Dissolution Profiles of Diclofenac Potassium Tablets from the Argentinean Market

Similar documents
Biowaiver Study on Prednisolone Tablets 5 mg in Three Different Brands. Marketed in Sudan. Safaa Mohamed *, Tilal Elsaman

Asian Journal of Pharmacy and Life Science ISSN Vol. 2 (2), July-Sept,2012

SCIENTIFIC DISCUSSION. Efavirenz

FORMULATION AND EVALUATION OF PIROXICAM AND CELECOXIB TABLETS EMPLOYING PROSOLVE BY DIRECT COMPRESSION METHOD

STUDIES ON EFFECT OF BINDERS ON ETORICOXIB TABLET FORMULATIONS

Effect of Common Excipients on the Oral Drug Absorption of Biopharmaceutics Classification System Class 3 Drugs

Formulation and Evaluation

A FACTORIAL STUDY ON THE ENHANCEMENT OF DISSOLUTION RATE OF KETOPROFEN BY SOLID DISPERSION IN COMBINED CARRIERS

SCIENTIFIC DISCUSSION

Formulation and evaluation of sublingual tablets of lisinopril

Public Assessment Report. Scientific discussion. Risperidon Medartuum film-coated tablets Risperidone SE/H/722/01-06/MR

SCIENTIFIC DISCUSSION

Abacavir (as sulfate) 300 mg tablets WHOPAR part 6 May 2016 (Hetero Labs Ltd), HA575

Public Assessment Report Scientific discussion. Ciprofloxacin Accord (ciprofloxacin hydrochloride) SE/H/1026/01-03/DC

Public Assessment Report. Scientific discussion. Levofloxacin Bluefish (levofloxacin hemihydrate) SE/H/889/01-02/DC

Public Assessment Report. Scientific discussion. Venlafaxin SUN 37.5 mg, 75 mg and 150 mg prolonged-release tablets. (venlafaxine hydrochloride)

SCIENTIFIC DISCUSSION

Public Assessment Report Scientific discussion. Lamotrigin Medartuum Lamotrigine SE/H/728/01-04/MR

SCIENTIFIC DISCUSSION. Antimycobacterial (J04AC01).

Folic Acid in Human Nutrition

DRUG PRODUCT PERFORMANCE: CONSIDERATIONS FOR INTERCHANGEABILITY OF MULTISOURCE DRUG SUBSTANCES AND DRUG PRODUCTS

Ciprofloxacin Bluefish (Ciprofloxacin hydrochloride)

SCIENTIFIC DISCUSSION. Lopinavir and Ritonavir 200 mg/50 mg Tablets * Name of the Finished Pharmaceutical Product:

Public Assessment Report Scientific discussion. Oxikodon Depot Actavis (oxycodone hydrochloride) SE/H/1313/01-08/DC

IMPAIRMENT OF THE IN VITRO RELEASE OF CARBAMAZEPINE FROM TABLETS

Formulation and Development of Sustained Release Tablets of Valsartan Sodium

Public Assessment Report. Scientific discussion. Tevaltan comp. Film-coated tablets 80 mg/12.5 mg and 160 mg/25 mg. Valsartan and hydrochlorothiazide

Biopharmaceutics Dosage form factors influencing bioavailability Lec:5

Int. Res J Pharm. App Sci., 2013; 3(6):42-46 ISSN:

SCIENTIFIC DISCUSSION

Public Assessment Report Scientific discussion. Oxikodon Actavis (oxycodone hydrochloride) SE/H/1226/01-03/DC

Formulation and Optimization of Immediate Release Tablet of Sitagliptin Phosphate using Response Surface Methodology

Int. Res J Pharm. App Sci., 2014; 4(1):47-51 ISSN:

SCIENTIFIC DISCUSSION

STABILITY STUDIES OF FORMULATED CONTROLLED RELEASE ACECLOFENAC TABLETS

FABRICATION AND EVALUATION OF GLIMEPIRIDE CORDIA DICHOTOMA G.FORST FRUIT MUCILAGE SUSTAINED RELEASE MATRIX TABLETS

Public Assessment Report Scientific discussion

Global College of Pharmacy, Kahnpur Khui, Tehsil Anandpur Sahib, Distt.- Ropar, Punjab, India

