Ophthalmic tumors. Wolfgang Sauerwein

Similar documents
Can Protons replace Eye Brachytherapy? 1 Department of Radiation Oncology

Inherent precision. Ru-106 Eye Applicators and I-125 Ophthalmic Seeds.

Proton Radiation Therapy of Ocular Melanoma at PSI

PEDIATRIC ORBITAL TUMORS RADIOTHERAPY PLANNING

Factory loaded, sterilized, ready to implant plaques:!

Vitreoretinal surgical management In ocular oncology

ROPES eye plaque dosimetry: commissioning and verification of an ophthalmic brachytherapy treatment planning system

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

Retina Center of Oklahoma Sam S. Dahr, M.D. Adult Intraocular Tumors

Characterization and implementation of Pencil Beam Scanning proton therapy techniques: from spot scanning to continuous scanning

Proton Treatment. Keith Brown, Ph.D., CHP. Associate Director, Radiation Safety University of Pennsylvania

Cyberknife Radiosurgery for Uveal Melanoma

ADVANCES IN RADIATION TECHNOLOGIES IN THE TREATMENT OF CANCER

Uveal Melanoma. Protocol applies to malignant melanoma of the uvea.

Future upcoming technologies and what audit needs to address

Proton and heavy ion radiotherapy: Effect of LET

Pseudohypopyon in Retinoblastoma. Choroidal Nevus. Masquerade Syndromes. Vision pathways. Flat with uniform color

Case Rep Oncol 2012;5: DOI: /

I. Equipments for external beam radiotherapy

Proton Stereotactic Radiotherapy: Clinical Overview. Brian Winey, Ph.D. Physicist, MGH Assistant Professor, HMS

9.5. CONVENTIONAL RADIOTHERAPY TECHNIQUE FOR TREATING THYROID CANCER

Dosimetric Benefit of a New Ophthalmic Radiation Plaque

Carlo Mosci. Ocular Oncology Service Galliera Hospital Genova Italy (

Systemic and ocular follow-up after conservative management of an intraocular tumor

Electron therapy Class 3: Clinical procedures

JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 6, NUMBER 2, SPRING 2005

Radiotherapy. Marta Anguiano Millán. Departamento de Física Atómica, Molecular y Nuclear Facultad de Ciencias. Universidad de Granada

A RESOURCE MANUAL MANAGEMENT RETINOBLASTOMA LOW & MIDDLE RESOURCE SETTINGS

Research Article Outcomes and Control Rates for I-125 Plaque Brachytherapy for Uveal Melanoma: A Community-Based Institutional Experience

CLINICAL PEARLS IN OCULAR ONCOLOGY

First, how does radiation work?

A Little Physics. How Does It Work? Radiation Therapy for Choroidal Neovascularisation in AMD A Review. => cell death

Radiotherapy and tumours in veterinary practice: part one

Non-target dose from radiotherapy: Magnitude, Evaluation, and Impact. Stephen F. Kry, Ph.D., D.ABR.

Glaucoma. Cornea. Iris

PRODUCTION ANIMAL AND EQUINE OPHTHALMOLOGY

Visual Acuity, Contrast Sensitivity and Color Vision Three Years After Iodine-125 Brachytherapy for Choroidal and Ciliary Body Melanoma

PROGRESS IN HADRONTHERAPY

Gene Expression Profiling has been proposed as a method of risk stratification for uveal melanoma.

Outline. Chapter 12 Treatment Planning Combination of Beams. Opposing pairs of beams. Combination of beams. Opposing pairs of beams

Advances in Ocular Imaging

EVIDENCE BASED MANAGEMENT FOR Retinoblastoma

Sarcoma and Radiation Therapy. Gabrielle M Kane MB BCh EdD FRCPC Muir Professorship in Radiation Oncology University of Washington

CONFLUENCE - EYE AND BEYOND

Chapters from Clinical Oncology

Measurement of Dose to Implanted Cardiac Devices in Radiotherapy Patients

3D Conformal Radiation Therapy for Mucinous Carcinoma of the Breast

Production and dosimetry of simultaneous therapeutic photons and electrons beam by linear accelerator: a monte carlo study

Advanced Technology Consortium (ATC) Credentialing Procedures for 3D Conformal Therapy Protocols 3D CRT Benchmark*

