic Brain Injury

Navigation-guided Burr Hole Aspiration Surgery for Acute Cerebellar Infarction

CLEAR III TRIAL : UPDATE ON SURGICAL MATTERS THAT MATTER

Distal anterior cerebral artery (DACA) aneurysms are. Case Report

National Hospital for Neurology and Neurosurgery

POSTOPERATIVE CHRONIC SUBDURAL HEMATOMA FOLLOWING CLIP- PING SURGERY

Peri-operative risk factors for short-term revision in adult hydrocephalus patients

Residence of Discipline of Neurosurgery of Hospital da Santa Casa de Misericórdia of Sao Paulo Sao Paulo, Brazil

Natural history of idiopathic normal-pressure hydrocephalus

Editorial. Reid Hoshide, Hal Meltzer 1, Cecilia Dalle-Ore 1, David Gonda, Daniel Guillaume 2, Clark C. Chen. Abstract

Shunt infection in a single institute: a retrospective study

CEREBELLAR HEMORRHAGE AFTER MULTIPLE MANUAL PUMPING TESTS OF A VENTRICULOPERITONEAL SHUNT: A CASE REPORT

A Novel Implantable Cerebrospinal Fluid Reservoir : A Pilot Study

Endosaccular aneurysm occlusion with Guglielmi detachable coils for obstructive hydrocephalus caused by a large basilar tip aneurysm Case report

Stroke & Neurovascular Center of New Jersey. Jawad F. Kirmani, MD Director, Stroke and Neurovascular Center

Analysis of pediatric head injury from falls

Slit ventricle syndrome and early-onset secondary craniosynostosis in an infant

UPSTATE Comprehensive Stroke Center. Neurosurgical Interventions Satish Krishnamurthy MD, MCh

Lumbar Catheter for Monitoring of Intracranial Pressure in Patients with Post-Hemorrhagic Communicating Hydrocephalus

Brain Meninges, Ventricles and CSF

Hemorrhage Rates Associated with Two Methods of Ventriculostomy: External Ventricular Drainage vs. Ventriculoperitoneal Shunt Procedure

Idiopathic normal pressure hydrocephalus (inph) is

A multicenter prospective cohort study of the Strata valve for the management of hydrocephalus in pediatric patients

Angel J. Lacerda MD PhD, Daisy Abreu MD, Julio A. Díaz MD, Sandro Perez MD, Julio C Martin MD, Daiyan Martin MD.

GEORGE E. PERRET, M.D., AND CARL J. GRAF, M.D.

Department of Neurosurgery, Emory University; and 2 Pediatric Neurosurgery Associates at Children s Healthcare of Atlanta, Georgia

Usefulness of Intracranial CT Angiography with Spiral CT in Brain Death - A Preliminary Report -

Principlesof shunt testing in-vivo Zofia Czosnyka, Matthew Garnett, Eva Nabbanja, Marek Czosnyka

Delayed Burr Hole Surgery in Patients with Acute Subdural Hematoma : Clinical Analysis

PROPOSAL FOR MULTI-INSTITUTIONAL IMPLEMENTATION OF THE BRAIN INJURY GUIDELINES

Advances in Acute stroke Management

CURRICULUM VITAE. SPR in Neurosurgery North Thames Rotation Scheme. 1. Royal Free Hospital RFH ( ; 18 months ) Specialist Registrar

First identified in 1965,5 idiopathic normal pressure. focus Neurosurg Focus 41 (3):E2, 2016

A telescopic ventriculoatrial shunt that elongates with growth

A Study to Formulate a Strategy to Prevent Ventriculoperitoneal Shunt Infection

Transcription:

Clinical Article J Korean Neurosurg Soc 60 (1) : 1-7, 2017 https://doi.org/10.3340/jkns.2016.0404.002 pissn 2005-3711 eissn 1598-7876 Cerebrospinal Fluid Lumbar Tapping Utilization for Suspected Ventriculoperitoneal Shunt Under-Drainage Malfunctions Jong-Beom Lee, M.D., Ho-Young Ahn, M.D., Hong-Jae Lee, M.D., Ji-Ho Yang, M.D., Jin-Seok Yi, M.D., Il-Woo Lee, M.D. Department of Neurosurgery, Daejeon St. Mary s Hospital, College of Medicine (Nursing), The Catholic University of Korea, Daejeon, Korea Objective : The diagnosis of shunt malfunction can be challenging since neuroimaging results are not always correlated with clinical outcomes. The purpose of this study was to evaluate the efficacy of a simple, minimally invasive cerebrospinal fluid (CSF) lumbar tapping test that predicts shunt under-drainage in hydrocephalus patients. Methods : We retrospectively reviewed the clinical and radiological features of 48 patients who underwent routine CSF lumbar tapping after ven triculoperitoneal shunt (VPS) operation using a programmable shunting device. We compared shunt valve opening pressure and CSF lumbar tap ping pressure to check under-drainage. Results : The mean pressure difference between valve opening pressure and CSF lumbar tapping pressure of all patients were 2.21±24.57 mmh 2 O. The frequency of CSF lumbar tapping was 2.06±1.26 times. Eighty five times lumbar tapping of 41 patients showed that their VPS function was normal which was consistent with clinical improvement and decreased ventricle size on computed tomography scan. The mean pressure dif ference in these patients was -3.69±19.20 mmh 2 O. The mean frequency of CSF lumbar tapping was 2.07±1.25 times. Fourteen cases of 10 pa tients revealed suspected VPS malfunction which were consistent with radiological results and clinical symptoms, defined as changes in ventricle size and no clinical improvement. The mean pressure difference was 38.07±23.58 mmh 2 O. The mean frequency of CSF lumbar tapping was 1.44±1.01 times. Pressure difference greater than 35 mmh 2 O was shown in 2.35% of the normal VPS function group (2 of 85) whereas it was shown in 64.29% of the suspected VPS malfunction group (9 of 14). The difference was statistically significant (p=0.000001). Among 10 patients with under-drainage, 5 patients underwent shunt revision. The causes of the shunt malfunction included 3 cases of proximal occlusion and 2 cases of distal obstruction and valve malfunction. Conclusion : Under-drainage of CSF should be suspected if CSF lumbar tapping pressure is 35 mmh 2 O higher than the valve opening pressure and shunt malfunction evaluation or adjustment of the valve opening pressure should be made. Key Words : Hydrocephalus Shunt malfunction Ventroculoperitoneal shunt Under-drainage Lumbar tapping. INTRODUCTION In communicating hydrocephalus, ventriculoperitoneal shunt (VPS) is the treatment of choice. Unfortunately, shunt malfunction within 2 years following surgery is reported up to 31% 5,8). The diagnosis of shunt malfunction can be chal- Received: April 4, 2016 Revised: July 27, 2016 Accepted: July 28, 2016 Address for reprints : Jin-Seok Yi, M.D. Department of Neurosurgery, Daejeon St. Mary s Hospital, The Catholic University of Korea, 64 Daeheung-ro, Jung-gu, Daejeon 34943, Korea Tel : +82-42-220-9525, Fax : +82-42-222-6601, E-mail : yijinseok@hanmail.net This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. Copyright 2017 The Korean Neurosurgical Society 1

