Clinical Study Relationship between Pulsatility Index and Clinical Course of Acute Ischemic Stroke after Thrombolytic Treatment

Similar documents
Clinical Study Experiences of Thrombolytic Therapy for Ischemic Stroke in Tuzla Canton, Bosnia and Herzegovina

Reduction of flow velocities in patients with ischemic events in the middle cerebral artery long-term follow-up with ultrasound

Early neurological worsening in acute ischaemic stroke patients

Diagnosis of Middle Cerebral Artery Occlusion with Transcranial Color-Coded Real-Time Sonography

Redgrave JN, Coutts SB, Schulz UG et al. Systematic review of associations between the presence of acute ischemic lesions on

Tom Eisele, Benedikt M. Muenz, and Grigorios Korosoglou. Department of Cardiology & Vascular Medicine, GRN Hospital Weinheim, Weinheim, Germany

Clinical Study Circle of Willis Variants: Fetal PCA

Transcranial dopplerography in acute left-hemispheric ischemic stroke.

Case Report Successful Mechanical Thrombectomy of a Middle Cerebral Artery Occlusion 14 Hours after Stroke Onset

Carotid Embolectomy and Endarterectomy for Symptomatic Complete Occlusion of the Carotid Artery as a Rescue Therapy in Acute Ischemic Stroke

EFFICACY AND SAFETY OF INTRA-ARTERIAL THROMBOLYTIC

Evaluation of Carotid Vessels and Vertebral Artery in Stroke Patients with Color Doppler Ultrasound and MR Angiography

Tandem Internal Carotid Artery/Middle Cerebral Artery Occlusion An Independent Predictor of Poor Outcome After Systemic Thrombolysis

Clinical Features and Subtypes of Ischemic Stroke Associated with Peripheral Arterial Disease

Neuro Quiz 29 Transcranial Doppler Monitoring

Case Report Cerebral Hyperperfusion Syndrome following Protected Carotid Artery Stenting

ISPUB.COM. Transcranial Doppler: An Overview of its Clinical Applications. A Alexandrov, M Joseph INTRODUCTION SICKLE CELL DISEASE

Stroke is the third-leading cause of death and a major

Practical Considerations in the Early Treatment of Acute Stroke

Conference Paper Antithrombotic Therapy in Patients with Acute Coronary Syndromes: Biological Markers and Personalized Medicine

Mohamed Al-Khaled, MD,* Christine Matthis, MD, and J urgen Eggers, MD*

Blood Pressure Variability and Hemorrhagic Transformation after Intravenous Thrombolysis in Acute Ischemic Stroke

Case Report Successful Implantation of a Coronary Stent Graft in a Peripheral Vessel

TRANSCRANIAL DOPPLER ULTRASOUND INTRODUCTION TO TCD INTERPRETATION


Parameter Optimized Treatment for Acute Ischemic Stroke

Case Report Asymptomatic Pulmonary Vein Stenosis: Hemodynamic Adaptation and Successful Ablation

Transcranial Doppler ultrasonography (TCD)

Protokollanhang zur SPACE-2-Studie Neurology Quality Standards

Clinical specialist statement. Thank you for agreeing to give us a statement on your view of the technology and the way it should be used in the NHS.

The Impact of Smoking on Acute Ischemic Stroke

CHAPTER 5. Symptomatic and Asymptomatic Retinal Embolism Have Different Mechanisms

Site of Arterial Occlusion Identified by Transcranial Doppler Predicts the Response to Intravenous Thrombolysis for Stroke

Michael Horowitz, MD Pittsburgh, PA

Carotid Abnormalities Coils, Kinks and Tortuosity David Lorelli M.D., RVT, FACS Michigan Vascular Association Conference Saturday, October 20, 2012

Clinical Features of Patients Who Come to Hospital at the Super Acute Phase of Stroke

Case Report Coronary Artery Perforation and Regrowth of a Side Branch Occluded by a Polytetrafluoroethylene-Covered Stent Implantation

Policies and Statements D16. Intracranial Cerebrovascular Ultrasound

Research Article Comparison of Colour Duplex Ultrasound with Computed Tomography to Measure the Maximum Abdominal Aortic Aneurysmal Diameter

(Department of Radiology, Beylikdüzü State Hospital, İstanbul, Turkey) Corresponding Author: Dr. Mete Özdikici

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

Does the sex of acute stroke patients influence the effectiveness of rt-pa?