Three-dimensional dosimetry imaging of I-125 plaque for eye cancer treatment

IMPT with Carbon Ions

Episcleral plaque brachytherapy has been proposed as an

Scrub In. What is the function of vitreous humor? What does the pupil do when exposed to bright light? a. Maintain eye shape and provide color vision

JINNAH SINDH MEDICAL UNIVERSITY STUDY GUIDE- OPHTHALMOLOGY YEAR 4,

PTCOG 46. Educational Workshop Session IV. Head & Neck CLINICAL. J. Mizoe (NIRS, Japan)

Financial Disclosures. The Eye in Neoplastic Disease. Course Goal. We wish to acknowledge and thank: Tumor Definition

Tall, dark and.. Uh oh

COMPARISON OF RADIOBIOLOGICAL EFFECTS OF CARBON IONS TO PROTONS ON A RESISTANT HUMAN MELANOMA CELL LINE

UCSF Uveal Melanoma Program: Outcomes with Proton Beam Radiation Therapy Kavita K. Mishra, M.D., M.P.H. UCSF Comprehensive Cancer Center

Retinoblastoma. Protocol applies to retinoblastoma only.

Plaque Radiotherapy in Recurrent or Incomplete- Excised Conjunctival Squamous Cell Carcinoma and Melanoma

Bilateral Retinoblastoma Joseph Junewick, MD FACR

I t is possible to apply large doses of

Treatment Planning for Skull Base Tumors PTCOG 52, June 2013

6/29/2012 WHAT IS IN THIS PRESENTATION? MANAGEMENT OF PRIMARY DEVICES INVESTIGATED MAJOR ISSUES WITH CARDIAC DEVICES AND FROM MED PHYS LISTSERVS

Complicated Cataract to Intraocular Tumors, Beware of the unexpected

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

Heavy Ion Tumor Therapy

Optimisation of eye plaque dosimetry using Monte Carlo method. J. Green, D. Cutajar, S. Guatelli, & Rosenfeld, A.B.

Retinoblastoma: A Review of Current Treatment Strategies

Ocular Anatomy for the Paraoptometric

Financial Disclosures

A practical approach to estimating optic disc dose and macula dose without treatment planning in ocular brachytherapy using 125 I COMS plaques

S. Derreumaux (IRSN) Accidents in radiation therapy in France: causes, consequences and lessons learned

Clinical Report for Wanjie Proton Therapy Center. Li Jiamin, MD Wanjie Proton Therapy Center

NOVEL SOFTWARE MODULES FOR TREATMENT PLANNING OF 106 RU EYE PLAQUE BRACHYTHERAPY

A REANALYSIS OF THE COLLABORATIVE OCULAR MELANOMA STUDY MEDIUM TUMOR TRIAL EYE PLAQUE DOSIMETRY

8/2/2017. Acknowledgement. Disclaimer. How to manage radiotherapy patients with CIED from initial consult to treatment: TG203 recommendations

Outline. Brief history and principles of ophthalmic ultrasound. Types of ocular ultrasound. Examination techniques. Types of Ultrasound

An Interactive TreatmentPlanning System For Ophthalmic Plaque Radiotherapy

IMRT for Prostate Cancer

Additional Questions for Review 2D & 3D

Diffuse infiltrating retinoblastoma

SITE OF ELECTIVE: OCULAR ONCOLOGY DEPARTMENT, WILLS EYE INSTITUTE, PHILADELPHIA, PENNSYLVANNIA, USA

III. Proton-therapytherapy. Rome SB - 5/5 1

Can we deliver the dose distribution we plan in HDR-Brachytherapy of Prostate Cancer?