J Korean Neurosurg Soc 60 January 2017 lenging since neuroimaging evaluation is not always correlated with clinical outcomes. Cranial computed tomography (CT) often reveals the persistent distension of the cerebral ventricles in clini cally improved patients 9,10). Invasive cerebrospinal fluid (CSF) dynamic tests have been recommended by neurosurgeons 16) to evaluate shunt malfunction. The CSF shunt tap is another shunt malfunction diagnosis method but it still remains controversial among neurosurgeons 13). Therefore, the diagnosis of shunt malfunction remains difficult. The purpose of this study was to evaluate a simple, minimally invasive CSF lumbar tapping test that predicts underdrainage in hydrocephalus patients with programmable valve shunting devices. MATERIALS AND METHODS From July 2000 to October 2007, a total of 155 patients had shunt operations using a programmable shunting device (Micro Valve with RICKHAM Reservoir, Codman & Shurtleff, Inc., Raynham, MA, USA). Of them, 48 patients underwent CSF lumbar tapping. Twenty patients were males and 28 patients were females. The patients s ages at implantation ranged from 21 to 78 years (mean, 58.54±14.0 years). The etiologies of hy drocephalus included 16 cases of subarachnoid hemorrhage (SAH) after aneurysmal rupture, 21 cases of traumatic brain in jury (subdural hematoma, SAH, and contusion), 8 cases of in tracerebral hemorrhage and intraventricular hemorrhage (IVH), a case of tumor, a case of arteriovenous malformation and a case of moyamoya disease (Table 1). All patients had communicating type hydrocephalus. Forty-four patients had normal pressure type hydrocephalus (classified as such when lumbar or ventricular tapping pressure is 180 mmh 2 O, be cause the normal CSF pressure s upper limit is 180 mmh 2 O), and four patients had high pressure type hydrocephalus (classi fied as such when lumbar or ventricular tapping pressure is >180 mmh 2 O). Dilated ventricles, presence of periventricular lucency, effaced cortical sulci, and presence of hydrocephalus symptoms were our indications for shunt operations. In ques tionable patients, we first performed a lumbar tapping test or drainage test. If there was some improvement of symptoms af ter daily drainage of 20 ml CSF for 1 3 days or daily lumbar drainage of 100 200 ml CSF for 5 7 days, VPS operation was performed. Two to 3 weeks after the shunt operation, we evaluated the symptoms of the patients, performed CT, and used a skull X- ray to rule out spontaneous resetting of the valve and routinely per formed CSF lumbar tapping. We compared shunt vale opening pressure and CSF lumbar tapping pressure. Shunt malfunction was suspected by no clinical improvement or enlarged ventricle size on CT scan. CSF tapping method Patients were asked to lie in a supine position and bed-rested for about 30 minutes to rule out positional intracranial pressure change. Then, the position was changed to the lateral recum bent position and Tuffier s line was marked. The skin was pre pared using aseptic technique and CSF tapping was performed at the level of L1 2 to L5 S1 1). Definition of valve opening pressure and CSF lumbar tapping pressure difference We defined pressure difference as positive if CSF lumbar tap ping pressure is higher than set valve opening pressure and negative if CSF lumbar tapping pressure is lower than set valve opening pressure. Table 1. Patient demographics (n=48) Mean age (years) 58.54±14.0 Male/female 20/28 Reason for hydrocephalus SAH 16 Traumatic brain injury 21 ICH & IVH 8 Tumor 1 Other causes 2 SAH : subarachnoid hemorrhage, ICH : intracerebral hemorrhage, IVH : intraventricular hemorrhage 2 https://doi.org/10.3340/jkns.2016.0404.002