Clinical Study Metastasectomy of Pulmonary Metastases from Osteosarcoma: Prognostic Factors and Indication for Repeat Metastasectomy

Case Report Internal Jugular Vein Thrombosis in Isolated Tuberculous Cervical Lymphadenopathy

Recommendations for documentation of neurosonographic examinations

Pre-and Post Procedure Non-Invasive Evaluation of the Patient with Carotid Disease

Analysis of DWI ASPECTS and Recanalization Outcomes of Patients with Acute-phase Cerebral Infarction

Research Article Increased Blood Pressure Variability Is Associated with Worse Neurologic Outcome in Acute Anterior Circulation Ischemic Stroke

Stroke Clinical Trials Update Transitioning to an Anatomic Diagnosis in Ischemic Stroke

Advances in Neuro-Endovascular Care for Acute Stroke

Clinical benefit of tissue plasminogen activator (tpa) in

GUNDERSEN/LUTHERAN ULTRASOUND DEPARTMENT POLICY AND PROCEDURE MANUAL

Extra- and intracranial tandem occlusions in the anterior circulation - clinical outcome of endovascular treatment in acute major stroke.

In cerebral infarction, the prognostic value of angiographic

Basilar artery stenosis with bilateral cerebellar strokes on coumadin

Comparison of Five Major Recent Endovascular Treatment Trials

Case Report Tortuous Common Carotid Artery: A Report of Four Cases Observed in Cadaveric Dissections

Since the National Institute of Neurologic Disorders and

Mechanical thrombectomy in Plymouth. Will Adams. Will Adams

ACUTE STROKE TREATMENT IN LARGE NIHSS PATIENTS. Justin Nolte, MD Assistant Profession Marshall University School of Medicine

ACUTE ISCHEMIC STROKE. Current Treatment Approaches for Acute Ischemic Stroke

The Effect of Diagnostic Catheter Angiography on Outcomes of Acute Ischemic Stroke Patients Being Considered for Endovascular Treatment

Research Article Abdominal Aortic Aneurysms and Coronary Artery Disease in a Small Country with High Cardiovascular Burden

Emergency Room Procedure The first few hours in hospital...

Ischemic Stroke in Critically Ill Patients with Malignancy

Cerebrovascular Disease lll. Acute Ischemic Stroke. Use of Intravenous Alteplace in Acute Ischemic Stroke Louis R Caplan MD

Peter I. Kalmar, 1 Peter Oberwalder, 2 Peter Schedlbauer, 1 Jürgen Steiner, 1 and Rupert H. Portugaller Introduction. 2.

Canadian Best Practice Recommendations for Stroke Care. (Updated 2008) Section # 3 Section # 3 Hyperacute Stroke Management

Endovascular Treatment Updates in Stroke Care

Quality ID #195 (NQF 0507): Radiology: Stenosis Measurement in Carotid Imaging Reports National Quality Strategy Domain: Effective Clinical Care

Intracranial Balloon Angioplasty of Acute Terminal Internal Carotid Artery Occlusions

Carotid Endarterectomy for Symptomatic Complete Occlusion of the Internal Carotid Artery

Seung-Jae Lee, 1 Dong-Geun Lee, 1 Dal-Soo Lim, 2 Sukkeun Hong, 2 and Jin-Sik Park Methods. 1. Introduction

Case Report Intracranial Capillary Hemangioma in the Posterior Fossa of an Adult Male

