The Nervous System. Chapter 9

Similar documents
The Nervous System PART A

Warm-Up. Label the parts of the neuron below.

Chapter 9. Nervous System

Chapter 8 Nervous System

The Nervous System. Functions of the Nervous System input gathering To monitor occurring inside and outside the body Changes =

Chapter 7 Nervous System

The Nervous System & Nervous tissue. Dr. Ali Ebneshahidi

Nervous and Endocrine System Exam Review

Chapter 17. Nervous System Nervous systems receive sensory input, interpret it, and send out appropriate commands. !

Good Morning! Take out your notes and vocab 1-10! Copyright 2003 Pearson Education, Inc. publishing as Benjamin Cummings

sensory input receptors integration Human Anatomy motor output Ch. 7 effectors Structural classification

Axon Nerve impulse. Axoplasm Receptor. Axomembrane Stimuli. Schwann cell Effector. Myelin Cell body

Body control systems. Nervous system. Organization of Nervous Systems. The Nervous System. Two types of cells. Organization of Nervous System

Lesson 14. The Nervous System. Introduction to Life Processes - SCI 102 1

Chapter 17 Nervous System

The Nervous System. Nervous System Functions 1. gather sensory input 2. integration- process and interpret sensory input 3. cause motor output

Functions of Nervous System Neuron Structure

10.1: Introduction. Cell types in neural tissue: Neurons Neuroglial cells (also known as neuroglia, glia, and glial cells) Dendrites.

Major Structures of the Nervous System. Brain, cranial nerves, spinal cord, spinal nerves, ganglia, enteric plexuses and sensory receptors

action potential afferent neuron Weblike; specifically, the weblike middle layer of the three meninges. arachnoid astrocytes autonomic nervous system

Dispose of debris Nervous Tissue: Support Cells Ependymal cells Line cavities of the brain and spinal cord Circulate cerebrospinal fluid Nervous

Nervous System: An Introduction. HAP Susan Chabot Lemon Bay High School

Unit 7 - The Nervous System 1

Human Nervous System. The nervous system has three functions

ACTIVITY2.15 Text:Campbell,v.8,chapter48 DATE HOUR NERVOUS SYSTEMS NEURON

Meyers' A&P February 15, Unit 7. The Nervous System. I. Functions of the Nervous System. Monitors body's internal and external enviornments

Primary Functions. Monitor changes. Integrate input. Initiate a response. External / internal. Process, interpret, make decisions, store information

Nervous System. 2. Receives information from the environment from CNS to organs and glands. 1. Relays messages, processes info, analyzes data

Chapter 7 The Nervous System

NERVOUS SYSTEM C H A P T E R 2 8

Outline. Neuron Structure. Week 4 - Nervous System. The Nervous System: Neurons and Synapses

CHAPTER 48: NERVOUS SYSTEMS

Nervous System. Master controlling and communicating system of the body. Secrete chemicals called neurotransmitters

Unit 7: The Nervous System

Nervous System and Brain Review. Bio 3201

The Nervous System. Chapter 7. Essentials of Human Anatomy & Physiology. Elaine N. Marieb. Seventh Edition

Chapter 11 Introduction to the Nervous System and Nervous Tissue Chapter Outline

Chapter 12 Nervous System Written Assignment KEY

Hole s Human Anatomy and Physiology Eleventh Edition. Chapter 10

Laboratory Manual for Comparative Anatomy and Physiology Figure 15.1 Transparency Master 114

D) around, bypassing B) toward

Unit 3 : Nervous System

Chapter 9 Nervous System

Bell Work. Materials Needed: writing utensil and A&P book. Quietly pick up a Lesson 6.5 worksheet from the back table and work on it independently.

The Nervous System 7PART A. PowerPoint Lecture Slide Presentation by Patty Bostwick-Taylor, Florence-Darlington Technical College

Nervous tissue, charachteristics, neurons, glial cells

Functional Organization of Nervous Tissue. Nervous tissue, charachteristics, neurons, glial cells. The Nervous System. The Nervous System 21/12/2010

Page 1. Neurons Transmit Signal via Action Potentials: neuron At rest, neurons maintain an electrical difference across

General Functions (3) 1.Sensory gathers information 2.Integrative information is brought together 3.Motor responds to signals, homeostasis

Bio11: The Nervous System. Body control systems. The human brain. The human brain. The Cerebrum. What parts of your brain are you using right now?

