Stability Indicating Method Development and Validation for the Estimation of Rotigotine by RP-HPLC in Bulk and Pharmaceutical Dosage Form

Similar documents
Hyderabad, India. Department of Pharmaceutical Chemistry, Glocal University, Saharanpur, India.

Development and validation of stability indicating RP-LC method for estimation of calcium dobesilate in pharmaceutical formulations

A New Stability-Indicating and Validated RP-HPLC Method for the Estimation of Liraglutide in Bulk and Pharmaceutical Dosage Forms

International Journal of Pharma and Bio Sciences DEVELOPMENT AND VALIDATION OF RP-HPLC METHOD FOR THE ESTIMATION OF STRONTIUM RANELATE IN SACHET

Pelagia Research Library

A stability indicating RP-HPLC method for simultaneous estimation of darunavir and cobicistat in bulk and tablet dosage form

Pelagia Research Library

CHAPTER INTRODUCTION OF DOSAGE FORM AND LITERATURE REVIEW

Simultaneous estimation of Metformin HCl and Sitagliptin in drug substance and drug products by RP-HPLC method

Journal of Chemical and Pharmaceutical Research, 2017, 9(9): Research Article

Development and validation of related substances method for Varenicline and its impurities

International Journal of Pharma and Bio Sciences

METHOD DEVELOPMENT AND VALIDATION BY RP-HPLC FOR ESTIMATION OF ZOLPIDEM TARTARATE

A Validated Stability Indicating RP-HPLC Method for Simultaneous Estimation of Valsartan and Clinidipine Combined Tablet dosage forms

Stability indicating RP-HPLC method development and validation of Etizolam and Propranolol hydrochloride in pharmaceutical dosage form

Isocratic Reversed Phase Liquid Chromatographic Method Validation for the Determination of Cilostazol in Pure and Formulations

Rao and Gowrisankar: Stability-indicating RP-HPLC Method for Pseudoephedrine, Ambroxol and Desloratadine

World Journal of Pharmaceutical Research

ANALYTICAL TECHNIQUES FOR THE QUALITY OF ANTI- AIDS DRUGS

Asian Journal of Pharmaceutical Analysis and Medicinal Chemistry Journal home page:

CHAPTER INTRODUCTION OF DOSAGE FORM AND LITERATURE REVIEW

International Journal of Pharmacy

Development and Validation for Simultaneous Estimation of Sitagliptin and Metformin in Pharmaceutical Dosage Form using RP-HPLC Method

Development and Validation of a Simultaneous HPLC Method for Quantification of Amlodipine Besylate and Metoprolol Tartrate in Tablets

RP-HPLC Analysis of Temozolomide in Pharmaceutical Dosage Forms

OPTIMIZED AND VALIDATED RP-HPLC METHOD FOR THE ESTIMATION OF NIMODIPINE IN TABLET DOSAGE FORM

VALIDATED RP-HPLC METHOD FOR SIMULTANEOUS ESTIMATION OF DEXAMETHASONE AND GRANISETRON IN COMBINED DOSAGE FORMS

J Pharm Sci Bioscientific Res (4): ISSN NO

RP-HPLC METHOD DEVELOPMENT AND VALIDATION FOR THE ESTIMATION OF BACLOFEN IN BULK AND PHARMACEUTICAL DOSAGE FORMS

International Journal of Research in Pharmaceutical and Nano Sciences Journal homepage:

A simple validated RP-HPLC method for quantification of sumatriptan succinate in bulk and pharmaceutical dosage form

Available online at Scholars Research Library

Journal of Chemical and Pharmaceutical Research

Method Development and Validation for the Estimation of Saroglitazar in Bulk and Pharmaceutical Dosage Form by RP-HPLC

Development and validation of RP-HPLC method for simultaneous estimation of gliclazide and metformin in pure and tablet dosage form

36 J App Pharm Vol. 6; Issue 1: 36-42; January, 2014 Rao et al., 2014

Ankit et al Journal of Drug Delivery & Therapeutics; 2013, 3(2), Available online at RESEARCH ARTICLE

Development and Validation of RP-HPLC Method for the Estimation of Gemigliptin

Journal of Chemical and Pharmaceutical Research, 2013, 5(1): Research Article

Simultaneous Estimation of Gemcitabine Hydrochloride and Capecitabine Hydrochloride in Combined Tablet Dosage Form by RP-HPLC Method