Etat des travaux du GDP

Q&A for submission of applications for prequalification of Zinc Sulfate tablets and Zinc Sulfate oral liquid (solution)

FORMULATION AND EVALUATION OF VALSARTAN TABLETS EMPLOYING CYCLODEXTRIN-POLOXAMER 407-PVP K30 INCLUSION COMPLEXES

Available Online through Research Article

Optimization of valsartan tablet formulation by 2 3 factorial design

Development and Validation of a UV-Spectrophotometric Method for Quantification of Atorvastatin in Tablets

The Relevance of USP Methodology in the Development of a Verapamil Hydrochloride (240 mg) Extended Release Formulation

A FACTORIAL STUDY ON ENHANCEMENT OF SOLUBILITY AND DISSOLUTION RATE OF IBUPROFEN BY β CYCLODEXTRIN AND SOLUTOL HS15

DESIGN AND EVALUATION OF CONTROLLED RELEASE MATRIX TABLETS OF FLURBIPROFEN

Summary Public Assessment Report. Generics. Etoricoxib Aurobindo. 30 mg, 60 mg, 90 mg, 120 mg Film-coated tablet (Etoricoxib) PT/H/1603/ /DC

7. SUMMARY, CONCLUSION AND RECOMMENDATIONS

World Journal of Pharmaceutical Research SJIF Impact Factor 5.990

SCIENTIFIC DISCUSSION

Formulation and In-vitro Evaluation of Chewable Tablets of Montelukast Sodium

Public Assessment Report. Scientific discussion. Rabeprazolnatrium Torrent Pharma. 10 mg and 20 mg gastro-resistant tablets. Rabeprazole sodium

Public Assessment Report Scientific discussion. Sumatriptan Pfizer (sumatriptan succinate) SE/H/973/01-02/DC

CHAPTER VI FACTORIAL STUDIES ON THE EFFECTS OF CYCLODEXTRINS AND SOLUTOL HS15 ON THE SOLUBILITY AND DISSOLUTION RATE OF EFAVIRENZ AND RITONAVIR

Public Assessment Report Scientific discussion. Ciprofloxacin Pfizer (Ciprofloxacin hydrochloride) SE/H/803/01-03/DC

LubriTose Mannitol Michael Crowley, Director of R&D, Excipients

TEPZZ Z697_5A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (51) Int Cl.: A61K 9/20 ( ) A61K 31/135 (2006.

REGULATORY PERSPECTIVE. Dr. Raghunandan H V Associate Professor JSSCP, JSSU, Mysore

Formulation and Evaluation of Rosuvastatin Immediate Release Tablets 10 Mg

COMPARISON OF QUALITY CONTROL OF TWO DIFFERENT B-COMPLEX TABLETS AND THEIR LEGISLATIVE ISSUES ON THE ALBANIAN PHARMACEUTICAL MARKET

FACTORIAL STUDIES ON THE EFFECTS OF HYDROXY PROPYL β- CYCLODEXTRIN AND POLOXAMER 407 ON THE SOLUBILITY AND DISSOLUTION RATE OF BCS CLASS II DRUGS

Mylan Laboratories Limited F-4 & F-12, Malegaon MIDC, Sinnar Nashik Maharashtra State, India

Formulation Development, Evaluation and Comparative Study of Effects of Super Disintegrants in Cefixime Oral Disintegrating Tablets

ENHANCEMENT OF SOLUBILITY AND DISSOLUTION RATE OF NIMESULIDE BY CYCLODEXTRINS, POLOXAMER AND PVP

SCIENTIFIC DISCUSSION. AkuriT-3 Tablets*

Public Assessment Report Scientific discussion. Doxazosin NM Pharma 4 mg prolonged-release tablet (Doxazosin mesilate) SE/H/465/01

Public Assessment Report Scientific discussion. Dexametason Abcur Dexamethasone SE/H/1260/01-02/DC

Formulation and evaluation of intraorally fast dissolving tablet of olmesartan medoxomil

WHOPAR. SCIENTIFIC DISCUSSION

Public Assessment Report. Scientific discussion. Sumatriptan Actavis (sumatriptan succinate) SE/H/700/01-02/MR

