F-18 Fluoride Positron Emission Tomography-Computed Tomography for Detecting Atherosclerotic Plaques

Similar documents
Chapter 43 Noninvasive Coronary Plaque Imaging

Η Πυρηνική Καρδιολογία Το 2017 ΟΜΑΔΑ ΕΡΓΑΣΙΑΣ ΑΠΕΙΚΟΝΙΣΤΙΚΩΝ ΤΕΧΝΙΚΩΝ

High-risk vulnerable plaques. Kostis Raisakis G.Gennimatas General Hospital of Athens

The aorta is an integral part of the cardiovascular system and should not be considered as just a conduit for blood supply from the heart to the

Pathology of Coronary Artery Disease

Vulnerable Plaque Pathophysiology, Detection, and Intervention. VP: A Local Problem or Systemic Disease. Erling Falk, Denmark

Molecular Imaging of Coronary Plaques

State of the Art. Advances in Cardiovascular Imaging. ESC Congres Stockholm September 1, 2010 Frank E. Rademakers, MD, PhD, FESC

Quantitative Imaging of Transmural Vasa Vasorum Distribution in Aortas of ApoE -/- /LDL -/- Double Knockout Mice using Nano-CT

Imaging Overview for Vulnerable Plaque: Data from IVUS Trial and An Introduction to VH-IVUS Imgaging

Imaging Atheroma The quest for the Vulnerable Plaque

Added Value of Invasive Coronary Imaging for Plaque Rupture and Erosion

Invasive Coronary Imaging Modalities for Vulnerable Plaque Detection

Noninvasive Coronary Imaging: Plaque Imaging by MDCT

Assessment of plaque morphology by OCT in patients with ACS

EDITORIAL. Sandip Basu & Poul F. Høilund-Carlsen & Abass Alavi

Pathology of the Vulnerable Plaque

Cottrell Memorial Lecture. Has Reversing Atherosclerosis Become the New Gold Standard in the Treatment of Cardiovascular Disease?

Left main coronary artery (LMCA): The proximal segment

PoS(FISBH2006)019. Imaging Vulnerable Plaque A radionuclide approach. H. William Strauss, M.D. 1

Evidence for myocardial CT perfusion imaging in the diagnosis of hemodynamically significant coronary artery disease

Coronary Artery Thermography

CT Imaging of Atherosclerotic Plaque. William Stanford MD Professor-Emeritus Radiology University of Iowa College of Medicine Iowa City, IA

2yrs 2-6yrs >6yrs BMS 0% 22% 42% DES 29% 41% Nakazawa et al. J Am Coll Cardiol 2011;57:

IVUS Virtual Histology. Listening through Walls D. Geoffrey Vince, PhD The Cleveland Clinic Foundation

F-2-fluoro-2-deoxyglucose uptake in or adjacent to blood vessel walls

Emerging role of PET in nuclear cardiology. Dr. Erick Alexánderson. Rosas

Cardiovascular Research Foundation and Columbia University Medical Center, New York.

Coronary Artery Calcification

Pathology of Vulnerable Plaque Angioplasty Summit 2005 TCT Asia Pacific, Seoul, April 28-30, 2005

TVA_C02.qxd 8/8/06 10:27 AM Page 19 PART 2. Pathology

The Site of Plaque Rupture in Native Coronary Arteries

Ambiguity in Detection of Necrosis in IVUS Plaque Characterization Algorithms and SDH as Alternative Solution

Cardiac Imaging Tests

1 Functions of endothelial cells include all the following EXCEPT. 2 Response to vascular injury is characterised by

Calcified Aortic Sinotubular Ridge: A Source of Coronary Ostial Stenosis or Embolism

Culprit Lesion Remodeling and Long-term (> 5years) Prognosis in Patients with Acute Coronary Syndrome

OCT. molecular imaging J Jpn Coll Angiol, 2008, 48: molecular imaging MRI positron-emission tomography PET IMT

Can IVUS Define Plaque Features that Impact Patient Care?

Gary S. Mintz,, MD. IVUS Observations in Acute (vs Chronic) Coronary Artery Disease: Structure vs Function

Thoracic aorta calcification but not inflammation is associated with increased cardiovascular disease risk: results of the CAMONA study

Medical sciences 1 (2017) 1 9

Animesh Rathore, MD 4/21/17. Penetrating atherosclerotic ulcers of aorta

CLINICAL APPLICATIONS OF OPTICAL COHERENCE TOMOGRAPHY. Konstantina P. Bouki, FESC 2 nd Department of Cardiology General Hospital Of Nikea, Pireaus

Hospital, 6 Lukon Road, Lukong Town, Changhua Shien, Taiwan 505, Taiwan.