DEVELOPMENT AND VALIDATION OF NEW HPLC METHOD FOR THE ESTIMATION OF PALIPERIDONE IN PHARMACEUTICAL DOSAGE FORMS

New RP-HPLC Method for the Determination of Fludarabine in Pharmaceutical Dosage Forms

Development and Validation of Stability Indicating HPLC method for Determination of Eperisone HCL in Bulk and in Formulation

Development, Estimation and Validation of Lisinopril in Bulk and its Pharmaceutical Formulation by HPLC Method

DEVELOPMENT AND VALIDATION OF RP-HPLC METHOD FOR ESTIMATION OF LACOSAMIDE IN BULK AND ITS PHARMACEUTICAL FORMULATION

S. G. Talele, D. V. Derle. Department of Pharmaceutics, N.D.M.V.P. College of Pharmacy, Nashik, Maharashtra, India

Journal of Chemical and Pharmaceutical Research, 2018, 10(3): Research Article

Sanjog Ramdharane 1, Dr. Vinay Gaitonde 2

Validation of Developed Analytical Method for Balofloxacin Floating Tablets by Reverse Phase High Performance Liquid Chromatography

ISSN (Print)

AMERICAN JOURNAL OF BIOLOGICAL AND PHARMACEUTICAL RESEARCH

(ACE) inhibitor class that is primarily used in cardiovascular. conditions. Lisinopril was introduced into therapy in the early

RP-HPLC Method Development and Validation of Abacavir Sulphate in Bulk and Tablet Dosage Form

DEVELOPMENT AND STABILITY INDICATING HPLC METHOD FOR DAPAGLIFLOZIN IN API AND PHARMACEUTICAL DOSAGE FORM

International Journal of Farmacia

DEVELOPMENT AND VALIDATION OF RP-HPLC METHOD FOR SIMULTANEOUS ESTIMATION OF ETORICOXIB AND THIOCOLCHICOSIDE IN PHARMACEUTICAL DOSAGE FORMS

Volume 2 (6), 2014, Page CODEN (USA)-IJPRUR, e-issn: International Journal of Pharma Research and Health Sciences

DEVELOPMENT AND VALIDATION OF RP-HPLC METHOD FOR QUANTITATIVE ANALYSIS TOLBUTAMIDE IN PURE AND PHARMACEUTICAL FORMULATIONS

Dhull Rohit, Kumar Sanjay, Jalwal Pawan Department of Chemistry, OPJS Churu, Rajasthan, India

NOVEL RP-HPLC METHOD. B.Lakshmi et a. concentration range KEY INTRODUCTION. Diltiazem is used to. . It works by of contractionn of the. (dilate).

Development and Validation of Stability Indicating HPTLC Method for Estimation of Seratrodast

Analytical Method Development and Validation for the Estimation of Guaifenesin and Dextromethorphan by RP-HPLC

RP-HPLC METHOD DEVELOPMENT AND VALIDATION FOR SIMULTANEOUS ESTIMATION OF THIOCOLCHICOSIDE AND LORNOXICAM IN TABLET DOSAGE FORM

International Journal of Drug Research and Technology

Estimation of Zanamivir Drug present in Tablets using RP-HPLC Method

Scholars Research Library

Stress Degradation Studies And Validation Method For Quantification Of Aprepitent In Formulations By Using RP-HPLC

Pankti M. Shah et al, Asian Journal of Pharmaceutical Technology & Innovation, 04 (17); 2016; 07-16

Available online Research Article

Pelagia Research Library

Reverse Phase HPLC Analysis of Atomoxetine in Pharmaceutical Dosage Forms

Tentu Nageswara Rao et al. / Int. Res J Pharm. App Sci., 2012; 2(4): 35-40

Scholars Research Library


Simple and stability indicating RP-HPLC assay method development and validation lisinopril dihydrate by RP-HPLC in bulk and dosage form

Asian Journal of Pharmaceutical Analysis and Medicinal Chemistry Journal home page:

Volume 6, Issue 1, January February 2011; Article-021

Airo International Research Journal ISSN : Volume : 7 October 2015

Abstract. G. D. Patil 1, P. G. Yeole 1, Manisha Puranik 1 and S. J. Wadher 1 *

IJPAR Vol.3 Issue 4 Oct-Dec-2014 Journal Home page:

Available online Research Article

Development and Validation of RP-HPLC Method for the Simultaneous Estimation of Haloperidol and Trihexyphenidyl in API and Combined Tablet Dosage Form

Journal of Chemical and Pharmaceutical Research

438 Full Text Available On

DEVELOPMENT AND VALIDATION OF RP-HPLC METHOD FOR QUANTITATIVE ANALYSIS OF TRAMADOL IN PURE AND PHARMACEUTICAL FORMULATIONS

ESTIMATION OF OXOLAMINE PHOSPHATE INDICATING HPLC METHOD: METHOD DEVELOPMENT AND VALIDATION

Uttam Prasad Panigrahy 1, A. Sunil Kumar Reddy 2, 3 1 Department of Pharmaceutical Analysis and Quality Assurance, Malla Reddy College of Pharmacy,

Research Article Simultaneous Estimation of DL-Methionine and Pyridoxine Hydrochloride in Tablet Dosage Form by RP-HPLC

Scholars Research Library. Der Pharmacia Lettre, 2015, 7 (5):44-49 (

Corresponding Author:

SIMULTANEOUS QUANTIFICATION OF TELMISARTAN AND METOPROLOL SUCCINATE IN TABLETS BY LIQUID CHROMATOGRAPHY

Sujatha and Pavani et.al. Indian Journal of Research in Pharmacy and Biotechnology ISSN: (Print) ISSN: (Online)

RP- HPLC and Visible Spectrophotometric methods for the Estimation of Meropenem in Pure and Pharmaceutical Formulations

Department of Pharmaceutical Analysis, Joginpally B.R. Pharmacy College, Yenkapally, Moinabad, R.R. Dist, A.P, India

Development of a Validated RP-HPLC Method for the Analysis of Citicoline Sodium in Pharmaceutical Dosage Form using Internal Standard Method

A New RP-HPLC Method for the Simultaneous Estimation of Naltrexone Hydrochloride and Bupropion in Its Pure and Pharmaceutical Dosage Form

International Journal of Research in Pharmaceutical and Nano Sciences Journal homepage:

RP-HPLC Method for the Simultaneous Estimation of Sitagliptin Phosphate and Metformin Hydrochloride in Combined Tablet Dosage Forms

Int. J. Pharm. Sci. Rev. Res., 30(1), January February 2015; Article No. 32, Pages:

DEVELOPMENT AND VALIDATION OF RP-HPLC METHOD ESTIMATION OF TOLVAPTAN IN BULK PHARMACEUTICAL FORMULATION

Transcription:

ORIENTAL JOURNAL OF CHEMISTRY An International Open Free Access, Peer Reviewed Research Journal www.orientjchem.org ISSN: 0970-020 X CODEN: OJCHEG 2015, Vol. 31, No. (4): Pg. 2499-2505 Stability Indicating Method Development and Validation for the Estimation of Rotigotine by RP-HPLC in Bulk and Pharmaceutical Dosage Form P. GEETHA SWARUPA 1, D. RADHA KRISHNA 2, K.R.S.PRASAD 1 and K.SURESH BABU 2 * 1 Department of Chemistry, K.L. University, Vaddeswaram, 02, India. 2 Department of Chemistry, Mallareddy Engineering College, 14, India. *Corresponding author E-mail: babuiict@gmail.com http://dx.doi.org/10.13005/ojc/310486 (Received: July 12, 2015; Accepted: August 04, 2015) ABSTRACT The purpose of the investigation was to develop a new RP-HPLC Method for estimation of Rotigotine in pharmaceutical dosage forms. Chromatography was carried out on an BDS C-8 column (4.6 x 150mm, 5µ particle size) with a isocratic mobile phase composed of 0.01N Potassium dihydrogen Ortho phosphate (adjusted to ph 4.8 with OPA solution), Acetonitrile (45:55v/v) at a flow rate of 1 ml/min. The column temperature was maintained at 30 C and the detection was carried out using a PDA detector at 224 nm. Validation parameters such as system suitability, linearity, precision, accuracy, specificity, limit of detection (LOD), limit of quantification (LOQ), Stability of sample and standard stock solutions and robustness were studied as reported in the International Conference on Harmonization guidelines. The retention time for Rotigotine was 2.691 min. The percentage recoverie of Rotigotine was 100.33%. The relative standard deviation for assay of patch was found to be less than 2%. The Method was fast, accurate, precise and sensitive hence it can be employed for routine quality control of patchs containing both drugs in quality control laboratories and pharmaceutical industries. Key words: Rotigotine, ICH guidelines. INTRODUCTION Rotigotine (Rotigotine) is chemically named as 6-{propyl[2-(thiophen-2-yl)ethyl]amino}- 5,6,7,8-tetrahydronaphthalen-1-ol. Rotigotine (Neupro) is a non-ergoline dopamine agonist indicated for the treatment of Parkinson s disease (PD) and restless legs syndrome (RLS) in Europe and the United States. It is formulated as a oncedaily transdermal patch which provides a slow and constant supply of the drug over the course of 24 hours 1. Rotigotine behaves as a partial or full agonist (depending on the assay) at all dopamine receptors listed, as an antagonist at the á 2B - adrenergic receptor, and as a partial agonist at the 5-HT 1A receptor 2. Rotigotine is an agonist at all 5 dopamine receptor subtypes (D1-D5) but binds to the D3 receptor with the highest affinity. It is also an

