Extracranial-to-Intracranial Bypass Using Radial Artery Grafting for Complex Skull Base Tumors: Technical Note

Similar documents
History of revascularization

TABLES. Table 1 Terminal vessel aneurysms. Table. Aneurysm location. Bypass flow** Symptoms Strategy Bypass recipient. Age/ Sex.

Interpositional carotid artery bypass strategies in the surgical management of aneurysms and tumors of the skull base

Anastomosis of the superficial temporal artery to the distal anterior cerebral artery with interposed cephalic vein graft

Internal Maxillary Artery-Middle Cerebral Artery Bypass: Infratemporal Approach for Subcranial- Intracranial (SC-IC) Bypass

Intracranial-to-intracranial vascular anastomosis created using a microanastomotic device for the treatment of distal middle cerebral artery aneurysms

Intracranial vascular anastomosis using the microanastomotic system

Cerebral revascularization: past, present and future

Superficial Temporal Artery to Middle Cerebral Artery Bypass

Vivek R. Deshmukh, MD Director, Cerebrovascular and Endovascular Neurosurgery Chairman, Department of Neurosurgery Providence Brain and Spine

CASE REPORT AIR VENT OF VEIN GRAFT IN EXTRACRANIAL-INTRACRANIAL BYPASS SURGERY

Moyamoya Syndrome with contra lateral DACA aneurysm: First Case report with review of literature

Double STA-MCA Anatomosis for Bilateral Carotid Occlusion

Bypass to the Intracranial Giant or Large Internal Carotid Artery Aneurysms: Superficial Temporal Artery to Middle Cerebral Artery Bypass Re-visited

Case Report 1. CTA head. (c) Tele3D Advantage, LLC

Brain AVM with Accompanying Venous Aneurysm with Intracerebral and Intraventricular Hemorrhage

Quality Metrics. Stroke Related Procedure Outcomes

5. COMMON APPROACHES. Each of the described approaches is also demonstrated on supplementary videos, please see Appendix 2.

Treatment of a Giant Serpentine Aneurysm in the Anterior Cerebral Artery

Postoperative Assessment of Extracranial Intracranial Bypass by Time- Resolved 3D Contrast-Enhanced MR Angiography Using Parallel Imaging

Moyamoya. Moyamoya Disease Double Trouble. Epidemiology 1/16/2015

Vascular Surgery Rotation Objectives for Junior Residents (PGY-1 and 2)

Ruptured Cerebral Aneurysm of the Anterior Circulation

ANASTAMOSIS FOR BRAIN STEM ISCHEMIA/Khodadad et al.

Techniques in cerebral aneurysm surgery

Saphenous vein bypass grafts for giant aneurysms and intracranial occlusive disease

Table 1.Summary of 12 Patients with Brain Death and Deep Coma: Clinical Findings Patients No. Age/Sex Underlying Cause Study No.

We describe some of the conceptual nuances and

Saphenous Vein Autograft Replacement

Case Log Mapping Update: April 2018 Review Committee for Neurological Surgery

Antegrade and retrograde flow of carotid

Overview Blood supply of the brain What is moyamoya disease? > 1

HD Scanning: Velocities and Volume Flow

Neurosurgical decision making in structural lesions causing stroke. Dr Rakesh Ranjan MS, MCh, Dip NB (Neurosurgery)

Management of Giant Aneurysm

General Imaging. Imaging modalities. Incremental CT. Multislice CT Multislice CT [ MDCT ]

Surgery of Middle Cerebral Artery (MCA) Aneurysm

Two Cases of Carotid Artery Stenting Combined Balloon- and Self-expanding Stent for the Spontaneous Internal Carotid Artery Dissections

What Is an Arteriovenous malformation (AVM)?