Lumbar Tapping for Shunt Malfunction Lee JB, et al. RESULTS A comparative analysis of 99 cases from 48 patients who had lumbar tapping after VPS operation was performed by compar ing shunt valve opening pressure and lumbar tapping pressure. The mean pressure difference of all patients was 2.21±24.57 mmh 2 O. The frequency of CSF lumbar tapping was 2.06±1.26 times. Eighty five cases of 41 patients showed that their VPS function was normal which was consistent with clinical improvement and decreased ventricle size on CT scan. The mean pressure difference in these patients was -3.69±19.20 mmh 2 O. The mean frequency of CSF lumbar tapping was 2.07±1.25 times. Fourteen cases of 10 patients revealed suspected VPS malfunc tion which were consistent with radiological results and clinical symptoms, defined as changes in ventricle size and no clinical improvement. The mean pressure difference was 38.07±23.58 mmh 2 O. The mean frequency of CSF lumbar tapping was 1.44±1.01 times. Of them, the VPS of 3 patients initially func tioned normally but malfunction was suspected during the fol low-up period. The other 7 patients showed the evidence of suspected VPS malfunction and required neurosurgical inter vention. The causes of VPS malfunction included 5 cases of tube and VPS valve malfunction, 3 cases of proximal tip ob struction and 2 valve partial obstruction and distal tube ob struction. These patients underwent shunt replacement opera tions. Two patients who had shunt infection were treated with antibiotics and their shunts were removed. One patient had an IVH after VPS operation. Two patients who had suspected shunt malfunction by enlarged ventricle size on CT scan and no clini cal improvement but refused further evaluation such as shunt ography or surgical exploration. The mean pressure difference of these two groups (normal function vs. suspected malfunc tion) was statistically significant. In term of age, sex, mean lum bar tapping time, there were no statistically significant differ ences. Pressure difference greater than 35 mmh 2 O was shown in 2.35% of the normal VPS function group (2 of 85) whereas it was shown in 64.29% of the suspected VPS malfunction group (9 of 14). The difference was statistically significant (p =0.000001) (Table 2). Receiver operating characteristic analysis (ROC) was performed to get the best cut-off value of pressure difference. ROC analysis of pressure difference showed that the area under the curve was 0.91 and the cut-off value was 37.50 with sensitiv ity of 64.3% and specificity of 98.8% (Fig. 1). Case illustration A 68 year old female patient with SAH due to ruptured aneu rysm at right internal carotid artery and superior hypophyseal artery junction developed communicating hydrocephalus 2 months after craniotomy and aneurysm neck clipping opera tion. VPS operation was performed and preoperative lumbar tapping pressure was 160 mmh 2 O. The ini- Table 2. Comparison of the characteristics in ventriculoperitoneal shunt function and suspected under-drainage malfunction group Age, years (n=51) Normal VPS function Suspected VPS malfunction p-value Mean (SD) 58.78 (15.10) 57.30 (10.29) 0.7710 Gender (n=51) Male 19 (46.3) 3 (30) 0.4830 Female 22 (53.7) 7 (70) CSF lumbar tapping time Mean (SD) 2.07 (1.25) 1.44±1.01 0.1200 Pressure difference, mmh 2 O Mean (SD) -3.69 (19.20) 38.07 (23.58) 0.000001 Values are numbers (percentages) for categorical variables and means (SD), median (range) others. p values were calculated using the chi-square test or the wilcoxon rank sum test. VPS : ventriculoperitoneal shunt, CSF : cerebrospinal fluid J Korean Neurosurg Soc 60 (1): 1-7 3