Biology 218 Human Anatomy

Peripheral Nervous system messages via spinal and cranial nerves

Nervous System Dr. Naim Kittana Department of Biomedical Sciences Faculty of Medicine & Health Sciences An-Najah National University

Week 7 and 8 Master Worksheet

CHAPTER 13 NERVOUS SYSTEM

Hole s Human Anatomy and Physiology Tenth Edition. Chapter 10

Nervous System. Chapter Structure of the Nervous System. Neurons

DO NOW: ANSWER ON PG 73

Chapter 11: Functional Organization of Nervous Tissue

Neural Basis of Motor Control

Biology 3201 Unit 1: Maintaining Dynamic Equilibrium II

Nervous System C H A P T E R 2

Neurology study of the nervous system. nervous & endocrine systems work together to maintain homeostasis

Collin County Community College BIOL Week 5. Nervous System. Nervous System

The nervous system regulates most body systems using direct connections called nerves. It enables you to sense and respond to stimuli

Structural Organization of Nervous System

NERVOUS SYSTEM. Chapter 48-49

Chapter 7. The Nervous System: Structure and Control of Movement

Chapter 7. Objectives

Chapter 11: Nervous System and Nervous Tissue

The Nervous System. Chapter 35: Biology II

Neurons Chapter 7 2/19/2016. Learning Objectives. Cells of the Nervous System. Cells of the Nervous System. Cells of the Nervous System

1. NERVOUS SYSTEM FUNCTIONS OF THE NERVOUS SYSTEM. FUNCTION The major function of the nervous system can be summarized as follows (Figure 1-1).

II. Nervous System (NS) Organization: can be organized by location/ structure or by function A. Structural Organization 1. Central N.S.

Nervous System - PNS and CNS. Bio 105

Study Guide Answer Key Nervous System

3/15/17. Outline. Nervous System - PNS and CNS. Two Parts of the Nervous System

Neurons, Synapses and Signaling. Chapter 48

Functional Organization of the Central Nervous System

Dendrites Receive impulse from the axon of other neurons through synaptic connection. Conduct impulse towards the cell body Axon

The Nervous System An overview

2. When a neuron receives signals, an abrupt, temporary the inside becomes more positive in the polarity is generated (an action potential).

Bellringer: The central nervous system is comprised of: What is the name of the outermost layer of the brain? a. Brain. b.

Biology 3201 Quiz on Nervous System. Total 33 points

BIOH111. o Cell Module o Tissue Module o Integumentary system o Skeletal system o Muscle system o Nervous system o Endocrine system

Central N.S. Peripheral N.S. 2) List the functional subdivisions. 1) List the anatomical subdivisions.

1. Name the two major divisions of the nervous system and list the organs within each. Central Nervous System Peripheral Nervous System

Five Levels of Organization Cell Tissue Organ Organ System Organism

The Nervous System PART B

Bio11 schedule. Chapter 13 and 14. The Nervous System. The Nervous System. Organization of Nervous Systems. Nerves. Nervous and Sensory Systems

Nervous System Worksheet

The Nervous System: Neural Tissue Pearson Education, Inc.

Chapter 12 Nervous System Review Assignment

! BIOL 2401! Week 5. Nervous System. Nervous System

Neurophysiology scripts. Slide 2

Biology 12 Human Biology - The Nervous System Name. Main reference: Biology Concepts and Connects Sixth edition Chapter 28

Unit Three. I. General Functions of the Nervous System. I. General Functions of the Nervous System

NERVOUS SYSTEM CELLS. a. afferent division CHAPTER 12 ORGANIZATION OF THE NERVOUS SYSTEM. Student Name

Chapter 14: Nervous System Guided Notes (A-day)

Transcription:

The Nervous System Chapter 9

Objectives To identify the basic structure of a neuron. To explain the main components of the nervous system. To compare and contrast the central nervous system and the peripheral nervous system. To differentiate between the somatic and autonomic nervous systems.