Title. CitationJournal of Nuclear Cardiology, 23(3): Issue Date Doc URL. Rights. Type. File Information

Who Cares About the Past?

1st Department of Cardiology, University of Athens, Hippokration Hospital, Athens, Greece

CARDIAC IMAGING FOR SUBCLINICAL CAD

Ischemic heart disease

Vascular disease. Structural evaluation of vascular disease. Goo-Yeong Cho, MD, PhD Seoul National University Bundang Hospital

EAE Teaching Course. Magnetic Resonance Imaging. Competitive or Complementary? Sofia, Bulgaria, 5-7 April F.E. Rademakers

Dr Sneha Shah Tata Memorial Hospital, Mumbai.

Failure of positive. Recanalization and CTO formation. TCFA rupture with (fatal) thrombotic occlusion. TCFA Lipid pool

Myocardial Perfusion: Positron Emission Tomography

Coronary Artery Calcium Score

Atherosclerosis 229 (2013) 124e129. Contents lists available at SciVerse ScienceDirect. Atherosclerosis

Blood Vessels. Dr. Nabila Hamdi MD, PhD

Study of estimation of coronary artery calcium by multi-slice spiral CT scan in post myocardial infarction cases

Scott W. Murray 1,2, Billal Patel 1, Rodney H. Stables 1, Raphael A. Perry 1, Nicholas D. Palmer 1. Introduction

Case Report Cardiovascular Imaging

Detection of carotid plaque neovascularization with Superb Micro-Vascular Imaging

Sites of Atherosclerosis In order of Frequency

Applications of PET/CT in Rheumatology. Role of PET/CT. Annibale Versari, MD Nuclear Medicine PET Center S.Maria Nuova Hospital Reggio Emilia Italy

Correlation of Cardiac CTA to Conventional Cardiac Angiography in Diagnosing Coronary Artery Stenosis in a Community Based Center

SPECT or PET for Cardiovascular Screening in High-Risk Patients

Intravascular Ultrasound

A Novel Low Pressure Self Expanding Nitinol Coronary Stent (vprotect): Device Design and FIH Experience

Vascular calcification in patients with Diabetes Mellitus. Dr Jamie Bellinge University of Western Australia Royal Perth Hospital

Pearls & Pitfalls in nuclear cardiology

PATHOPHYSIOLOGY OF ACUTE CORONARY SYNDROMES

Can We Identify Vulnerable Patients & Vulnerable Plaque?

New Insight about FFR and IVUS MLA

Cardiac CT Angiography

Title for Paragraph Format Slide

as a Mechanism of Stent Failure

For unclear reasons, only about 40% of patients with calcific aortic stenosis also have coronary

Catch-up Phenomenon: Insights from Pathology

Optimal testing for coronary artery disease in symptomatic and asymptomatic patients

Arteriosclerosis & Atherosclerosis

04RC2. The biology of vulnerable plaques. Jozef L. Van Herck 1, Christiaan J. Vrints 1, Arnold G. Herman 2

OCT Findings: Lesson from Stable vs Unstable Plaques

Plaque Characteristics in Coronary Artery Disease. Chourmouzios Arampatzis MD, PhD, FESC

The Final 10-Year Follow-up Results from the Bari Randomized Trial J Am Coll Cardiol (2007) 49;1600-6

PET myocard perfusion & viability Riemer Slart

SPECT CT Current Status and Future Direction Nuclear Cardiology

Review of Cardiac Imaging Modalities in the Renal Patient. George Youssef

actually rupture! Challenges to the vulnerable plaque concept

Plaque Imaging: What It Can Tell Us. Kenneth Snyder, MD, PhD L Nelson Hopkins MD FACS Elad Levy MD MBA FAHA FACS Adnan Siddiqui MD PhD

Prevalence of Coronary Artery Disease: A Tertiary Care Hospital Based Autopsy Study

Histopathology: Vascular pathology

Calcium is a chemical element that is essential for living organisms.