J Korean Neurosurg Soc 60 January 2017 Sensitivity 1.0 0.8 0.6 0.4 0.2 0.0 tial valve opening pressure of the programmable valve was set at 130 mmh 2 O. A month after VPS operation, the patient were clinically improved partially but ventricle enlargement still remained. Her valve opening pressure was adjusted to 100 mmh 2 O. Two months af ter the VPS operation, the patient could not walk by herself per sistently and brain CT scan showed an enlarged ventricle size and periventricular lucency. At that time the valve opening pres sure was 100 mmh 2 O and CSF lumbar tapping pressure was 155 mmh 2 O. The pressure difference was 55 mmh 2 O. We sus pected shunt under-drainage or obstruction. Shuntography was done and proximal tip malfunction by partial obstruction was suspected. VPS revision was performed and partial obstruction at the proximal tip was found during the operation. We set the shunt valve opening pressure 100 mmh 2 O. Three months after shunt revision operation, she could walk by herself and CT scan ning demonstrated a normal sized ventricle (Fig. 2). DISCUSSION ROC curve 0.0 0.2 0.4 0.6 0.8 1.0 Fig. 1. Receiver operating characteristic (ROC) analysis of pres sure difference. ROC analysis of pressure difference showed that the area under the curve was 0.91 and the cut-off value was 37.50 with sensitivity of 64.3% and specificity of 98.8%. Shunt malfunction after VPS operation is a common problem that leads to severe problems. If undiagnosed and left untreated, permanent neurological injury or death may occur. However, the diagnosis of shunt malfunction can be challenging as neuroim aging results are not always correlated with clinical outcomes. VPS malfunction is usually suspected if there is no clinical im provement or sustained ventriculomegaly despite of shunt valve opening pressure adjustment. CT often reveals the persistent distension of the cerebral ventricles in clinically improved patients 9,10). Alternatively normal ventricular size is not enough to rule out shunt malfunction when there is no clinical improvement 17). CSF dynamic tests are made possible through previ ously inserted subcutaneous reservoir prechamber type shunt valve. The results of the tests in patients underwent VPS have been proved to be effective to rule out shunt malfunction and recommended by some neurosurgeons 9,12,16). But the test remains invasive and requires special equipment as well as demands highly skilled technique 16). Sakka et al. 15) suggested otoacoustic emission test which is a noninvasive test for VPS functionality but this test is not famil iar to neurosurgeons and its efficacy is questionable. Pennell et al. 11) suggested noninvasive measurement of VPS malfunction using an ultrasonic transit time flow sensor but this procedure has not yet commercialized and requires insertion of a sensor device during VPS operation. Lumbar tapping CSF pressure measurement is an easy and less invasive test that can be used for hydrocephalus patients with programmable shunt devices. To the authors knowledge, this is the first study of lumbar CSF tapping pressure usage for suspected VPS under- drainage in programmable valve devices. In our cohort, the normal VPS function group tended to show a lower CSF tapping pressure value compared to programmed shunt valve opening pressure. The pressure differences was -3.69±19.20 mmh 2 O. Lower CSF tapping pressure value com pared to the valve opening pressure is predicted over-drainage because the VPS valves we used did not have anti-siphon devic es. Programmable shunting device (Micro Valve with RICKHAM Reservoir, Codman & Shurtleff, Inc.) was used for all patients in our study. This valve is a differential pressure valve without an anti-siphon device and drains unphysiologically high quantity of CSF (436 ml/h) in 4 https://doi.org/10.3340/jkns.2016.0404.002

Lumbar Tapping for Shunt Malfunction Lee JB, et al. A B C D E F Fig. 2. Computerized tomography (CT) findings of a patient. A : CT at initial disease showing subarachnoid hemorrhage. B : CT at 2 months after sur gery after craniotomy and aneurysm neck clipping showing ventriculomegaly. C : CT at 1 month ventriculoperitoneal shunt operation showing still ventricle enlargement. D : CT at 2 month ventriculoperitoneal shunt operation showing enlarged ventricle size, developed periventricular lucency. E : Shuntography showing partial proximal tip obstruction. F : CT at 3 months after ventriculoperitoneal shunt revision operation demonstrated a normal sized ventricle. the up right position even if the opening pressure is set at 200 mm H 2 O 14). Therefore, there is a risk or possibility of overdrainage 2,7). In some patients, CSF lumbar tapping pressure was higher than the set valve opening pressure which suggested that either they were on bed rest or the VPS was partially functioning. Patients showing irritability or increased blood pressure due to the pain at CSF lumbar tapping procedure may be a contributing factor of a high lumbar tapping CSF pressure. Even in these cases, the pressure difference is usually same and less than 35 mmh 2 O. The two standard deviation of the pressure difference of the nor mal VPS function group was 34.71 (-3.69±19.20) mmh 2 O. A meaningful value was shown when the pressure difference >40 mmh 2 O. Although a pressure difference value of more than 20 mmh 2 O was meaningful, 35 mmh 2 O was determined as a cut-off value because pressure differences 20 30 mmh 2 O were the most frequently shown in the normal VPS function group. ROC analysis of pressure difference showed that the area un der the curve was 0.91 and the cut-off value was 37.50 with speci ficity of 98.8%. Approximate 35 mmh 2 O was determined as a cut-off value because of lowering false positive rate at cut-off val ue was 37.50 mmh 2 O. The suspected VPS malfunction group tended to show higher CSF tapping pressure values compared to their VPS valve open ing pressures. The mean pressure difference was 38.07±23.58 mmh 2 O. When measured CSF lumbar tapping J Korean Neurosurg Soc 60 (1): 1-7 5