Functions of the Nervous System Sensory input (gathering information): to monitor changes occurring inside and outside the body o Changes = stimuli Integration: to process and interpret sensory input and decide if action is needed Motor output: a response to integrated stimuli o The response activates muscles or glands

Functions of the Nervous System

Structure of a Neuron Neuron= Nerve Cell Reacts to physical/chemical changes in surroundings Transmit information through nerve impulses to other neurons and other cells.

Anatomy of a neuron video https://www.youtube.com/watch?v=ob5u8zpbax4

Nervous Tissue Neuroglia o Definition: all support cells in the CNS (Central nervous system) o Function: to support, insulate, and protect neurons Neurons o Function: transmit messages o Major regions of neurons Cell body nucleus and metabolic center of the cell Processes fibers that extend from the cell body o Dendrites conduct impulses toward the cell body o Axons conduct impulses away from the cell body

CNS vs. PNS CNS (Central Nervous System): o Brain o Spinal Cord PNS (Peripheral Nervous System): o Cranial nerves o Spinal Nerves

PNS Contains a sensory division and a motor division. Sensory Division: o Contains sensory receptors that convert info into a nerve impulse and transmit it back to the CNS to make sense of it. o Monitors environmental changes such as light and sound o Detects changes in homeostasis ( ex: temperature, oxygen level)

Motor Division Utilize peripheral neurons to carry impulses from the CNS to an effector which will cause a response o Ex: muscle contraction, gland secretion, etc.

Motor Division Somatic Nervous System: o Controls skeletal muscle and voluntary movement. Autonomic Nervous System: o Controls effectors that are involuntary Ex: heart, smooth muscle, certain glands

Objectives To identify and explain the 3 different structures of neurons. To compare and contrast sensory, motor, and interneurons and explain a general pathway. To determine the functions of the 5 types of neuroglia.

Types of Neurons Multipolar: o Many processes stemming from cell body. o *most neurons in brain and spinal cord are multipolar

Types of Neurons Bipolar: o Only two processes (one at each end. o *found in eyes, nose, ears..

Types of Neurons Unipolar: o One single process extending from cell body. o one side of axon is the peripheral process associated with body part, other side is the central process that enters brain or spinal cord. o Cell bodies create a tissue mass called ganglia.

Types of Neurons

Neuron Classification Sensory Neurons (afferent): o Carry impulses from PNS to CNS o Contain receptor ends at the tips of dendrites o Changes outside the body stimulate receptor ends triggering an impulse o *Most are unipolar

Neuron Classification Interneurons (association): o Completely in brain or spinal cord. o Link neurons together. o *multipolar

Neuron Classification Motor Neurons (efferent): o carry impulses out of brain or spinal cord to the effector and stimulate response.

General Pathway

Neuroglial Cells *More numerous than neurons, support neurons in different ways. Microglial Cells: o Phagocytize bacterial cells and cellular debris Oligodendrocytes: o Provide insulating layers of myelin Astrocytes: o Provide structural support o join parts (ex: neuronà capillary) o help regulate concentrations of nutrients and ions o Form scar tissue in the CNS Ependymal Cells: o Forms membrane that covers specialized brain parts and forms inner linings within the brain and spinal canal Schwann cells: o Forms myelin sheath around axons.

Nervous Tissue: Support Cells

Nervous Tissue: Support Cells

Nervous Tissue: Support Cells

Nervous Tissue: Support Cells

Nervous Tissue: Support Cells

Neuroglial Cells

Myelin A lipid that sometimes coats axons o White matter = myelinated axons in CNS o Gray matter = cell bodies & unmyelinated axons in CNS Produced by some neuroglial cells Insulates neurons & increases efficiency of nerve impulses

Objectives To explain how a nerve impulse occurs. To determine what types of stimuli elicit an action potential. To explain different things that inhibit an action potential. To understand components of a neuron that contribute to impulse velocity.

Cell Membrane Potential The membrane is electrically charged, polarized due to Na+ and K+ ions o Greater concentration of sodium ions outside and potassium ions inside. o Potassium ions pass through more easily o Active transport (sodium/potassium pump) maintains balance This is essential in the propagation of a nerve impulse.

Resting Potential When a nerve cell membrane is undisturbed, the membrane remains polarized staying more negative on the inside and positive on the outside.