Pathophysiology of Cardiovascular System. Dr. Hemn Hassan Othman, PhD

M Marwan, D Ropers, T Pflederer, W G Daniel, S Achenbach

Financial Disclosures. Coronary Artery Calcification. Objectives. Coronary Artery Calcium 6/6/2018. Heart Disease Statistics At-a-Glace 2017

Incidence and significance of coronary artery calcification

Atypical pain and normal exercise test

Omics and coronary atherosclerosis

Coronary Atherosclerosis In Jammu Region - A Random Postmortem Study

From the Vulnerable Atherosclerotic Plaque to CAD Management

Transcription:

Review Article Nuclear Medicine http://dx.doi.org/10.3348/kjr.2015.16.6.1257 pissn 1229-6929 eissn 2005-8330 Korean J Radiol 2015;16(6):1257-1261 F-18 Fluoride Positron Emission Tomography-Computed Tomography for Detecting Atherosclerotic Plaques Won Jun Kang, MD, PhD Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea A large number of major cardiovascular events occur in patients due to minimal or some lumen narrowing of the coronary artery. Recent biological studies have shown that the biological composition or vulnerability of the plaque is more critical for plaque rupture compared to the degree of stenosis. To overcome the limitations of anatomical images, molecular imaging techniques have been suggested as promising imaging tools in various fields. F-18 fluorodeoxyglucose (FDG), which is widely used in the field of oncology, is an example of molecular probes used in atherosclerotic plaque evaluation. FDG is a marker of plaque macrophage glucose utilization and inflammation, which is a prominent characteristic of vulnerable plaque. Recently, F-18 fluoride has been used to visualize vulnerable plaque in clinical studies. F-18 fluoride accumulates in regions of active microcalcification, which is normally observed during the early stages of plaque formation. More studies are warranted on the accumulation of F-18 fluoride and plaque formation/vulnerability; however, due to high specific accumulation, low background activity, and easy accessibility, F-18 fluoride is emerging as a promising non-invasive imaging probe to detect vulnerable plaque. Index terms: Fluoride; PET; Atherosclerosis; Vulnerable plaque INTRODUCTION The majority of sudden cardiac deaths are due to coronary plaque rupture. Myocardial infarction due to coronary atherosclerotic rupture is one of the main causes of mortality in young adults (1). Despite the recent advancements in various imaging modalities, identification Received April 4, 2015; accepted after revision August 5, 2015. This study was supported by a National Research Foundation of Korea Grant funded by the Korean Government (No. 2012027176) and the National R&D Program for Cancer Control, Ministry of Health & Welfare (1320210). Corresponding author: Won Jun Kang, MD, PhD, Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea. Tel: (822) 2228-2391 Fax: (822) 312-0578 E-mail: mdkwj@yuhs.ac This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. Copyright 2015 The Korean Society of Radiology of high-risk coronary plaque is still difficult. Anatomical imaging to assess luminal patency, such as computed tomography (CT) coronary angiography, have failed to detect high-risk plaque, because the vulnerable vessel normally has non-flowing limiting plaque, which is a highrisk plaque called vulnerable plaque. To overcome the limitations of anatomical imaging, several molecular imaging probes are currently being investigated to target biomarkers in vulnerable plaque. Molecular markers for atheromatous plaque can provide clinically crucial information regarding the vulnerability and the degree of progression. In addition, molecular imaging has a potential to permit the development of a novel therapeutic agents and non-invasive imaging tool to monitor the therapy response (2, 3). In this study, we reviewed the pathophysiology of calcification in atherosclerotic plaque and F-18 fluoride positron emission tomography (PET) as an imaging probe for vulnerable plaque. 1257