J Korean Neurosurg Soc 60 January 2017 pressure was higher than the VPS valve opening pressure, this result may be inferred VPS under-drainage due to VPS malfunction, patients positional effects or discordance between the valve opening pressure and the CSF hydrodynamics. So we lowered the valve opening pressure by 30 mmh 2 O if patients were tolerable and showed no over-drainage symptoms. Two to 3 weeks after the adjustment of valve opening pressure, we evaluated the symp toms of the patients, performed CT, and used a skull X-ray to rule out spontaneous resetting of the valve. If the patients CT findings sustained enlarged ventricle size or there was no clini cal improvement, a shuntography was performed. VPS mal function was determined by shuntography, and the patients un derwent VPS revision. Some patients showed rapid deterioration because of complete obstruction by IVH or proximal or distal obstruction or infection. Emergency VPS revision was performed for these patients. Since Nulsen and Spitz first inserted a modern valve system in a hydrocephalus patient in 1949, fixed pressure valves have been used 6). If the valve opening pressure does not match the CSF hydrodynamics of a patient, CSF over-drainage or CSF un der-drainage symptoms can develop. When using a fixed pres sure valve, postoperative changes in the valve opening pressure can be accomplished only by performing another operation to insert another pressure-setting valve 4). The use of programma ble shunt devices offers many advantages in the management of patients with hydrocephalus because they are noninvasive adjust able-pressure valve systems 3). So, in the case of over-drainage or under-drainage of CSF, surgeons can adjust the valve opening pressure by making only transcutaneous changes. In this study, a programmable shunting device without an anti-siphon device was used for all patients. Thus, the valve opening pressure could be easily adjusted according to patient symptoms; if over-drain age was suspected the valve opening pressure was elevated and under-drainage was suspected the valve opening pressure was lowered. Nevertheless, it is difficult to differentiate VPS malfunc tion and under-drainage because their symptoms are similar. Therefore, lumbar tapping pressure can help to diagnose shunt under-drainage. Indeed, in our case, some patients showed no clinical improvement and radiologic changes after the VPS op eration, and we repeatedly lowered the valve opening pressure and misdiagnosed as shunt malfunction. Depending on adjust able valve opening pressure, it is possible to misdiagnose the VPS malfunctions. Therefore, it is suggested that under-drain age of CSF should be suspected when the pressure difference between the valve opening pressure and lumbar tapping pres sure is greater than 35 mmh 2 O. Limitation There are several limitations in this study. Most importantly, this retrospective study was conducted by reviewing medical records, and the patients who underwent CSF lumbar tapping were only included in the analysis. Thus, it is possible that some patient with shunt malfunction may have not included. The heterogeneity and the small number of the subjects were also a limitation. Therefore, a prospective study with a larger sample is needed to draw a firm conclusion. CONCLUSION Lumbar tapping pressure measurement is an easy and less in vasive method to diagnose VPS malfunction. In conclusion, un der-drainage of CSF should be suspected if CSF lumbar tapping pressure is 35 mmh 2 O higher than the valve opening pressure and shunt malfunction evaluation or adjustment of the valve opening pressure should be made. References 1. Boon JM, Abrahams PH, Meiring JH, Welch T : Lumbar puncture : anatomical review of a clinical skill. Clin Anat 17 : 544-553, 2004 2. Browd SR, Gottfried ON, Ragel BT, Kestle JR : Failure of cerebrospinal fluid shunts : part II : overdrainage, loculation, and abdominal complications. Pediatr Neurol 34 : 171-176, 2006 3. Hakim S : Hydraulic and mechanical mis-matching of valve shunts used in the treatment of hydrocephalus : the need for a servo-valve shunt. Dev Med Child Neurol 15 : 646-653, 1973 6 https://doi.org/10.3340/jkns.2016.0404.002