Dose to professionals in epiescleral brachytherapy

Radiotherapy in feline and canine head and neck cancer

Understanding Radiation Therapy. For Patients and the Public

Figure 1.1 PHITS geometry for PTB irradiations with: broad beam, upper panel; mono energetic beams, lower panel. Pictures of the setups and of the

Choroidal Melanoma: from diagnosis to treatment

Institute of Oncology & Radiobiology. Havana, Cuba. INOR

Continuing Medical Education

Online in vivo dosimetry in conformal radiotherapies with MOSkin detectors

Treatment Planning Evaluation of Volumetric Modulated Arc Therapy (VMAT) for Craniospinal Irradiation (CSI)

National Guidelines for the management of uveal melanoma. Sponsored by Melanoma Focus

Dose Assessment of Eye and Its Components in Proton Therapy by Monte Carlo Method

Large-area Two-Dimensional Thermoluminescence Dosimetry System in Ion Beam Quality Assurance

Potential benefits of intensity-modulated proton therapy in head and neck cancer van de Water, Tara Arpana

-Proton Beam Therapy in Paediatric Radiation Oncology -

Transcription:

Ophthalmic tumors Wolfgang Sauerwein

Today s menu Introduction and some basics on uveal melanoma Brachytherapy for intraocular tumors Proton therapy for intraocular tumors Proton therapy for conjunctival melanoma High energy beams and PBS in ocular tumors? Controversial issues irradiation of retinoblastoma radiotherapy of the orbit in small children Folie 2 2 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014

Ophthalmic tumors Rare diseases In Germany 800 new cases per year (>500 of them treated in Essen) What is different to normal radiotherapy? Very small treatment volume (electron equilibrium??) Very close to important functional structures Treated in dedicated centers with different equipment Special techniques are mandatory Folie 3 3 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014

Ophthalmic tumors: Target volumes the entire eye (metastases) Localized tumor in the eye (melanoma, retinoblastoma) the retina and the vitreous (retinoblastoma, lymphoma) the orbit (retinoblastoma, melanoma ) others (iris, conjunctiva ) Folie 4 4 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014

Ophthalmic tumors: Irradiation techniques Brachytherapy 90 Sr 106 Ru 125 I Folie 5 5 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014

Ophthalmic tumors: Irradiation techniques External beam radiotherapy photons et electrons Folie 6 6 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014

Ophthalmic tumors: Irradiation techniques External beam radiotherapy protons Folie 7 7 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014

Ophthalmic tumors: Irradiation techniques External beam radiotherapy X rays Folie 8 8 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014

Brachytherapy INTRAOCULAR TUMORS Folie 9 9 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014

Irradiation of a tumor in the eye: uveal melanoma Protection of the optic nerve, the papilla and the macula, the orbit Dose >100 Gy Techniques - brachytherapy using radioactive plaques - protons Folie 10 10 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014

Survival rate Chromosome 3 status predicts survival Tumour related survival of 374 enucleated patients (1998 2008) Tumors with partial monosomy 3 Tumors with disomy 3 AI monosomy 3 Folie 11 11 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014 Months after treatment of the primary tumour

Metastases in uveal melanoma risk factors genetics localization size extra-ocular growth Folie 12 12 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014

Ru-106 plaques -irradiation with a background of /Bremsstrahlung maximal energy of rays: 3,53 MeV half-life: 366 days steep dose gradient: in 6 mm depth ~ 10% of dose rate at the surface big choice of different applicators prescribed dose: at the sclera 700 (- 1500 )Gy at tumor apex >130 Gy indicated for tumors 6 mm height Folie 13 13 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014

Ru-106 plaques Folie 14 14 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014

I-125 plaques Photon irradiation mean energy 27-35 kev Half life: 60 days in 10-12 mm depth 10% of dose rate at the surface Plaques have to be produced at the hospital (8-12 seeds/plaque) Prescribed dose: at the sclera 300(- 500 )Gy at tumor apex >80 Gy Indication for tumors 8-12 mm height Folie 15 15 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014

I-125 plaques plaque in stainless steel with Persepex inlay Folie 16 16 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014

I-125 / Ru-106 bi-nuclide-plaque 3 2 1 Folie 17 17 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014

Dosimetry for b-emitters Relative dosimetry difficult but we know how to do Absolute dosimetry real challenging only feasible together with the national standard laboratories (PTB, NIST) Folie 18 18 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014

Dose distribution of a 106 Ru-plaque tumor: 8 mm dose: apex: 100 Gy base: 2200 Gy sclera opposite: 1Gy Folie 19 19 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014

Dose distribution of a 125 I-plaque tumor: 8 mm dose: apex: 100 Gy base : 440 Gy sclera opposite: 15 Gy Folie 20 20 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014

Dose distribution of a bi-nuclide plaque tumor: 8 mm dose: apex: 100 Gy base 1200 Gy sclera opposite: 9 Gy Folie 21 21 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014