Intracranial Cerebrovascular Evaluation Transcranial Doppler (Non-Imaging) and Transcranial Duplex Imaging (TCD-I)

Case Report Sinus Venosus Atrial Septal Defect as a Cause of Palpitations and Dyspnea in an Adult: A Diagnostic Imaging Challenge

Research Article Predictions of the Length of Lumbar Puncture Needles

Hemorrhagic Risk of Emergent Endovascular Treatment Plus Stenting in Patients with Acute Ischemic Stroke

BY MARILYN M. RYMER, MD

Carotid Artery Stenting

Acute Medical Management. Bogachan Sahin, M.D., Ph.D. Department of Neurology

Under normal circulatory conditions, the brain receives

Antithrombotics: Percent of patients with an ischemic stroke or TIA prescribed antithrombotic therapy at discharge. Corresponding

Hyperperfusion syndrome after MCA embolectomy a rare complication?

Measure #195 (NQF 0507): Radiology: Stenosis Measurement in Carotid Imaging Reports National Quality Strategy Domain: Effective Clinical Care

11/27/2017. Stroke Management in the Neurocritical Care Unit. Conflict of interest. Karel Fuentes MD Medical Director of Neurocritical Care

Jürgen Eggers, MD; Inke R. König, PhD; Björn Koch, MD; Götz Händler, MD; Günter Seidel, MD, PhD

Subclavian artery Stenting

Translent CT hyperattenuation after intraarterial thrombolysis in stroke. Contrast extravasation or hemorrhage

Management of intracranial atherosclerotic stenosis (ICAS)/intracranial atherosclerosis

Color Doppler Imaging Evaluation of Proximal Vertebral Artery Stenosis

PARADIGM SHIFT FOR THROMBOLYSIS IN PATIENTS WITH ACUTE ISCHAEMIC STROKE, FROM EXTENSION OF THE TIME WINDOW TO RAPID RECANALISATION AFTER SYMPTOM ONSET

Cryptogenic Strokes: Evaluation and Management

Brain Attack. Strategies in the Management of Acute Ischemic Stroke: Neuroscience Clerkship. Case Medical Center

Subtherapeutic Warfarin Is Not Associated With Increased Hemorrhage Rates in Ischemic Strokes Treated With Tissue Plasminogen Activator

Although intravenous (IV) thrombolysis has gained wide

The Multi arm Optimization of Stroke Thrombolysis (MOST) Trial

Clinical profile of patients with acute ischemic stroke receiving intravenous thrombolysis (rtpa-alteplase)

Asymptomatic Occlusion of an Internal Carotid Artery in a Hospital Population: Determined by Directional Doppler Ophthalmosonometry

Transcription:

BioMed Research International Volume 213, Article ID 265171, 5 pages http://dx.doi.org/1.1155/213/265171 Clinical Study Relationship between Pulsatility Index and Clinical Course of Acute Ischemic Stroke after Thrombolytic Treatment Nevzat Uzuner, Özcan Özdemir, and Gülnur Tekgöl Uzuner Department of Neurology and Department of Cerebrovascular Disease and Stroke Unit, Faculty of Medicine, Eskisehir Osmangazi University, Meselik, 2648 Eskisehir, Turkey Correspondence should be addressed to Nevzat Uzuner; nevzatuzuner@gmail.com Received 21 April 213; Accepted 2 July 213 Academic Editor: J. Mocco Copyright 213 Nevzat Uzuner et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Background. The relationship between the arterial recanalization after intravenous recombinant tissue plasminogen activator (rtpa) and outcomes is still uncertain. The aim of our study was to evaluate whether there is an association between the pulsatility indexes (PI) of the middle cerebral artery (MCA) measured by transcranial Doppler (TCD) after iv rtpa treatment and short- and longterm outcomes in ischemic stroke patients. Methods. Forty-eight patients with acute ischemia in the MCAterritory who achieved complete recanalization after the administration of intravenous thrombolytic treatment were included in the study. The TCD was applied to patients after the iv rtpa treatment. Clinical and functional outcomes were assessed by National Institutes of Health Stroke Scale (NIHSS) scores and modified Rankin Scores (mrs), respectively. Results. Significant positive correlations were found between the PI value and NIHSS score at 24 hours, NIHSS score at 3 months, and mrs at 3 months (P <.5 for all). The cut-off value for PI in predicting a favorable prognosis and a good prognosis might be less than or equal to 1.1 and less than or equal to 1.4, respectively. Conclusions. PI may play a role in predicting the functional and clinical outcome after thrombolytic therapy in acute ischemic stroke patients. 1. Introduction Cerebrovascular disease (CVD) is the second leading cause of death and ranks first in terms of disability. It is also an important economic and social health problem. Thrombolysis with intravenousrtpahasbeenshowntobeeffectiveinpatients withacuteischemicstrokewithin4.5hoursfromsymptom onset [1]. TCD is a noninvasive method that informs about blood flow velocities in the main intracranial arteries and flow directions according to an ultrasound probe [2]. It is suggested that it is a good measure for showing the results of occlusion detected in MCA. TCD can predict clinical response to thrombolysis by detecting the site of vessel occlusion and recanalization rate [3]. The purpose of our study is to evaluate whether PI measuredbytcdintheacutestagesofmcaterritory ischemic stroke in patients with successful recanalization after iv rtpa treatment is a predictor of the course of the diseaseintheacuteandchronicphases. 2. Materials and Methods Patients with acute ischemia in the MCA territory who presented within 4.5 hours after the symptom onset and who received intravenous thrombolytic therapy at Eskisehir Osmangazi University Emergency and the Neurology Department were included in the study from December 29 to March 212. Consecutive patients were treated with intravenous tissue plasminogen activator (iv-rtpa) following SITS-MOST criteria [4]. Written confirmation from the Eskisehir Clinical Research Ethics Committee, dated 16.12.29 and numbered 29/29, was received for this study and an Informed Consent Form was received from all patients or their relatives. Patients with insufficient temporal window were excluded from the study. Patients with extracranial carotid stenosis were also excluded, given the possibility of hemodynamic changes in middle cerebral artery blood flow velocities due to proximal stenosis.