2500 SWARUPA et al., Orient. J. Chem., Vol. 31(4), 2499-2505 (2015) antagonist at α-2-adrenergic receptors and an agonist at the 5HT1A receptors. Rotigotine also inhibits dopamine uptake and prolactin secretion. There is no indication of a QT/QTc prolonging effect of Neupro in doses up to 24 mg/24 hours 3. Various UPLC & HPLC assay Methods are also reported in the literature for the estimation of Rotigotine 4-5. According to literature survey there is official Method for the estimation of Rotigotine by RP-HPLC in patch dosage forms. Hence, an attempt has been made to develop better Method for estimation and validation of Rotigotine in formulation in accordance with the ICH guidelines 6-10. EXPERIMENTAL Instrumentation Chromatography was performed with Alliance waters 2695 HPLC provided with high speed auto sampler, column oven, degasser and & 2996 PDA detector to provide a compact and with class Empower-2 software. Reagents and chemicals The reference sample of Rotigotine was provided as gift samples from Spectrum pharma research solutions, Hyderabad. HPLC grade acetonitrile, HPLC grade Methanol and all other chemicals were obtained from Merck chemical division, Mumbai. HPLC grade water obtained from Milli-Q water purification system was used throughout the study. Commercial formulation (Neupro ; Dosage: Rotigotine-4mg patch) were purchased from the local pharmacy. Chromatographic condition The chromatographic separation was carried out under the isocratic conditions. Chromatographic separation was achieved by injecting a volume of 10µl of standard into BDS (150 x 4.6 mm, 5m) column. The mobile phase composed of 0.01N Potassium dihyrogen Ortho phosphate (adjusted to ph 4.8 with triethylamine solution), Acetonitrile (45:55v/v) was allowed to flow through the column at a flow rate of 1 ml per minute for a period of 7 min at 30 0 C column temperature. Detection of the component was carried out at a wavelength of 224 nm. The retention time of the component was found to be 2.691 min for Rotigotine. Preparation of diluent solution Diluent solution was prepared by mixing 500 ml of HPLC grade water with 500ml of Acetonitrile, in a 1000ml beaker and sonicated for 15min. Preparation of standard stock solution Accurately Weighed and transferred 4mg of Rotigotine working Standards into 10ml clean dry volumetric flasks, add 3/4 th vol of diluent, sonicated for 30 minutes and make up to the final volume with diluents.from the above stock solution, 1 ml was pipeted out in to a 10ml Volumetric flask and then make up to the final volume with diluent. Preparation of Working Standard Solutions Aliquot of 0.25, 0.50, 0.75, 1, 1.25 & 1.5 ml were pipette out from stock solution into 10 ml volumetric flask separately for both ROTIGOTINE and volume was made up to 10 ml with diluent. This gives the solutions of 10, 20, 30, 40, 50and 60µg/mL for Rotigotine. Sample preparation 5 patchs were weighed and calculate the average weight of each patch then the weight equivalent to 1 patch was transferred into a 10mL volumetric flask, 7mL of diluent added and sonicated for 25 min, further the volume made up with diluent and filtered. From the filtered solution 1ml was pipette out into a 10 ml volumetric flask and made upto 10ml with diluent. Method validation System suitability tests To ensure the resolution and reproducibility of the HPLC system was adequate for the analysis, a system suitability test was established. Data from six injections of 10 µl of the working standard solutions of Rotigotine was used for the evaluation of the system suitability parameters like tailing factor, the number of theoretical plates, retention time. Linearity By appropriate aliquots of the standard Rotigotine solution with the mobile phase, six working solutions ranging between 10-60 µg/ml