I-125 / Ru-106 bi-nuclide-plaque Advantages as compared to a 125 I-plaque > contact dose < integral dose > dose to the tumor < dose to structures at risk For tumors with height 7 11 mm Folie 22 22 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014

Modified peneasy/penelope simulation CCB plaque, 7.5 mm apical height tumour Strahlenther Onkol (2013) 189, 68-73 Folie 23 23 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014

Modified peneasy/penelope simulation Cumulative dose-volume histograms Folie 24 24 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014 Strahlenther Onkol (2013) 189, 68-73

Surgical technique Additional mattress suture Correlation of ophthalmoscopy and transillumination Folie 25 25 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014

Follow up after Ru-106 brachytherapy juxta-papillary melanoma 8 mois 33 mois Folie 26 26 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014

Local recurrences after Ru-106 P<0.001 N=1069 Tumor thickness < 4 mm 4-7 mm > 7 mm mois Folie 27 27 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014

Visual acuity after after Ru-106 vision N=898 Blindness = CF and less N = 2536 juxtapapillary midperiphery periphery/cb months Folie 28 28 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014 months

Visual acuity after I-125 Shields et al. 2000 Folie 29 29 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014

Ru-106: limits scleral necrosis incomplete destruction Tumor height Folie 30 30 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014

I-125: limits Complications Long standing exsudative retinal detachment Radiation cataract Radiation induced optic neuropathy Radiation retinopathy, ocular ischemia, neovascular glaucoma Folie 31 31 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014

I-125: limits Folie 32 32 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014

I-125/Ru-106 bi-nuclide-plaque results N=100; mean follow-up 30 months Secondary enucleation in 15 eyes, 2 because of recurrent tumor growth Complications: Cataract 66% Retinopathy 47% Radiation papillopathy 44% Scleral staphyloma 15% Secondary glaucoma 11% Folie 33 33 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014

Retinoblastoma brachytherapy 106 Ru vs. 125 I Essen (2005) Shields et al (2001) Treatment period 1979-2005 1976-1999 Treated tumors 175 ( 106 Ru) 178 ( 125 I) Mean age [months] 23 (0.2 150) 12 (1 96) Tumour diameter [mm] 7.5 ( 1.5 22) 7.7 ( 1-18) Tumour height [mm 3.7 ( 1-7.6) 4.1 ( 0.5 12) Distance to optic disk [mm] 7.2 ( 0 21) 6.4 ( 0 17) Retinal detachment 22 / 175 31 / 178 Vitreous seeding 37 /175 15 / 178 Primary brachytherapy 56 / 175 60 / 178 Mean duration of radiation 69 h 68 h Mean dose apex / base (rounded) 138 Gy / 419 Gy (NIST) 42 Gy /155 Gy Tumour recurrence / mean interval 4.6 % / 12.9 Monate 17% / 8 Monate Radiation retinopathy 12 % 26 % Folie 34 34 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014

Proton treatment of ocular tumors Folie 35 35 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014

% of dose Depth dose distribution 100 protons Cobalt photons 25 MV 50 electrons 10 25 Depth (cm) 03.09.2014 Sauerwein Folie 36 36 PTCOG 53 Shanghai 2014

% of dose Depth dose distribution Dose distribution in the Bragg peak: not convenient to treat a tumor. The peak needs to be enlarged, (or spread-out, or modulated) 90 50 20 Folie 37 0 37 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014

% of dose Depth dose distribution Dose distribution in the spread-out Bragg peak: 90 now suitable to treat a tumor with safety margins 50 20 Folie 38 0 38 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014

Wedge filter The dose distribution can be optimized by a wedge filter sparing the macula while maintaining a sufficient safety margin Folie 39 39 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014

Bolus eyelid assumed at "-x" mm "0" mm deformation of isodoses by eyelid profile proton beam excessive irradiation due to eyelid at "-x" mm eyelid profile eye optic nerve Folie 40 40 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014

Bolus eyelid assumed at x" mm eyelid profile proton beam no deformation of the isodoses bolus eye optic nerve Folie 41 41 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014