2 BioMed Research International All patients were admitted to our Neurocritical Care Unit. A detailed past medical history was obtained from each patient. To identify the potential mechanism of stroke, patients underwent transthoracic and transesophageal echocardiography, Holter monitoring, and magnetic resonance angiography when indicated. The Trial of Org 1172 in Acute Stroke Treatment Criteria (TOAST) criteria was used to classify stroke subtypes [5]. The neurological examination was performed on the patients and the National Institutes of Health Stroke Scale (NIHSS) was assessed at baseline, 1 hour, and 24 hours after iv-rtpa treatment. Furthermore, the NIHSS score and modified Rankin score (mrs) were obtained at 3 months to assess the long-term clinical and functional outcomes. A favorable clinical outcome was considered as mrs -1 and a good outcome as mrs 2. Cerebral CT scans were performed before IV rtpa bolus and repeated after 24 to 36 hours. Portable bedside TCD was performed in patients presented within 4.5 hours after symptom onset in the Emergency Department. The TCD examination was repeated one hour after the iv rtpa bolus. For the TCD examination (portable DWL), MCA (M1 branch) blood flow was detected between depths of 4 6mm with a 2MHz probe (right and left sides) from both temporal windows when the patient was in the supine position. All MCA (M1 branch) peak-systolic, end-diastolic, and mean flow velocity were measured. PI was also recorded on both sides. PI was calculated according to the method of Gosling [6].Briefly,PIiscalculatedfromthedifferenceinthe systolic and diastolic flow velocity divided by the mean flow velocity. Patients with complete arterial recanalization were diagnosed if the end-diastolic velocity improved to normal or a low-resistance stenotic signal appeared (TIBI 4 or TIBI 5). These patients were included in the analysis. Medical treatments given to patients after hospitalization were noted (antiplatelet, anticoagulant, antihypertensive). Furthermore, the patients were subjected to carotid Doppler ultrasound. The examination was done with a 7.5MHzprobeonB,C,andD-mode,respectively,when thepatientswereinasupineposition.thecommoncarotid arteries were examined on the bilateral and internal carotid arteries (ICA) were examined on the level, transverse and longitudinal planes (anterooblique, lateral and posterooblique). After determining the anatomic site on B-mode, bifurcation, the ICA and external carotid artery (ECA) were clearly viewed as separate. The structure of the lumen, intimal thickening, plaque, and narrowing of the lumen diameter were investigated. Bilateral flow direction and flow pattern were determined for each of the three arteries in C-mode evaluation. ThedatawereevaluatedwiththeSPSS15.andMedCalc statistical program. To put forward the connection of PI with the disease s different stage criteria, Pearson s correlation was usedandtofindthecut-offpoints,rocanalysismethods were used and P <.5 was considered for the statistical significance. 3. Results For this study, 183 consecutive patients with acute ischemic stroke on MCA territory were examined. Twenty-five patients were excluded because of significant extracranial internal carotid artery stenosis (>7%) or occlusion. Sixty-eight patients had insufficient temporal window and were excluded fromthestudy.theremainingof9of183patientsunderwent successful TCD examination during acute phase of ischemic stroke. Only 48 patients on whom complete recanalization was achieved during TCD evaluation were included in the analysis. 4% of the patients (19 patients) were female and 6% (29 patients) were male. The average age of all patients was 61.6 ± 9.8. When the patients were classified according to the etiology of ischemic stroke, 21% atherosclerosis of large vessels and 52% cardio embolism were detected, and the remaining 27% was undetermined. When the patients risk factors for ischemic stroke were studied, it seemed that the most common were hypertension (52%), hyperlipidemia (5%), cigarette smoking (4%), atrial fibrillation (33%), and diabetes mellitus (27%). IV rtpa was given within 148 minutes (range 55 245 minutes) after symptom onset. The TCD examination that was done one hour after the IV rtpa bolus demonstrated the pulsatility index on the lesion side as 1.1 ±.2. TheMCA blood flow velocity parameters that were measured after iv rtpa bolus (in the acute stage) are given in in Table 1. The arrival NIHSS values obtained from detailed neurological examination done on first application of patients, at 24 hours after iv rtpa treatment, and the NIHSS and mrs values obtainedduringthechronicperiodareshownintable 2. The pulsatility index had significant positive correlation with NIHSS values in the acute phases (Figure 1) and significant positive correlation with NIHSS (Figure 2) and mrs (Figure 3) valuesinthechronicphase.end-diastolic blood flow velocity had a significant negative correlation with NIHSS and mrs for every phase. Otherwise, mean and peak-systolic blood flow velocities had negative correlations with NIHSS in the acute phase and positive correlations with NIHSS and mrs values for the chronic phase; however, these correlations did not reach a significant level. Correlations of blood flow velocity parameters on the side ofthelesion withclinicalscale detailsaregivenintable 3. For a favorable outcome in the chronic phase PI might be equal to or less than 1.1 (sensitivity is 8% and specificity is 87.5%) (Figure 4). For a good prognosis in the chronic phase PI might be equal to or less than 1.4 (sensitivity is 1% and specificity is 66.7%) (Figure 5). A multivariate logistic regression analysis was performed to test whether PI is an independent predictor of poor outcome (mrs = 3 6) and admission NIHSS score, age, baseline glucose level, systolic and diastolic blood pressures, and time to treatment as well PI as values were included in the analysis. Only admission NIHSS score (P =.28) and PI (P <.1) were independently and significantly associated with poor outcome.