SWARUPA et al., Orient. J. Chem., Vol. 31(4), 2499-2505 (2015) 2501 was prepared. Each experiment linearity point was performed in triplicate according to optimized chromatographic conditions. The peak areas of the chromatograms were plotted against the concentration of Rotigotine to obtain the calibration curve. Accuracy Recovery studies by the standard addition Method were performed with a view to justify the accuracy of the proposed Method. Previously analyzed samples of Rotigotine to which known amounts of standard Rotigotine corresponding to 50%, 100% and 150% of target concentration were added. The accuracy was expressed as the percentage of analyte recovered by the proposed Method. Precision Precision was determined as repeatability and intermediate precision (ruggedness), in accordance with ICH guidelines. The intra-day and inter-day precision were determined by analyzing the samples of Rotigotine. Determinations were performed on the same day as well as well as on consequent days. Limit of detection and the limit of quantification Limit of detection (LOD) and limit of quantification (LOQ) of Rotigotine was determined by calibration curve Method. Solutions of both Rotigotine was prepared in linearity range and injected in triplicate. Average peak area of three analyses was plotted against concentration. LOD and LOQ were calculated by using following equations. LOD = (3.3 Syx)/b, LOQ= (10.0 Syx)/b Where Syx is residual variance due to regression; b is slope. Robustness The robustness of Rotigotine was performed by deliberately changing the chromatographic conditions. The organic strength was varied by ±5%, column temperature was varied by ±5 0 c and the flow rate was varied by ±0.1mL. Stability The sample and standard solutions injected at 0 hr (comparison sample) and after 24 hr (stability sample) by keeping at ambient room temperature. Stability was determined by determining %RSD for sample and standard solutions. Degradation studies Oxidation To 1 ml of stock solution of Rotigotine, 1 ml of 20% hydrogen peroxide (H2O2) was added separately. The solutions were kept for 30 min at 60 0 c. For HPLC study, the resultant solution was diluted to obtain 40µg/ml solution and 10 µl were injected into the system and the chromatograms were recorded to assess the stability of sample. Acid Degradation Studies To 1 ml of stock s solution Rotigotine, 1ml of 2N Hydrochloric acid was added and refluxed for 30mins at 60 0 c.the resultant solution was diluted to obtain 40µg/ml l solution and 10 µl solutions were injected into the system and the chromatograms were recorded to assess the stability of sample. Alkali Degradation Studies To 1 ml of stock solution Rotigotine, 1 ml of 2N sodium hydroxide was added and refluxed for 30mins at 60 0 c. The resultant solution was diluted to obtain 40µg/ml solution and 10 µl were injected into the system and the chromatograms were recorded to assess the stability of sample. Dry Heat Degradation Studies The standard drug solution was placed in oven at 105 0 c for 6 h to study dry heat degradation. For HPLC study, the resultant solution was diluted to 40µg/ml solution and10µl were injected into the system and the chromatograms were recorded to assess the stability of the sample. Photo Stability studies The photochemical stability of the drug was also studied by exposing the 40µg/ml solution to UV Light by keeping the beaker in UV Chamber for 7days or 200 Watt hours/m 2 in photo stability chamber. For HPLC study, the resultant solution was diluted to obtain 40µg/ml solutions and 10 µl were injected into the system and the chromatograms were recorded to assess the stability of sample.