Threshold Potential If the nerve cell detects a change in light/temp/ pressure it effects the resting potential and the membrane begins depolarizing. o Sodium channels open and + ions flow in, making the inside less negative. Change in potential is proportional to the intensity of the stimulation. Stimulation + more stimulation before initial stimulation subsides is called summation. Once the threshold is reached, an action potential occurs.

Action Potential Definition: change in neuron membrane polarization and return to resting state Nerve Impulse: chain of action potentials from neuron to neuron

Action Potential Depolarization: a decrease in membrane potential Repolarization: increase in membrane potential, causes membrane to become negatively charged again Action Potential 1. Stimuli (temperature, light, pressure, other neurons) decreases membrane potential 2. When threshold potential (~55 mv) is reached, stimulus is big enough to cause neuron to send a signal.

Action Potential Continued 3. Reaching threshold potential triggers Na+ and K+ channels (located in nodes of Ranvier) to open and equalize charges 3a. Na+ channels open faster, causing rapid depolarization. 3b. As K+ channels open slowly, membrane becomes more polarized, Na+ rushes out. 4. Further parts of axon are triggered and action potentials propagate down length of axon causing nerve impulse. 5. Results in neurotransmitters being released into synapse

Action Potential

Action potential video https://www.youtube.com/watch?v=zamujvgoo0a https://www.youtube.com/watch?v=hnkmb11ih2o

Impulse Conduction Unmyelinated nerve = impulse conducted over the entire surface. Myelin insulates and prevents ion flow, would prevent conduction if it were continuous and didn t have the nodes of ranvier. Myelinated nerve= impulse jumps from node to node and creates a saltatory response and is much faster than unmyelinated.

All- or- None Nerve impulses create an all or none response. Once the stimulus reaches threshold, it generates an action potential.

Objectives Identify the different components of a reflex arc. Explain different autonomic reflexes found throughout the body.

Reflexes Ordinarily, a receptor sends a signal to the brain where the brain coordinates a response. What happens when you touch something hot?

Reflex Arcs Reflex: a rapid, predictable, and involuntary response to a stimulus Reflex Arc: Direct route from sensory neurons, to an interneuron, to an effector. o Interneuron: neuron between the primary sensory neuron and the final motor neuron. A reflex is a rapid action that happens without thought and does not involve the brain.

Reflex Arc 1) Receptor- sense organ in skin, muscle, or other organ 2) Sensory Neuron- carries impulse towards CNS from receptor 3) Interneuron- carries impulse within CNS 4) Motor Neuron- carries impulse away from CNS to effector 5) Effector- structure by which animal responds (muscle, gland, etc).

Steps in a Reflex Arc 1. Stimulus: A receptor receives a stimulus 2. Afferent Pathway: Receptor sends message to integrating center (CNS) via a sensory neuron 3. Integration: CNS makes correct connection between sensory neuron and motor neuron; usually involves an interneuron 4. Efferent Pathway: Motor neuron carries message from CNS to effector 5. Response: Effector carries out appropriate response

Reflex Arc

Reflex arc video https://www.youtube.com/watch?v=wlrhyzdbbpe

Types of Reflexes Somatic reflexes: Activation of skeletal muscle o Example: when you move your hand away from a hot stove Autonomic reflexes: Regulation of smooth muscle; regulation of cardiac muscle, regulation of glands o Example: Heart rate and blood pressure regulation; digestive system regulation; regulation of fluid balance

NeurotransmiLers Definition: chemicals that transmit signals from neurons to a target cell across a synapse NTs can be either excitatory (excite) or inhibitory (inhibit) Each neuron generally synthesizes and releases a single type of neurotransmitter

Neurotransmitter Acetylcholine Dopamine Role in the Body Excitatory. Used by spinal cord neurons to control muscles; used by neurons in the brain to regulate memory. In most instances, acetylcholine is excitatory. Inhibitory. Produces feelings of pleasure when released by the brain reward system. GABA (gamma-aminobutyric acid) Glutamate Glycine The major inhibitory neurotransmitter in the brain. The most common excitatory neurotransmitter in the brain. Inhibitory. Used mainly by neurons in the spinal cord. Norepinephrine Serotonin Mostly excitatory, can be inhibitory in a few brain areas. Acts as both neurotransmitter and hormone. In PNS, part of fight or flight response. it is part of the flight-or-flight response. In brain, regulates normal brain processes. Inhibitory. Involved in many functions including mood, appetite, and sensory perception.