Emergency EC-IC bypass for symptomatic atherosclerotic ischemic stroke

Anatomy of the Middle Cerebral Artery: The Temporal Branches

MATERIALS AND METHODS

Carotid Endarterectomy for Symptomatic Complete Occlusion of the Internal Carotid Artery

Alessandro Della Puppa

Anesthetic Management of Child with Moyamoya Disease for Pial Synangiosis

Techniques in cerebral aneurysm surgery. Anatomical variation of middle meningeal artery origin ophthalmic artery

TREATMENT OF INTRACRANIAL ANEURYSMS

Surgical Options for revascularisation P E T E R S U B R A M A N I A M

Principles Arteries & Veins of the CNS LO14

Subtraction CT Angiography with Controlled- Orbit Helical Scanning for Detection of Intracranial Aneurysms

Dandy India Chapter Educational Course March 29 th - 31 st, 2015

Surgical techniques and procedures for cerebrovascular surgery. Surgery for the AVF at the cranio-cervical junction and high cervical spine

Interposition saphenous vein grafts for advanced occlusive disease and large aneurysms in the posterior circulation

Case 37 Clinical Presentation

Applicable Neuroradiology

Cerebral Bypass Surgery

Extracranial internal carotid artery aneurysm treated by combined endovascular - microsurgical techniques

Recommendations for Follow-up After Vascular Surgery Arterial Procedures SVS Practice Guidelines

Extracranial to intracranial bypass for intracranial atherosclerosis

PTA 106 Unit 1 Lecture 3

Pre-and Post Procedure Non-Invasive Evaluation of the Patient with Carotid Disease

Intrapetrous Internal Carotid Artery

Spasm of the extracranial internal carotid artery resulting from blunt trauma demonstrated by angiography

A CASE OF RECURRENT ALTERNATING TRANSIENT HEMIPARESIS Dr. Shunmuga Arumugasamy.S DNB Resident Railway Hospital, Perambur.

Surgical management of complex intracranial aneurysms

Carotid Distal Vertebral Bypass for Carotid Occlusion: Case Report and Technique`

Segmental Agenesis of the Internal Carotid Artery Distal to the Posterior Communicating Artery Leading to the Definition of a New Embryologic Segment

Summary of some of the landmark articles:

Comparison of Five Major Recent Endovascular Treatment Trials

Letter to the Editor: test occlusion under monitoring of motor-evoked potentials for giant distal

Spontaneous Recanalization after Complete Occlusion of the Common Carotid Artery with Subsequent Embolic Ischemic Stroke

Usefulness of Coil-assisted Technique in Treating Wide-neck Intracranial Aneurysms: Neck-bridge Procedure Using the Coil Mass as a Support

Exposure of the anterior tibial artery by medial popliteal extension

Reduce Intraoperative Stroke Risk with Volume Flow Measurements

BUILDING A. Achieving total reconstruction in a single operation. 70 OCTOBER 2016 // dentaltown.com

Neuroscience. Journal. Moyamoya disease a review and case illustration. P A L M E T T O H E A L T H Vol. 2 Issue 3 Summer 2016

Reconstruction of the vein of Labbé by using a short saphenous vein bypass graft

Microsurgical anatomy of cerebral revascularization. Part II: Posterior circulation

Surgical anatomy of the juxta dural ring area

Mechanical Thrombectomy of Large Vessel Occlusions Using Stent Retriever Devices

Essentials of Clinical MR, 2 nd edition. 14. Ischemia and Infarction II

Neuroradiology MR Protocols

Subclavian artery Stenting

SELECTIVE ANTEGRADE TECHNIQUE OF CHOICE

IOM at University of. Training for physicians. art of IOM. neurologic. injury during surgery. surgery on by IOM. that rate is.

Neuro-Vascular Intervention AAPC Regional Conference Springfield, MA

[(PHY-3a) Initials of MD reviewing films] [(PHY-3b) Initials of 2 nd opinion MD]

Surgical anatomy of the juxtadural ring area

Interventions in the Management of Acute Stroke. Dr Md Shafiqul Islam Associate Professor Neurosurgery Dhaka Medical College Hospital

Carotid Stenosis (carotid artery disease)

Neurosurg Focus 5 (5):Article 4, 1998

Depicting Cerebral Veins by Three-Dimensional CT Angiography before Surgical Clipping of Aneurysms

AMERICAN IMAGING MANAGEMENT

Bilateral traumatic internal carotid artery dissections: Case report

AMERICAN IMAGING MANAGEMENT

A Case of Carotid-Cavernous Fistula

Combat Extremity Vascular Trauma

Reduced Caliber of the Internal Carotid Artery: A Normal Finding with Ipsilateral Absence or Hypoplasia of the A1 Segment

Posterior Cerebral Artery Aneurysms with Common Carotid Artery Occlusion: A Report of Two Cases