BioMed Research International 3 Table 1: MCA blood flow velocity parameters on the lesion side after iv-rt-pa treatment. 25 Average Std. deviation Mean blood flow velocity (cm/s) 38.7 9.3 Peak-systolic velocity (cm/s) 72.2 14.2 End-diastolic velocity (cm/s) 27.8 1.6 1.1.2 Table 2: Clinical scales. Scales Average Std. deviation NIHSS (before iv-rt-pa) 13.2 4.5 NIHSS (24 hours later after iv-rt-pa) 4.3 4.6 NIHSS (chronic phase) 2.6 2.6 mrs (chronic phase) 1.2 1.6 NIHSS (24 hours later) 2 15 1 5.75 1 1.25 R Sq linear =.169 1.5 1.75 4. Discussion TCD is a practical, noninvasive, reproducible diagnostic tool that provides indirect information about blood flow in the intracranial vessels. This technique allows the evaluation of intracranial arteries in terms of stenosis, occlusion, vasospasm, and communicating collateral flows. In previous studies, detection of an intracranial occlusion with TCD in acute ischemic stroke was regarded as a poor prognostic sign [3, 7]. Rapid neurological recovery within 24 hour after IV rtpa administration is associated with a good clinical outcomeandtcdflowgradespredictearlyneurological recovery [8, 9]. In addition, a newly published meta-analysis reveals the relationship between early treatment and TCD data and demonstrated that obstruction in the MCA is associated with poor prognosis survival which was higher in patients with a recanalized MCA [1]. Moreover, persistent arterial occlusion and reocclusion after IV rtpa are associated with poor long-term outcome and increased chance of clinical deterioration [11]. Although the majority of articles demonstrating the usefulness of TCD in the acute stroke areahavefocusedontheeffectofarterialrecanalizationand reocclusion on clinical and functional outcomes in response to IV rt-pa, the importance of pulsatility index has not been not emphasized [3, 7, 1, 11]. In our study, we found a negative correlation between the MCA blood flow velocities especially in end-diastolic blood flow velocities and the clinical scales that were obtained in boththeacuteandchronicphasesofacutestroke.theassociation between end-diastolic blood velocities and favorable functional outcome is in parallel with a recently published study. As opposed to peak systolic velocity, a modest increase in the end-diastolic velocities is associated with favorable functional outcome and early neurological improvement [12]. However, MCA blood flow velocity measurements depend ontheoperator sskillandonthemeasurementangleaswell. Hence, the pulsatility index may be a more reliable parameter than the velocity itself. We found a significant positive relationship between the NIHSS scores of patients at 24 hours and the PI that was measured on the recanalized MCA after iv rtpa infusion. Figure 1: A significant correlation between the PI measured on the lesion side at the acute stage and NIHSS is observed. NIHSS (3 months later) 12.5 1 7.5 5 2.5.75 1 1.25 R Sq linear =.257 1.5 1.75 Figure 2: A significant correlation between the PI measured on the lesionsideattheacutestageandnihssat3monthsisobserved. mrs (3 months later) 6 5 4 3 2 1.75 1 1.25 R Sq linear =.181 1.5 1.75 Figure 3: A significant correlation between the PI measured on the lesion side at the acute stage and mrs at 3 months is observed.