Drugs Interfere with Neurotransmission Drugs can affect synapses at a variety of sites and in a variety of ways, including: o Increasing number of impulses (firing of nerves) o Release NT from vesicles with or without impulses o Block reuptake of neurotransmitters or block receptors o Produce more or less NT o Prevent vesicles from releasing NT

Three Drugs (of many) which affect Neurotransmission Methamphetamine Nicotine Alcohol

Methamphetamine Meth alters Dopamine transmission in two ways: o Enters dopamine vesicles in axon terminal causing release of NT o Blocks dopamine transporters taking dopamine back into the transmitting neuron Result: More dopamine in the synaptic cleft o This causes neurons to fire more often than normal resulting in a euphoric feeling.

Methamphetamine Problems o After the drug wears off, dopamine levels drop, and the user crashes. The euphoric feeling will not return until the user takes more methamphetamine. o Long-term use of meth causes dopamine axons to wither and die. o Note that cocaine also blocks dopamine transporters, thus it works in a similar manner.

Nicotine Similar to methamphetamine and cocaine, nicotine increases dopamine release in a synapse. However, the mechanism is slightly different Nicotine binds to receptors on the presynaptic neuron

Nicotine Nicotine binds to the presynaptic receptors exciting the neuron to fire more action potentials causing an increase in dopamine release. Nicotine also affects neurons by increasing the number of synaptic vesicles released.

Alcohol Alcohol has multiple effects on neurons. It alters neuron membranes, ion channels, enzymes, and receptors. It binds directly to receptors for acetylcholine, serotonin, and gamma aminobutyric acid (GABA), and gluatmate.

GABA and the GABA receptor GABA is a neurotransmitter that has an inhibitory effect on neurons. When GABA attaches to its receptor on the postsynaptic membrane, it allows Cl ions to pass into the neuron. This hyperpolarizes the postsynaptic neuron to inhibit transmission of an impulse.

Alcohol and the GABA Receptor When alcohol enters the brain, it binds to GABA receptors and amplifies the hyperpolarization effect of GABA. The neuron activity is further diminished. This accounts for some of the sedative affects of alcohol.

The Adolescent Brain and Alcohol The brain goes through dynamic change during adolescence, and alcohol can can seriously damage long and short-term growth processes. Frontal lobe development and the refinement of pathways and connections continue until age 16, and a high rate of energy is used as the brain matures until age 20. Damage from alcohol at this time can be long-term and irreversible.

The Adolescent Brain and Alcohol In addition, short-term or moderate drinking impairs learning and memory for more in youth than adults. Adolescents need only drink half as much as adults to suffer the same negative effects.

Drugs that Influence NeurotransmiLers Change in Neurotransmission Effect on Neurotransmitter release or availability Drug that acts this way increase the number of impulses increased neurotransmitter release nicotine, alcohol, opiates release neurotransmitter from vesicles with or without impulses release more neurotransmitter in response to an impulse block reuptake produce less neurotransmitter prevent vesicles from releasing neurotransmitter block receptor with another molecule increased neurotransmitter release increased neurotransmitter release more neurotransmitter present in synaptic cleft less neurotransmitter in synaptic cleft less neurotransmitter released no change in the amount of neurotransmitter released, or neurotransmitter cannot bind to its receptor on postsynaptic neuron amphetamines methamphetamines nicotine cocaine amphetamine probably does not work this way No drug example LSD caffeine

CNS (Brain Structure)

Regions of the Brain

Cerebral Hemispheres (Cerebrum) Structure of cerebrum: Paired (left and right) superior parts of the brain Function of cerebrum: Higher brain function (thought and action)

Regions of the Brain: Cerebrum

Four (Main) Lobes of the Cerebrum Frontal lobe: problem solving, judgment, motor function (Primary Motor Area), speech (Broca s Area) Parietal lobe: sensation, handwriting, body position (Primary Somatic Sensory Area) Occipital lobe: visual processing system Temporal lobe: memory and hearing

Regions of the Brain: Cerebrum

Regions of the Brain: Diencephalon

Regions of the Brain: Diencephalon

Diencephalon Structure: sits on top of brain stem; enclosed by cerebral hemispheres