Kang Pathophysiologic Basis of Atherosclerotic Plaque The pathogenesis of atheromatous plaque formation involves cholesterol deposition, macrophage accumulation, inflammation, and smooth muscle proliferation. The characteristics of vulnerable plaque include a large necrotic core, thin fibrous cap, inflammation, macrophage aggregation, hypoxia, and microcalcification (4-6). Inflammation is the key pathophysiology in the formation and progression of atherosclerotic plaque. Pathology confirmed macrophage aggregation within the plaque lipid core (4). Early plaque calcification was observed in the thin fibrous cap overlying the necrotic core of atherosclerotic plaque. Studies have shown that microcalcifications in the thin fibrous cap increased the risk of plaque rupture, and subsequent stress-related microfractures result in acute thrombosis (7, 8). Calcification is part of the healing process after inflammation. Similar to the calcification observed in tuberculosis patients, calcification occurs in patients with atheroma during the healing process after inflammation in the necrotic core (9). Calcification in patients with atheroma is a bi-phasic reaction. The early phase is not visible on conventional imaging, but is associated with plaque instability. The latter phase of macroscopic calcification can be observed on a radiograph or CT (10). Normally, the diameter of microcalcification is small (< 5 mm), occurs during the early stage of calcification, has inflammation, covers a large surface area, has high exposed hydroxyapatite, and possesses a high risk for rupture (9). The mechanism of vessel calcification is not well elucidated, but it is thought that vessel calcification in atheromatous plaque progression is an active process (11). Active vessel calcification is divided into 3 stages: initiation, propagation, and end-stage calcification (12). After prolonged inflammation from the initiation and propagation phases, microcalcification is formed in the plaque. Regional distribution of inflammation and microcalcification appears to overlap or is in close proximity to the initial in vivo imaging (13). Microcalcification may induce a pro-inflammatory response leading to plaque rupture by microcalcification fracture (14). The endstage calcification phase manifests as advanced tissue calcification, which can be easily detected on CT and may be an irreversible process. Current Imaging Method for Plaque Evaluation: FDG Several biomolecules have been suggested as possible targets for atherosclerotic plaque. F-18 fluorodeoxyglucose (FDG) is a well-known marker for glucose metabolism. Because of high macrophage accumulation in the atheromatous plaque, the plaque has high FDG uptake, especially if is vulnerable (15, 16). Feasibility of F-18 Fluoride PET in Atherosclerotic Plaque Fluoride has a strong affinity for bone structures, and A B C Fig. 1. F-18 fluoride PET-CT in 80-year-old male with stable angina. A. CT image shows similar calcifications in left circumflex artery (arrow) and left anterior descending artery (arrowhead). CT findings suggest that there is no difference in macrocalcification. B. F-18 fluoride PET shows high uptake at left circumflex artery (arrow) and mild uptake at left anterior descending artery (arrowhead). F-18 fluoride PET findings suggest that left circumflex artery has more microcalcification than left anterior descending artery, and has high probability for vulnerable plaque. C. PET-CT fusion image (Courtesy of Dr. Jin Chul Paeng in Seoul National University Hospital). PET = positron emission tomography 1258

F-18 Fluoride PET in Atherosclerotic Plaques its radioactive isotope, F-18 fluoride, was proposed as a clinical imaging probe for skeleton imaging (17). However, after the wide-spread of single photon emission computed tomography camera, F-18 fluoride PET was replaced by Tc- 99m labeled diphosphonate agents. Compared with bone scintigraphy using Tc-99m-labeled diphosphonate agents, F-18 fluoride PET has a unique advantage of high resolution. Due to high image quality and higher sensitivity than Tc- 99m labeled diphosphonate agents, F-18 fluoride PET can be used for the evaluation of primary and metastatic bone tumors (18). Recently, the introduction of vascular PET imaging is feasible in many PET centers. Many cyclotron centers are producing F-18 fluoride for bone imaging, and F-18 fluoride PET already has been easily available