Lumbar Tapping for Shunt Malfunction Lee JB, et al. 4. Han YM, Yoo DS, Kim DS, Huh PW, Cho KS, Kang JK : A clinical analysis of the ventriculoperitoneal shunt with programmable shunt divice. J Korean Neurosurg Soc 28 : 75-81, 1999 5. Hebb AO, Cusimano MD : Idiopathic normal pressure hydrocephalus : a systematic review of diagnosis and outcome. Neurosurgery 49 : 1166-1184; discussion 1184-1186, 2001 6. Kataria R, Kumar V, Mehta VS : Programmable valve shunts : are they really better? Turk Neurosurg 22 : 237-238, 2012 7. Kim KH, Yeo IS, Yi JS, Lee HJ, Yang JH, Lee IW : A pressure adjustment protocol for programmable valves. J Korean Neurosurg Soc 46 : 370-377, 2009 8. Larsson A, Wikkelsö C, Bilting M, Stephensen H : Clinical parameters in 74 consecutive patients shunt operated for normal pressure hydrocephalus. Acta Neurol Scand 84 : 475-482, 1991 9. Maksymowicz W, Czosnyka M, Koszewski W, Szymanska A, Traczews ki W : The role of cerebrospinal compensatory parameters in the estimation of functioning of implanted shunt system in patients with communicating hydrocephalus (preliminary report). Acta Neurochir (Wien) 101 : 112-116, 1989 10. Meier U, Paris S, Gräwe A, Stockheim D, Hajdukova A, Mutze S : Is there a correlation between operative results and change in ventricular volume after shunt placement? A study of 60 cases of idiopathic normalpressure hydrocephalus. Neuroradiology 45 : 377-380, 2003 11. Pennell T, Yi JL, Kaufman BA, Krishnamurthy S : Noninvasive measurement of cerebrospinal fluid flow using an ultrasonic transit time flow sensor : a preliminary study. J Neurosurg Pediatr 17 : 270-277, 2016 12. Petrella G, Czosnyka M, Keong N, Pickard JD, Czosnyka Z : How does CSF dynamics change after shunting? Acta Neurol Scand 118 : 182-188, 2008 13. Rocque BG, Lapsiwala S, Iskandar BJ : Ventricular shunt tap as a predictor of proximal shunt malfunction in children : a prospective study. J Neurosurg Pediatr 1 : 439-443, 2008 14. Rohde V, Mayfrank L, Ramakers VT, Gilsbach JM : Four-year experi ence with the routine use of the programmable Hakim valve in the management of children with hydrocephalus. Acta Neurochir (Wien) 140 : 1127-1134, 1998 15. Sakka L, Chomicki A, Gabrillargues J, Khalil T, Chazal J, Avan P : Validation of a noninvasive test routinely used in otology for the diagnosis of cerebrospinal fluid shunt malfunction in patients with normal pressure hydrocephalus. J Neurosurg 124 : 342-349, 2016 16. Weerakkody RA, Czosnyka M, Schuhmann MU, Schmidt E, Keong N, Santarius T, et al. : Clinical assessment of cerebrospinal fluid dynamics in hydrocephalus. Guide to interpretation based on observational study. Acta Neurol Scand 124 : 85-98, 2011 17. Winston KR, Lopez JA, Freeman J : CSF shunt failure with stable normal ventricular size. Pediatr Neurosurg 42 : 151-155, 2006 J Korean Neurosurg Soc 60 (1): 1-7 7