Diencephalon Three parts Thalamus: relay station for sensory impulses Hypothalamus: autonomic nervous system center; involved in emotion o Helps regulate body temperature o Controls water balance o Regulates metabolism Epithalamus: houses the pineal gland (involved in sleep); forms CSF (Cerebrospinal fluid)

Regions of the Brain: Diencephalon

Brain Stem Structure: Attached to the spinal cord Midbrain o Mostly composes of tracts of nerve fibers o Function: reflex center for vision and hearing Pons o Structure: bulging center part of the brain stem o Function: control of breathing Medulla Oblongata o Structure: most inferior part of the brain stem; merges into spinal cord o Functions: heart rate control, blood pressure regulation, breathing, swallowing, vomiting

Regions of the Brain: Brain Stem

Cerebellum Structure: looks like a little cerebrum, sits inferior to cerebrum, posterior to brain stem Function: provides involuntary coordination of body movements

Regions of the Brain: Cerebellum

Ventricles Structure: four chambers within the brain filled with cerebrospinal fluid o Lateral Ventricles: within Cerebrum o Third Ventricle: in Diencephalon o Fourth Ventricle: between pons and cerebellum

Ventricles Functions 1. Transport of waste and nutrients 2. Protects cerebrum from trauma 3. Contain signaling molecules that direct development and function

Spinal Cord Anatomy and PNS

Spinal Cord General Info Structure: extends from foramen magnum of skull to the first two lumbar vertebra

Spinal Cord Anatomy

Spinal Cord Anatomy Internal gray matter mostly cell bodies; surrounds central canal o Central canal is filled with cerebrospinal fluid Exterior white matter - axons

Spinal Cord Anatomy

Peripheral Nervous System (PNS) Definition: nerves and ganglia outside the central nervous system Ganglia: mass of nerve cell bodies Nerve: bundle of neuron fibers

PNS: Classification of Nerves Mixed nerves: both sensory and motor fibers Sensory (afferent) nerves: carry impulses toward the CNS Motor (efferent) nerves: carry impulses away from the CNS

PNS: Cranial Nerves Definition: 12 pairs of nerves that serve the head and neck

PNS: Cranial Nerves I Olfactory nerve sensory for smell II Optic nerve sensory for vision III Oculomotor nerve motor fibers to eye muscles IV Trochlear motor fiber to eye muscles V Trigeminal nerve sensory for the face; motor fibers to chewing muscles VI Abducens nerve motor fibers to eye muscles VII Facial nerve sensory for taste; motor fibers to the face VIII Vestibulococlear nerve sensory for balance and hearing

PNS: Cranial Nerves IX Glossopharyngeal nerve sensory for taste; motor fibers to the pharynx X Vagus nerves sensory and motor fibers for pharynx, larynx, and viscera XI Accessory nerve motor fibers to neck and upper back XII Hypoglossal nerve motor fibers to tongue

Spinal Nerves Structure: formed by the combination of the ventral and dorsal roots of the spinal cord o 31 pairs of spinal nerves arise from the spinal cord Cauda equina: collection of spinal nerves at the inferior end

Autonomic Nervous System Definition: involuntary nervous system Function: regulates activities of cardiac and smooth muscles and glands Two subdivisions o Sympathetic divisions o Parasympathetic division

Sympathetic Division (E) Sympathetic Function fight or flight o Response to unusual stimulus o Takes over to increase activities o Remember the E division: Exercise, excitement, emergency, and embarrassment Neurotransmitters o Norepinephrine o Epinephrine

Parasympathetic Division (D) Parasympathetic function housekeeping activities o Conserves energy o Maintains daily necessary body functions o Remember as the D division: digestion, defecation, and diuresis Neurotransmitter o Acetylcholine

Difference between Somatic and Autonomic Nervous System Nerves o Somatic: one motor neuron o Autonomic: preganglionic and postganglionic nerves Effector organs o Somatic: skeletal muscle o Autonomic: smooth muscle, cardiac muscle, and glands Neurotransmitters o Somatic: acetylcholine o Autonomic: acetylcholine, epinephrine, or norepinephrine

Review video (show on review day!!) https://www.youtube.com/watch?v=uabdiuttu0m