Transcription:

Extracranial-to-Intracranial Bypass Using Radial Artery Grafting for Complex Skull Base Tumors: Technical Note Saleem I. Abdulrauf, M.D., F.A.C.S. 1 ABSTRACT The management of complex skull base tumors that incorporate large intracranial vessels poses challenging questions. Patients who fail initial surgical resection and adjunctive therapies (i.e., radiosurgery) who present with tumor regrowth may be candidates for parent vessel occlusion and total tumor resection in combination with extracranial-to-intracranial (EC-IC) bypass to augment the sacrificed vessel territory. In this technical report, we delineate the surgical technique of performing an EC-IC bypass using a radial artery graft. Our protocol of simultaneous cranial, neck, and forearm dissections by the surgical team to perform this procedure is described in detail. KEYWORDS: Extracranial-to-intracranial bypass, skull base tumor, radial artery graft, anastomosis, revascularization The pioneering work of Professor Yasargil et al in the late 1960s, including the first extracranial-to-intracranial bypass (EC-IC), led to the inception of new surgical concepts for modulating cerebral blood flow. 1 Lougheed and associates in 1971 described the use of venous graft in performing EC-IC bypass. 2 Over the past 20 years, multiple authors including Sundt, Spetzler, and Sekhar and their colleagues made significant contributions in the evolving field of cerebral revascularization. 3 5 In this article we describe the technical steps of using the radial artery grafting in the management of complex skull base tumors. INDICATIONS The management of complex skull base tumors that incorporate large intracranial vessels poses challenging questions. Our initial approach is to resect the tumor (i.e., meningioma) while preserving the Skull Base, volume 15, number 3, 2005. Address for correspondence and reprint requests: Saleem I. Abdulrauf, M.D., Department of Surgery, Division of Neurosurgery, Saint Louis University School of Medicine, 3635 Vista Ave. at Grand Blvd., St. Louis, MO 63110-0250. E-mail: abdulrsi@slu.edu. 1 Department of Surgery, Division of Neurosurgery, Saint Louis University School of Medicine, St. Louis, Missouri. Copyright # 2005 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel: +1(212) 584-4662. DOI 10.1055/s-2005-872596. Published online August 15, 2005. 1531-5010,p;2005,15,03,207,213,ftx,en;sbs00456x. 207

208 SKULL BASE: AN INTERDISCIPLINARY APPROACH/VOLUME 15, NUMBER 3 2005 A high-speed drill is used to thin the zygomatic arch posteriorly which allows the radial artery to lie without kinking at the zygomatic area. EXPOSURE OF THE CAROTID ARTERY IN THE NECK Figure 1 Operative photograph shows simultaneous planning for the craniotomy, cervical incision, and radial artery harvest. incorporated vessels. However, patients who, subsequent to surgical resection and adjunctive therapies (i.e., radiosurgery), present with tumor regrowth may be candidates if they have failed other treatments for parent vessel occlusion and total tumor resection in combination with EC-IC bypass to augment the sacrificed vessel territory. We advocate the use of temporary balloon occlusion testing combined with single photon emission CT (SPECT) nuclear scan. In those patients who fail the clinical or the physiological portion of the test, and who fulfill the above criteria, we consider EC- IC bypass preceding the tumor resection. We describe below the technique for tumors incorporating the cavernous-supraclinoidal internal carotid artery and bypass technique using a radial artery graft. We advocate simultaneous cranial, neck, and forearm dissections by the surgical team which allows significantly increased efficiency in performing the procedure (Fig. 1). A standard incision anterior to the sternocleidomastoid muscle to expose the common external and internal carotid arteries (CCA, ECA, and ICA) is used. Vessel loops are applied around the CCA, ECA, and the ICA. We recommend the use of the ECA as the site for the proximal anastomosis. RADIAL ARTERY HARVEST We work with our plastic surgery team to harvest the radial artery. The critical aspect of radial artery harvest is the length of the graft, which can be limiting. It is crucial that before the actual graft is removed communication between the neurosurgical and the plastic surgery teams is undertaken regarding the expected length needed so that if further proximal or distal dissection in the forearm is needed to increase the length of the graft, that can be done prior to actual clamping of the vessel. I prefer to personally mark the superficial wall of the radial artery with a marking pen prior to removal of the graft. This step is crucial to avoid rotation during the tunneling (Fig. 2). Once the graft is harvested, it is placed in a heparinized saline solution. CRANIOTOMY A skull base approach, usually a cranio-orbital or a cranio-orbital-zygomatic access, is usually needed. We prefer a single-piece craniotomy which entails an osteotomy of the orbital roof and lateral margins. TUNNELING THE GRAFT The graft is tunneled using a pediatric chest tube. The marked surface of the graft is kept most superficial.