2502 SWARUPA et al., Orient. J. Chem., Vol. 31(4), 2499-2505 (2015) Neutral Degradation Studies Stress testing under neutral conditions was studied by refluxing the drug in water for 6hrs at a temperature of 60º. For HPLC study, the resultant solution was diluted to 40µg/ml solution and 10 µl were injected into the system and the chromatograms were recorded to assess the stability of the sample. Statistical analysis Wherever applicable, results were expressed as the Mean±SD, %RSD and data were analyzed statistically by using t- test with aid of Microsoft excel-2007 software and data were considered not significantly different at 5% significance level of probability P 0.05. RESULTS AND DISCUSSION Rotigotine method development Initially reverse phase liquid chromatography separation was tried to develop using various ratios of Methanol and Water, Acetonitrile and Water as mobile phases, in which drugs did not responded properly, and the resolution was also poor. The organic content of mobile phase was also investigated to optimize the separation of both drugs. To improve the tailing factor, the ph of mobile phase becomes important factor. Thereafter, 0.01N Potassium dihyrogen Ortho phosphate buffer (adjusted to ph 4.8 with dil. Orthophosphoric acid solution): acetonitrile were taken in isocratic ratio: 45:55 and with flow rate of 1.0 ml/min was employed. BDS column (4.6 x150mm, 5µ particle size) was selected as the stationary phase to improve resolution and the tailing of both peaks Table 1: System suitability of Rotigotine System suitability parameters Rotigotine No of theoretical plates 3999 Tailing Factor 1.58 RT 2.6 min Mean Area 3072763 %RSD 0.5 Table 2: Results of accuracy of Rotigotine Sample Amount Amount Recovery % Taken Recovered (%) RSD (µg/ml) (µg/ml) Rotigotine 20 19.9 99.96 0.67 40 40.34 100.87 1.79 60 60.36 100.61 0.58 Table 3: Results of Precision for Rotigotine Repeatability data Inter day precision S. No. Rotigotine S. No. Rotigotine 1 3077904 1 3053027 2 3096311 2 3050091 3 3116531 3 3077065 4 3111634 4 3073134 5 3098633 5 3084300 6 3070659 6 3090325 Mean 3095279 Mean 3071324 Std. Dev. 18107.9 Std. Dev. 16439.4 %RSD 0.59 %RSD 0.54 Table 4: Results of Robustness for Rotigotine Analytical Flow rate (ml/min) Column temperature ( o c) Mobile phase conditions composition Evaluation 1.1 0.9 35 25 +5% -5% parameters Mean RT 2.591 2.987 2.611 2.731 2.600 2.721 Mean area 3048031 3403787 3018805 3064543 3053761 3067798 SD 10666.3 39797.1 6636 48289.2 39506.9 58676.3 RSD 0.35 1.17 0.22 1.58 1.29 1.91 Tailing factor 1.40 1.57 1.49 1.48 1.39 1.49 No. of theoretical plates 4759 4031 4375 4626 4760 4379

SWARUPA et al., Orient. J. Chem., Vol. 31(4), 2499-2505 (2015) 2503 Table 5: Results of stock solution stability for Rotigotine Drug %Assay at 0 hr %Assay at 24 hr %Devaition ROTIGOTINE 100.33 99.07 1.26 Table 6: Results of HPLC Analysis of patcht for Rotigotine Label amount (mg) Amount found(mg) n=6 %Assay (Mean±SD) RSD 4 4.013 100.33±1.098 0.59 Table 7: Results of HPLC Degradation of Rotigotine Degradation parameter Purity angle Purity treshould %Drug degradated Acid degradation 0.128 0.273 3.87 alkali degradation 0.089 0.263 1.99 oxidative degradation 0.190 0.267 5.91 Thermal degradation 0.091 0.268 0.83 Photolytic degradation 0.109 0.267 0.97 Neutral degradation 0.090 0.273 0.72 were reduced considerably and brought close to 1. To analyze drug detection were tried at wavelengths 224nm. Rotigotine showed maximum absorption at 224nm of wavelength and 224 nm was selected as the detection wavelength for PDA detector. The retention times were found to about 2.691 min for Rotigotine. The chromatogram obtained was shown in the Fig. 2. Rotigotineand met method Validation: System suitability and Specificity System suitability parameters such as number of theoretical plates, peak tailing, and retention time was determined. The total run time required for the method is only 6 minutes for eluting Rotigotine. The results obtained were shown in Table 1. The chromatogram obtained for blank and spiked was shown in the Fig. 3. Linearity Rotigotine showed a linearity of response between 10-60 µg/ml. These were represented by a linear regression equation as follows: y (Rotigotine) = 62185x + 290.46 (r 2 =0.999), (r2=0.999) and regression line was established by least sqsuares method and correlation coefficient (r 2 ) for Rotigotine is found to be greater than 0.98. Hence the curves established were linear. Accuracy To pre analyzed sample solution, a definite concentration of standard drug (50%, 100% & 150 % level) was added and recovery was studied. The % Mean recovery for Rotigotine are 100.48% and these results are within acceptable limit of 98-102. The % RSD for Rotigotine was 1.08 and %RSD for Rotigotine is within limit of d 2, hence the proposed method is accurate and the results were summarized in Table 2. Precision Repeatability Six replicates injections in same concentration (40µg/ml of Rotigotine) were analyzed in the same day for repeatability and the % RSD for Rotigotine found to be 0.59 and % RSD for Rotigotine found to be within acceptable limit of 2 and hence method is reproducible and the results are shown in Table No. 3. Intermediate Precision Six replicates injections in same