3D Conformation of the proton beam diode wedge-filter Y bolus X modulator Z Folie 42 42 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014 collimator

dose distributions Dose distribution of a 106 Ru plaque For a tumor of 8 mm Dose distribution of a 125 I plaque 60 Gy 30 Gy 12 Gy Dose distribution of a proton beam Folie 43 43 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014 60 Gy 30 Gy 12 Gy

Folie 44 44 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014

Preparation of the patient: positioning of markers CT scan after clipping always included Folie 45 45 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014

Positioning devices for the patient Folie 46 46 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014

BANC OPTIQUE 190 cm collimator tube RX dégradeur modulateur faisceau dans l'air chambres plates simulation lumineuse croisillon chaise de traitement 181.3 cm feuille de kapton 0.13mm faisceau sous vide collimateur Ø 50mm collimateurs Ø 5mm capteur d image diode tube RX Béton baryté 1.8m 210 cm Folie 47 47 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014 182.5 cm

treatment DIODE DIODE WEDGE FILTERS WEDGE FILTERS BOLUS VIDEO CAMERA COLLIMATOR Folie 48 48 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014

Challenge for treatment planning: Does the model represent the reality? All the calculations made on a relatively simple mathematical model of the eye. + + The anatomy may differ from the model. To be accurate, the validity of the model has to be checked by CT and the model to be modified if necessary. Folie 49 49 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014 CT-scan

If the model is not accurate, you will not hit the target Underdosage of real tumor Wrong model Folie 50 50 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014

Positioning: same tumor, 3 different positions I II III Folie 51 51 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014

Dose distributions for the three different positions lateral view 20% 50% 90% Folie 52 52 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014 wide angle fundus view

20% 50% 90% Folie 53 53 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014

Outcome of Uveal Melanoma treated in Nice (n= 2500) Percent 100 80 60 40 20 0 100 80 60 40 20 Overall survival All Patients < 14.6 mm f > 14.6 mm f P = 0.0002 Local control 67% 0 10 20 30 40 50 60 70 Months 82% 73.8% 98% T1 & T2 84% T3 & T4 P = 0.003 100 80 60 40 20 0 100 80 60 40 20 Disease free survival < 5 mm thick > 5 mm thick P < 0.0001 0 10 20 30 40 50 60 70 80 Months Enucleation-free survival T1 & T2 T3 & T4 P = 0.0008 90 % 66 % 0 Folie 54 54 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014 0 10 20 30 40 50 60 70 80 Months 0 0 10 20 30 40 50 60 70 80 Months

Intraocular tumors: indications for different treatment modalities Type of applicator/ irradiation 106 Ru applicator mixed 106 Ru/ 125 I 125 I protons Maximal tumor thickness allowing an adequate dose distribution 5-7mm (depending from applicator) 6-10 mm (important influence of the activity) 10-15 mm (depending from applicator) Homogeneous dose distribution always possible Depth dose distribution behind the target volume (% of dose at the apex) 1 mm: ca. 60% 5 mm: ca. 10% ca. 75 % ca. 10 % ca. 80-90% ca. 30-50% ca. 50% 0 Dose in healthy tissues prior the target volume (% of dose at the apex) 0 0 0 ca 30-60% Lateral dose distribution 1 mm: ca. 20% ca. 30-50 % ca. 20-60% (% of dose at the apex) 5 mm: ca. 3% ca. 5-10 % ca. 5-25% ca. 50% 0 Folie 55 55 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014

Tumors of the conjunctiva: orphan diseases non-hodgkin lymphoma malignant melanoma squamous cell carcinoma extremely rare lesions: adeno-squamous carcinoma rhabdomyosarcoma others Folie 56 56 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014

Complex target volume Complex geometry The problem of the fornix The problem of the depth Organs at risks in the neighborhood Target volume is also organ at risk Folie 57 57 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014

Dose? No systematic dose finding studies Different tumor entities need different doses Due to the geometry there is always a dose gradient in the target volume to be considered Folie 58 58 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014

Why protons? ballistic precision of the proton beam homogeneous irradiation of a complex treatment volume (necessity to treat large volume of bulbar and tarsal conjunctiva while sparing the internal structures in the eye) steep dose gradients at the edges and depth: protection of healthy structures Folie 59 59 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014

Proton irradiation of conjunctival tumors distal shape of the irradiated volume: reproduces the relief of the beam entrance 20% Proton beam Clip Folie 60 60 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014