EC-IC BYPASS USING RADIAL ARTERY GRAFTING/ABDULRAUF 209 Figure 4 Completed anastomosis is shown. Figure 2 Operative photograph shows exposure of the radial artery with superficial marking. INTRACRANIAL ANASTOMOSIS We also start the patient on aspirin (81 mg) daily for 3 days prior to surgery. Intraoperative continuous electroencephalography (EEG) and somatosensory evoked potential (SSEP) are monitored. The site of the anastomosis is determined based on several factors: the intended revascularization territory, the size of donor and recipient vessels, the length of the graft, the location of the tumor, and the extension of the tumor within the sylvian fissure. Mild hypothermia is utilized. EEG burst suppression using pentobarbital is maintained during the temporary clipping period. A color background is placed behind the recipient vessel. Temporary clips are applied (Fig. 3). An arteriotomy is made using an arachnoid knife. The arteriotomy is extended using a microscissor to the width of the donor vessel lumen. The lumen of the donor vessel is expanded by fish-mouthing the opening. We used 9 0 nylon for M2 and M3 vessels and 8 0 nylon for the supraclinoidal ICA. We prefer a running suture technique and performing the back wall (i.e., the more difficult anastomosis) first followed by the front wall (Fig. 4). When the anastomosis is completed, retrograde flow is confirmed in the graft followed by positioning of a temporary clip on the graft just distal to the anastomosis. CERVICAL CAROTID ANASTOMOSIS The graft length is cut to oppose an area of the ECA where the proximal anastomosis is planned. Yasargil Figure 3 Trans-sylvian preparation for anastomosis. M3 recipient branch with temporary clips. Radial artery donor graft are shown. Figure 5 Anastomosis of the radial graft to the ECA in the neck is shown. Temporary clips on ECA are shown. ECA, external carotid artery.

EC-IC BYPASS USING RADIAL ARTERY GRAFTING/ABDULRAUF 211 long temporary clips can be used for the ECA anastomosis. Similar technique of back wall and front wall can be utilized as described above for the intracranial anastomosis. For this part, 7 0 prolene can be used (Fig. 5). cerebral artery (MCA), we only occlude the segment of the MCA (M2 or M3) which is incorporated in the tumor and that was bypassed. Clearly, M1 incorporation by tumor cannot be treated in this manner due to lenticulostriate perforators. GRAFT INSPECTION Pulsatility of the graft is not enough to confirm graft potency. Micro-doppler (Mizuho America, Inc., Beverly, MA, USA) can be used. Intraoperative angiography, in our opinion, is critical before parent vessel occlusion is performed. Flow probe technology (Transonic Systems, Inc., Ithaca, NY, USA) has allowed us to estimate the amount of flow (cc/min) within the graft. TUMOR RESECTION This can be performed immediately following the EC-IC bypass and occlusion of the parent vessel or in a staged fashion the next day. For complex and extensive tumors, we find the second-day planned resection to be a more efficient strategy. POSTOPERATIVE MANAGEMENT PARENT VESSEL OCCLUSION Once the above steps, including intraoperative angiography, have documented flow in the graft, we then advocate parent vessel occlusion during the same surgical procedure, rather than delayed (staged) occlusion. In our opinion, the risk of graft occlusion would be high if competitive flow in the parent vessel were allowed to continue. We occlude the ICA at the level of the bifurcation in the cervical area and just distal to the tumor in the supraclinoid portion. The distal occlusion must be performed proximal to the anterior choroidal and dominant posterior communicating arteries. For the middle In the immediate postoperative period, we continue the patient on daily 81 mg of aspirin. Starting at postoperative day 7, we increase the dose to 325 mg per day and would continue this indefinitely. ILLUSTRATIVE CASES Fig. 6 (A through G) and Fig. 7 (A through D) are examples of two patients who underwent EC-IC bypass for recurrent atypical meningiomas that were incorporating the ICA (patient in Fig. 6) and an M2 division (patient in Fig. 7). Figure 6 (A) A 27-year-old female with two previous resections and orbital exoneration and previous radiation therapy and chemotherapy for recurrent malignant meningioma. The patient presented with tumor regrowth and symptoms. Axial T1 MRI shows tumor within the cavernous sinus and orbital regions. (B) Sagittal T1 MRI with gadolinium showing the petrous and the cavernous ICA within the tumor. (C) Coronal T1 MRI with gadolinium showing ICA within the tumor. This finding prevented the previous surgeons from achieving complete resection. The patient failed BTO in our evaluation. (D) The patient underwent radial artery EC-IC bypass. Intraoperative angiogram above showing the radial artery graft. ICA has been occluded with a clip. (E) Angiogram showing flow into the MCA territory via the graft. (F) Intraoperative photograph showing tumor adherence to the wall of the cavernous ICA. Tumor resection was staged for the second day following EC- IC bypass and deliberate occlusion of the ICA proximal and distal to the tumor. (G) Postoperative axial CT scan showing tumor resection bed. MRI, magnetic resonance imaging; ICA, internal carotid artery; BTO, balloon occlusion testing; EC-IC, external carotid-internal carotid; MCA, middle carotid artery; CT, computed tomography.