for vascular imaging. Recently, F-18 fluoride PET was suggested as a promising imaging probe for atheromatous plaque imaging. F-18 fluoride ions accumulated in bone-forming fluoroapatite crystal by exchange of hydroxyl groups on hydroxyapatite surface (19). Similar to F-18 fluoride deposits in various active calcification sites, these ions may accumulate in vulnerable plaque (Fig. 1). In advanced calcified plaque, which is stable, and in the advanced stage, no deposition of F-18 fluoride may be observed. F-18 fluoride uptake in the aortic arterial wall was assessed in oncology patients who were under bone metastasis work-up (20). Out of all the patients assessed, 76% showed vascular wall F-18 fluoride uptake, with high uptakes in the femoral artery, abdominal aorta, and thoracic aorta. Analysis of the lesions showed that only 12% of arterial calcification sites had increased F-18 fluoride uptake. Most of the vascular calcification detected on CT should be regarded as stable, chronic stage of atherosclerosis, if there was no F-18 fluoride uptake, which is a marker for active microcalcification. Derlin et al. (21) compared F-18 fluoride, FDG and CT calcification at major vessels in 45 oncologic patients, simultaneously. Common carotid artery, ascending aorta, aortic arch, descending aorta, and abdominal aorta were evaluated. The results revealed FDG uptake rates of 14.5%, while the F-18 fluoride level was 77.1% at CT calcification sites. Coincident uptake of both FDG and F-18 fluoride was observed in only 6.5%, thereby suggesting a difference in the biologic target of these two probes. It was suggested that FDG and fluoride may allow evaluation of distinct pathophysiologic processes in atherosclerotic lesions. The carotid arterial F-18 fluoride uptake was assessed, and the significant correlation between F-18 fluoride uptake and CT calcification was determined (22). They evaluated 260 oncologic patients who underwent F-18 fluoride PET for bone metastasis evaluation. 94 patients (34.9%) of the patients had vascular F-18 fluoride uptake, and its uptake was colocalized with calcification in all atherosclerotic lesions. High fluoride uptake was associated with age, male, hypertension, and hypercholesterolemia. They reported a highly significant correlation between the F-18 fluoride uptake and number of cardiovascular risk factors. It was suggested that F-18 fluoride uptake may quantify continuing mineral deposition in carotid plaque, which suggest a potential role of F-18 fluoride for imaging and characterization of carotid atherosclerotic plaque. The feasibility of F-18 fluoride PET to assess coronary artery was assessed in volunteers and patients with aortic stenosis by Dweck et al. (23). Focal F-18 fluoride uptake was observed in the coronary artery and could be determined using a hybrid CT image. There were discordant sites between coronary F-18 fluoride uptake and CT calcification. Coronary calcification without any F-18 fluoride uptake was frequently observed. Subjects (41%) with a high coronary calcium score (> 1000) did not show significant F-18 fluoride uptake. This finding suggested that F-18 fluoride PET provides different information relating to metabolically active calcific plaque and developing microcalcification. This study compared the F-18 fluoride uptake with FDG in the coronary artery. Coronary FDG PET images were not adequate in 49% of the cases, mainly due to high myocardial FDG uptake, small size, and partial volume effect. Moreover, F-18 fluoride PET was related to symptomatic status, prior major adverse cardiac events, and cardiovascular risk scores, which showed the clinical significance. The diagnostic performance of F-18 fluoride PET for identification of ruptured and high-risk atherosclerotic plaque was assessed by a prospective clinical trial (24). The patients with myocardial infarction (n = 40) and stable angina (n = 40) underwent FDG PET, F-18 fluoride PET, and invasive coronary angiography. 93% of the patients with myocardial infarction showed high F-18 fluoride uptake at the culprit vessel, while only 33% of the patients showed high FDG uptake. In addition, coronary FDG could not be distinguished from background activity in 52% of the vessel territories. By comparison with histologic examination, microcalcification, macrophage infiltration, apoptosis, and necrosis were frequently detected at the vessel with high 1259