Treatment technique Protection of intraocular structures Bolus: (gel+plexiglas-slice) 20% Proton beam Plane beam entrance: distal shape of the irradiated volume is flat Clip Folie 61 61 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014

Treatment technique Bolus Folie 62 62 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014

Treatment technique Semi-hemispherical plexiglas-compensator reduces the proton energy and modulates their range to protect healthy structures Folie 63 63 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014 shielded volumen

Treatment technique Individual plexiglas-compensator bolus 20% Proton beam Clip Irradiated volume Folie 64 64 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014 Protected volume

Dose distribution Folie 65 65 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014

Treatment technique Individual plexiglas-compensator bolus Central shielding 20% Proton beam Clip Irradiated volume Folie 66 66 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014

Individual collimators and compensators Double boost Partial protection of cornea and limbus Boost Folie 67 67 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014 Extension /internal canthus

Folie 68 68 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014

Dose prescription Large field irradiation 6 fractions of 5.2 Gy (6Gy Co Eq) Folie 69 69 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014 Small field irradiation 2 fractions of 6.9 Gy (8Gy Co Eq)

Recurrences after proton radiotherapy (N = 20) - 6/20 (30%), 22.1 ± 5.7 months after therapy 3/6 within the target volume (31 Gy) 1/6 within the boost volume (45 Gy) 2/6 outside the target volume Exenteration 2/20 (10%) Metastatatic disease 6/20 (39%) Tumor-related death 4/20 (20%) Folie 70 70 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014

survival 100 90 80 70 60 50 40 30 20 10 0 Conjunctival Melanomas Survival Survival at median follow-up 30 months: 80.0% % of survival 0 12 24 36 48 60 72 84 96 108 120 132 Folie 71 71 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014 Months

The future of proton therapy for eye tumors? Pulsed beam Pencil beam scanning Image based treatment planning 62-230 MeV Dedicated machine 65 MeV EYEPlan Folie 72 72 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014

High energy beams and PBS for small, superficial tumors Collaboration Folie 73 73 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014 work in progress Poster 005

Cyclotrons with continuous beams Folie 74 74 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014

Synchrotron with pulsed beam w/o RiFi w RiFi DDF 80/20 (mm) 1.0 1.5 DDF 90/10 (mm) 1.5 2.2 Courtesy: Mario Ciocca Folie 75 75 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014

PBS for ocular tumors? Spot size: 2 mm MC- simulation Courtesy: Jerome Mandrillon Folie 76 76 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014

Bilateral retinoblastoma very young children multiple tumors in both eyes hereditary high risk of secondary cancer Folie 77 77 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014

Secondary malignancies after RT in retinoblastoma Sethi et al. Cancer 2014 Folie 78 78 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014

Dose distribution 6MeV Photons Folie 79 79 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014

Retinoblastomkollimator (mit/ohne Zusatzkollimator) Phys. Med. Biol (2012) 57, 7741 7751 Medical Physics (2014) 41 Folie 80 80 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014

Dose distribution protons vs. photons What is better??? Folie 81 81 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014

Protons can do better! Folie 82 82 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014

RADIOTHERAPY OF THE ORBIT IN CHILDREN Folie 83 83 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014

Irradiation of the orbit in children Folie 84 84 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014

6 years after proton therapy of the orbit retinoblastoma tumor cells in the orbit 3 y old boy follow up 6 years Folie 85 85 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014

6 years after brachytherapy of the orbit retinoblastoma tumor cells in the orbit 6 months old boy follow up 6 years Folie 86 86 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014

Low dose rate brachytherapy of the orbit Strahlenther Onkol (2011)187 322-327 Folie 87 87 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014

Radiotherapy of the orbit Folie 88 88 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014

Radiotherapy of the orbit Folie 89 89 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014

summary The dose distribution of protons is different from the dose distribution of photons not necessarily better If this difference is used in an appropriate way, it may lead to a benefit for the patient In any case: protons are wonderful Folie 90 90 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014

Joël Herault Pierre Chauvel Dirk Flühs Norbert Bornfeld Lorenzo Brualla Gaëlle Angellier Henrike Westekemper Clare Stannard Jerome Mandrillon Mario Ciocca

Thank you! Folie 92 92 03.09.2014 Sauerwein PTCOG 53 Shanghai 2014