4 BioMed Research International Mean velocity (cm/s) Peak-systolic velocity (cm/s) End-diastolic velocity (cm/s) Table 3: Correlations of blood flow velocity parameters on the lesion side with clinical criteria. Correlation is significant at the.1 level (2 tailed). Correlation is significant at the.5 level (2 tailed). 24 hours after NIHSS 3 months after NIHSS 3 months after mrs Pearson Correlation.161.1.66 Sig. (2-tailed).273.59.658 Pearson Correlation.278.19.56 Sig. (2-tailed).56.472.75 Pearson Correlation.435.317.38 Sig. (2-tailed).2.32.33 Pearson Correlation.411.57.425 Sig. (2-tailed).4..3 1 PI 1 PI Sensitivity 8 6 4 Sensitivity: 8 Specificity: 87.5 Criterion: 1.1 Sensitivity 8 6 4 Sensitivity: 1 Specificity: 66.7 Criterion : 1.4 2 2 2 4 6 8 1 1-specificity 2 4 6 8 1 1-specificity Figure 4: ROC curve analysis for PI and favorable outcome: area under the ROC curve (AUC):.878; standard error:.845; 95% confidence interval:.751 to.955; Z statistic: 4.447; significance level P(Area =.5):.1. Figure 5: ROC curve analysis for PI and good outcome: area under the ROC curve (AUC):.855; standard error:.114; 95% confidence interval:.724 to.94; Z statistic: 3.111; significance level P(Area =.5):.19. A significant positive relationship between mrs at 3 months and PI was also found. The functional status and degree of disability for patients with higher PI values were worse. We hypothesizethatanincreaseinthepimayindicateapoor clinical outcome even in patients with completely recanalized cerebral arteries. PI rises when there is a barrier in measured vessel segments.althoughitismostlikelyassociatedwithincreased intracranial pressure, increased intracranial pressure is not an expected situation during the very early stages of ischemic stroke. Some studies have shown through experiments that figural microcirculation elements of blood and fibrin play an obstructiveroleandthatendotheliumandastrocyteend-feet are swollen in ischemic cases [13]. Related to these, it was shown that segmental contraction occurs after the ischemia [14]. In addition, even though there is ischemia reperfusion in the early period, the capillary bed narrows segmentally by contraction of pericytes and the passage of blood cells is prevented [15, 16]. In a TCD study, Alexandrov et al. related the increase in end-diastolic velocity with the low resistance within the ischemic brain and the occurrence of recanalization/reperfusion [12]. In addition, we consider that the blood flow velocity measurements that were performed proximally on the vessel show higher PI in the presence of an increase in distal vascular resistance in the early period of cerebral ischemia and may reflect microcirculation problems.