Kang F-18 fluoride uptake. They clearly showed that high F-18 fluoride uptake localized to recent plaque rupture through prospective clinical trial. Another important finding by this study was the direct comparison between F-18 fluoride and FDG. FDG uptake is frequently influenced by patient preparation and metabolic status. However, more studies will be needed to determine that vascular F-18 fluoride is superior to vascular FDG images. CONCLUSION Vascular microcalcification is regarded as an early marker for atheromatous plaque formation, and has a potential as a predictor for future cardiovascular events. The correlation between vascular microcalcification and its vulnerability is yet to be clarified, due to lack of a non-invasive imaging method. Recently, F-18 fluoride PET for vascular imaging can provide useful in vivo information on vascular microcalcification, and holds possibility for identifying high-risk and ruptured coronary atherosclerotic plaques. F-18 fluoride PET represents early stage, active microcalcification, while conventional imaging methods targeting macrocalcification is about late stage of atherosclerotic plaque. Non-invasiveness, easy accessibility, and high reproducibility of F-18 fluoride PET in vascular microcalcification warrant further clinical investigation. Prospective clinical trials to assess the prognostic value of F-18 fluoride uptake will determine whether F-18 fluoride uptake is generally accepted as a novel biomarker for plaque vulnerability. REFERENCES 1. Naghavi M, Libby P, Falk E, Casscells SW, Litovsky S, Rumberger J, et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. Circulation 2003;108:1664-1672 2. Rogers IS, Nasir K, Figueroa AL, Cury RC, Hoffmann U, Vermylen DA, et al. Feasibility of FDG imaging of the coronary arteries: comparison between acute coronary syndrome and stable angina. JACC Cardiovasc Imaging 2010;3:388-397 3. Calvert PA, Obaid DR, O Sullivan M, Shapiro LM, McNab D, Densem CG, et al. Association between IVUS findings and adverse outcomes in patients with coronary artery disease: the VIVA (VH-IVUS in Vulnerable Atherosclerosis) Study. JACC Cardiovasc Imaging 2011;4:894-901 4. Virmani R, Burke AP, Farb A, Kolodgie FD. Pathology of the vulnerable plaque. J Am Coll Cardiol 2006;47(8 Suppl):C13-C18 5. Falk E, Nakano M, Bentzon JF, Finn AV, Virmani R. Update on acute coronary syndromes: the pathologists view. Eur Heart J 2013;34:719-728 6. Finn AV, Nakano M, Narula J, Kolodgie FD, Virmani R. Concept of vulnerable/unstable plaque. Arterioscler Thromb Vasc Biol 2010;30:1282-1292 7. Huang H, Virmani R, Younis H, Burke AP, Kamm RD, Lee RT. The impact of calcification on the biomechanical stability of atherosclerotic plaques. Circulation 2001;103:1051-1056 8. Vengrenyuk Y, Cardoso L, Weinbaum S. Micro-CT based analysis of a new paradigm for vulnerable plaque rupture: cellular microcalcifications in fibrous caps. Mol Cell Biomech 2008;5:37-47 9. Joshi NV, Vesey A, Newby DE, Dweck MR. Will 18F-sodium fluoride PET-CT imaging be the magic bullet for identifying vulnerable coronary atherosclerotic plaques? Curr Cardiol Rep 2014;16:521 10. Otsuka F, Finn AV, Virmani R. Do vulnerable and ruptured plaques hide in heavily calcified arteries? Atherosclerosis 2013;229:34-37 11. O Brien KD, Kuusisto J, Reichenbach DD, Ferguson M, Giachelli C, Alpers CE, et al. Osteopontin is expressed in human aortic valvular lesions. Circulation 1995;92:2163-2168 12. New SE, Aikawa E. Molecular imaging insights into early inflammatory stages of arterial and aortic valve calcification. Circ Res 2011;108:1381-1391 13. Aikawa E, Nahrendorf M, Figueiredo JL, Swirski FK, Shtatland T, Kohler RH, et al. Osteogenesis associates with inflammation in early-stage atherosclerosis evaluated by molecular imaging in vivo. Circulation 2007;116:2841-2850 14. Boström K. Proinflammatory vascular calcification. Circ Res 2005;96:1219-1220 15. Dilsizian V, Narula J. Putting the face to a name: concurrent assessment of vascular morphology and biology. JACC Cardiovasc Imaging 2009;2:1243-1244 16. Chen W, Dilsizian V. (18)F-fluorodeoxyglucose PET imaging of coronary atherosclerosis and plaque inflammation. Curr Cardiol Rep 2010;12:179-184 17. Blau M, Nagler W, Bender MA. Fluorine-18: a new isotope for bone scanning. J Nucl Med 1962;3:332-334 18. Grant FD, Fahey FH, Packard AB, Davis RT, Alavi A, Treves ST. Skeletal PET with 18F-fluoride: applying new technology to an old tracer. J Nucl Med 2008;49:68-78 19. Hawkins RA, Choi Y, Huang SC, Hoh CK, Dahlbom M, Schiepers C, et al. Evaluation of the skeletal kinetics of fluorine-18- fluoride ion with PET. J Nucl Med 1992;33:633-642 20. Derlin T, Richter U, Bannas P, Begemann P, Buchert R, Mester J, et al. Feasibility of 18F-sodium fluoride PET/CT for imaging of atherosclerotic plaque. J Nucl Med 2010;51:862-865 21. Derlin T, Tóth Z, Papp L, Wisotzki C, Apostolova I, Habermann CR, et al. Correlation of inflammation assessed by 18F-FDG PET, active mineral deposition assessed by 18F-fluoride PET, and vascular calcification in atherosclerotic plaque: a dualtracer PET/CT study. J Nucl Med 2011;52:1020-1027 22. Derlin T, Wisotzki C, Richter U, Apostolova I, Bannas P, Weber C, et al. In vivo imaging of mineral deposition in carotid 1260

F-18 Fluoride PET in Atherosclerotic Plaques plaque using 18F-sodium fluoride PET/CT: correlation with atherogenic risk factors. J Nucl Med 2011;52:362-368 23. Dweck MR, Chow MW, Joshi NV, Williams MC, Jones C, Fletcher AM, et al. Coronary arterial 18F-sodium fluoride uptake: a novel marker of plaque biology. J Am Coll Cardiol 2012;59:1539-1548 24. Joshi NV, Vesey AT, Williams MC, Shah AS, Calvert PA, Craighead FH, et al. 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: a prospective clinical trial. Lancet 2014;383:705-713 1261