2504 SWARUPA et al., Orient. J. Chem., Vol. 31(4), 2499-2505 (2015) concentration were analyzed on two different days with different analyst and column for verifying the variation in the precision and the % RSD for Rotigotine is found to be 0.54 and it is within acceptable limit of 2. Hence the Method is reproducible on different days with different analyst and column. This indicates that the method is precise and the results are as shown in Table 3. Rotigotine Fig.1: Chemical structures of drugs investigated in this study Robustness The robustness was established by changing the flow rate, column temperature and composition of the mobile phase within allowable limits from actual chromatographic conditions. It was observed that there were no marked change in Fig. 2: A typical Chromatogram of Rotigotine Fig. 3: Chromatograms of Blank(a) and spiked (b)

SWARUPA et al., Orient. J. Chem., Vol. 31(4), 2499-2505 (2015) 2505 LOD and LOQ LOD and LOQ for Rotigotine were 0.05 and 0.15 µg/ml respectively. The lowest values of LOD and LOQ as obtained by the proposed Method indicate that the Method is sensitive. Patcht Analysis The Content of Rotigotine in the patchs was found by the proposed method. RSD values for both Rotigotine was within limit of 2 and the results were shown in Table 6. Fig. 4: Degradation overlay chromatogram mean R t and RSD is within limit of 2.The tailing factor, resolution factor and no. of theoretical plates are found to be acceptable limits for Rotigotine. Hence the Method is reliable with variations in the analytical conditions and the results of Rotigotine was shown in Table 4. Stability of sample solution The sample solution injected after 24 hr by keeping at ambient room temperature 30 O C did not show any appreciable change. The % Deviation in the assay is not more than 2 and the results are shown in table 5. Degradation studies The degradation studies for Rotigotine was performed by various conditions like Acid, Alkali, Oxidation, Thermal, Photolytic and Neutral Degradation Studies and their limits like purity angle and purity threshold values like purity angle< purity threshold and the results shown in table 7. CONCLUSION A new precise accurate and simple HPLC Method was developed and validated for estimation of Rotigotine pharmaceutical dosage form. This Method is fast, accurate, precise and sensitive hence it can be employed for routine quality control of patch containing drug in QC laboratories and industries. REFERENCES 1. Chen, J, J.; Swope, D, M.; Dashtipour, K.; Lyons, K, E. Pharmacother. 2009, 29 (12),1452 67. 2. Scheller, D.; Ullmer, C.; Berkels, R.; Gwarek, M.; Lübbert, H. Naunyn Schmiedebergs Arch Pharmacol. 2009, 379(1),73 86. 3. Loschmann, P. Eur. J. Pharmacol. 1989,166, 373. 4. Murali, K, P.; Thirupathi, R, B.; Kishore, K, R; Venkateswarlu, P. Rese Jour Pub Bio Chem Sci. 2010,1(4), 848-857. 5. Avinash, S.; Shakil, S.; Girish, D.; Prakash, K, A.; Veeravenkata, S, K. Der Pharma Chem. 2015;7(5):26-34. 6. ICH., Stability testing of new drug substances and products (Q1AR). International conference on harmonization, IFPMA, Stability Testing of New Drug Substances and Products: Geneva, 2000. 7. ICH, Q1A (R2) Stability Testing of New Drug Substances and Products, International Conference on Harmonization, Geneva, 2003. 8. ICH, Q1B Stability Testing: Photo stability Testing of New Drug Substances and Products, International Conference on Harmonization, Geneva, 1996. 9. Maheshwaran, R., FDA Perspectives: Scientific Considerations of Forced Degradation Studies in ANDA Submissions, Pharmaceutical Technology, 2012: 36, 73-80. 10. Snyder, L.R., Kirkland, J.J., Glajch, J.L., Practical HPLC Method Development, 2 nd ed., Wiley, New York 1997.