BioMed Research International 5 Beyond these correlations, in order to understand cut-off PI levels that give rise to more precise results in predicting good and favorable clinical and functional outcomes, ROC curve analysis was performed. A result where PI is below or equal to 1.4 indicates a good prognosis in the chronic phase whereas 1.1 and below for PI indicates a favorable prognosis in the chronic phase. In the presence of complete recanalization afterivrtpa,itisunlikelyforapatienttohaveaworse outcome in the presence of lower PI. However,includingonlyasmallnumberofcasesinthis studyisoneofitslimitingelements.wewereunableto demonstrate any cut-off value for PI in order to predict a poor outcome due to the small number of patients with poor outcomes. Therefore, our preliminary findings can only be generalizable with a study including a larger sample. In addition, the cause of increased PI in patients for whom complete recanalization was achieved after iv rtpa may not be identified. Since we did not perform digital subtraction angiographyinallcases,wecouldhavemisseddistalembolic debris. In conclusion, among blood flow parameters that are measured by TCD as a simple method of examination in acute ischemic stroke, PI may play a role in predicting a good functional and clinical outcome after thrombolytic therapy in acuteischemicstrokepatients.inthissense,wesuggestthat this examination should be carried out in all stroke units. References [1] W. Hacke, M. Kaste, E. Bluhmki et al., Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke, The New England Medicine, vol. 359, no. 13, pp. 1317 1329, 28. [2] A. M. Demchuk, I. Christou, T. H. Wein et al., Specific transcranial Doppler flow findings related to the presence and site of arterial occlusion, Stroke,vol.31,no.1,pp.14 146,2. [3] J. Allendoerfer, M. Goertler, and G.-M. von Reutern, Prognostic relevance of ultra-early doppler sonography in acute ischaemic stroke: a prospective multicentre study, Lancet Neurology,vol.5,no.1,pp.835 84,26. [4] N. Wahlgren, N.Ahmed, A. Dávalos et al., Thrombolysis with alteplase for acute ischaemic stroke in the Safe Implementation of Thrombolysis in Stroke-Monitoring Study (SITS-MOST): an observational study, Lancet, vol. 369, no. 9558, pp. 275 282, 27. [5] H.P.AdamsJr.,B.H.Bendixen,L.J.Kappelleetal., Classification of subtype of acute ischemic stroke: definitions for use in a multicenter clinical trial, Stroke,vol.24,no.1,pp.35 41,1993. [6] R.G.GoslingandD.H.King, ArterialassessmentbyDoppler shift ultrasound, Proceedings of the Royal Society of Medicine, vol. 67, no. 6, pp. 447 449, 1974. [7] C. Baracchini, R. Manara, M. Ermani, and G. Meneghetti, The quest for early predictors of stroke evolution: can TCD be a guiding light? Stroke, vol. 31, no. 12, pp. 2942 2947, 2. [8] B. MacHumpurath, S. M. Davis, and B. Yan, Rapid neurological recovery after intravenous tissue plasminogen activator in stroke: prognostic factors and outcome, Cerebrovascular Diseases, vol. 31, no. 3, pp. 278 28, 211. [9] A.M.Demchuk,W.S.Burgin,I.Christouetal., Thrombolysis in Brain Ischemia (TIBI) transcranial Doppler flow grades predict clinical severity, early recovery, and mortality in patients treated with intravenous tissue plasminogen activator, Stroke, vol. 32, no. 1, pp. 89 93, 21. [1] E. Stolz, F. Cioli, J. Allendoerfer, T. Gerriets, M. D. Sette, and M. Kaps, Can early neurosonology predict outcome in acute stroke? A metaanalysis of prognostic clinical effect sizes related to the vascular status, Stroke,vol.39,no.12,pp.3255 3261,28. [11] M. Saqqur, C. A. Molina, A. Salam et al., Clinical deterioration after intravenous recombinant tissue plasminogen activator treatment: a multicenter transcranial Doppler study, Stroke, vol.38,no.1,pp.69 74,27. [12] A. V. Alexandrov, G. Tsivgoulis, M. Rubiera et al., Enddiastolic velocity increase predicts recanalization and neurological improvement in patients with ischemic stroke with proximal arterial occlusions receiving reperfusion therapies, Stroke,vol.41,no.5,pp.948 952,21. [13] J. R. Little, F. W. L. Kerr, and T. M. Sundt Jr., Microcirculatory obstruction in focal cerebral ischemia. Relationship to neuronal alterations, Mayo Clinic Proceedings,vol.5,no.5,pp.264 27, 1975. [14] M. Ohtake, S. Morino, T. Kaidoh, and T. Inoué, Threedimensional structural changes in cerebral microvessels after transient focal cerebral ischemia in rats: scanning electron microscopic study of corrosion casts, Neuropathology, vol. 24, no.3,pp.219 227,24. [15] M.Yemisci,Y.Gursoy-Ozdemir,A.Vural,A.Can,K.Topalkara, and T. Dalkara, Pericyte contraction induced by oxidativenitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery, Nature Medicine,vol.15,no. 9,pp.131 137,29. [16] Y. Gursoy-Ozdemir, M. Yemisci, and T. Dalkara, Microvascular protection is essential for successful neuroprotection in stroke, Neurochemistry, vol. 123, supplement2, pp. 2 11, 212.

MEDIATORS of INFLAMMATION The Scientific World Journal Gastroenterology Research and Practice Diabetes Research International Endocrinology Immunology Research Disease Markers Submit your manuscripts at BioMed Research International PPAR Research Obesity Ophthalmology Evidence-Based Complementary and Alternative Medicine Stem Cells International Oncology Parkinson s Disease Computational and Mathematical Methods in Medicine AIDS Behavioural Neurology Research and Treatment Oxidative Medicine and Cellular Longevity