212 SKULL BASE: AN INTERDISCIPLINARY APPROACH/VOLUME 15, NUMBER 3 2005 Figure 7 (A) A 45-year-old male with two previous resections of an atypical meningioma. The patient has received radiosurgery and chemotherapy. Previous resections were limited due to incorporation within the tumor of the superior division M2 (arrow). (B) Three-dimensional CT reconstruction of the blood vessels relationship to the tumor. M2 division within the tumor shown (arrow). (C) Intraoperative angiogram shows radial artery EC-IC bypass to the distal portion of the involved M2 division. (D) Postoperative CT scan showing tumor resection within the sylvian fissure. CT, computed tomography; EC-IC, external carotid-internal carotid. OUTCOME From July 2000 to May 2005, we have performed at Saint Louis University Hospital five EC-IC bypass procedures using radial artery grafts for the treatment of complex recurrent skull base tumors. All five cases at the time of the bypass procedure had atypical meningiomas. The age range was 25 to 45 years with three male and two female patients. All were previously operated and previously radiated tumors and three out of the five had received adjunctive chemotherapy. Four patients had the cavernous ICA incorporation while one had an M2 division incorporated within the tumor. All had documented new growth despite the measures above. There was no EC-IC bypass-related ischemic event in this small group. One patient died 15 months later from tumor progression. The other four continue to be followed. In retrospect, in our opinion, we were able to perform more aggressive tumor resections in this group than would have been possible without the bypass procedure. However, despite aggressive treatment, cure in atypical meningiomas may not be achieved as documented in one

EC-IC BYPASS USING RADIAL ARTERY GRAFTING/ABDULRAUF 213 of our patients who died at 15 months following the surgical treatment from continued tumor growth and invasion despite our maximal surgical intervention. REFERENCES 1. Yasargil MG, Krayenbuhl HA, Jacobson JH 2nd. Microneurosurgical arterial reconstruction. Surgery 1970;67:221 233 2. Lougheed WM, Marshall BM, Hunter M, Michel ER, Sandwith-Smyth H. Common carotid to intracranial internal carotid bypass venous graft. Technical note. J Neurosurg 1971;34:114 118 3. Sundt TM, Piepgras DG, Houser OW, et al. Interposition saphenous vein grafts for advanced occlusive disease and large aneurysms in the posterior circulation. J Neurosurg 1982;56:205 215 4. Spetzler RF, Fukushima T, Martin N, et al. Petrous carotidto-intradural carotid saphenous vein graft for intracavernous giant aneurysm, tumor, and occlusive cerebrovascular disease. J Neurosurg 1990;73:496 501 5. Evans JJ, Sekhar LN, Rak R, Stimac D. Bypass grafting and revascularization in the management of posterior circulation aneurysms. Neurosurgery 2004;55:1036 1049