STARCH Application Data

Pharmaceutical Studies on Formulation and Evaluation of Sustained Release Tablets Containing Certain Drugs

Formulation Development of Aceclofenac Tablets Employing Starch Phosphate -A New Modified Starch

3. Drug or plant or excipients profile

Formulation and evaluation of immediate release salbutamol sulphate

OPTIMIZATION OF CONTROLLED RELEASE GASTRORETENTIVE BUOYANT TABLET WITH XANTHAN GUM AND POLYOX WSR 1105

Development of Generic Drug Tablet Production Expert System

Available online Research Article

EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (43) Date of publication: Bulletin 2010/39

Chemate and Chowdary, IJPSR, 2012; Vol. 3(7): ISSN:

PREPARATION AND EVALUATION OF STARCH - PEG 1500 CO-PROCESSED EXCIPIENT AS A NEW DIRECTLY COMPRESSIBLE VEHICLE IN TABLET FORMULATIONS

Quality Assessment of Different Brands of Rabeprazole Tablets Marketed In Some Nigerian Cities

Analyses for the Future

SCIENTIFIC DISCUSSION

ENHANCEMENT OF SOLUBILITY OF BICALUTAMIDE DRUG USING SOLID DISPERSION TECHNIQUE

Short Communication. Formulation of Furosemide Dispersible Tablets for Use in Paediatrics V. V. ABWOVA, P. N. MBEO, L. J. TIROP AND K. A. M.

I International Bureau (10) International Publication Number (43) International Publication Date

Formulation and Evaluation of Gastroretentive Dosage form of Ciprofloxacin Hydrochloride.

Dissolution Studies of Generic Medications: New Evidence of Deviations from the Transitivity Principle

This revision also necessitates a change in the table numbering in the test for Organic Impurities.

A Comparative Evaluation of Cross Linked Starch Urea-A New Polymer and Other Known Polymers for Controlled Release of Diclofenac

Volume: 2: Issue-3: July-Sept ISSN FORMULATION AND EVALUATION OF SUSTAINED RELEASE MATRIX TABLETS OF NICORANDIL

ENHANCEMENT OF SOLUBILITY, DISSOLUTION RATE AND BIOAVAILABILITY OF RITONAVIR BY CYCLODEXTRINS AND SOLUTOL HS15 - A FACTORIAL STUDY

FORMULATION AND EVALUATION OF ETORICOXIB TABLETS EMPLOYING CYCLODEXTRIN- POLOXAMER PVPK30 INCLUSION COMPLEXES

Public Assessment Report. Scientific discussion. Aktiprol 50 mg, 100 mg, 200 mg and 400 mg tablets. (Amisulpride) DK/H/2386/ /DC

Development and Validation for Simultaneous Estimation of Sitagliptin and Metformin in Pharmaceutical Dosage Form using RP-HPLC Method

Comparative Evaluation of Enteric Film Coatings Applied in Organic Solvents

Formulation, Optimization and Evaluation of Mouth Dissolving Tablet of Zidovudine

BCS: Dissolution Testing as a Surrogate for BE Studies

Transcription:

Cronicon OPEN ACCESS Dissolution Profiles of Diclofenac Potassium Tablets from the Argentinean Market Luciana Petrone, Laura D Simionato, Yong K Han and Adriana I Segall* Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Argentina CHEMISTRY Research Article *Corresponding Author: Adriana I Segall, Chair of Quality Medicines, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Junín 956 (1113) CABA, Argentina. Received: November 11, 2014; Published: December 9, 2014 Abstract In this study, the aim was to apply different comparison methods to dissolution profiles of immediate release commercial tablets of diclofenac potassium. Diclofenac potassium is classified as a class II drug as per the biopharmaceutical classification system. Dissolution testing was conducted using the USP monograph of diclofenac potassium tablets. All brands fulfil the specifications of dissolution test of USP comparison of dissolution profiles were carried out model independent approaches. Results show that there was no significant difference in dissolution efficiency and mean dissolution time between the reference product and Brands II, IV, V and VI. Using fit factors, only Brands I, II and V were similar. Keywords: Soil acidification; Nitrogen fertilizer; Aluminium Abbreviations: MDT: Mean Dissolution Time; DE: Dissolution Efficiency; SD: Standard Deviation; CV: Variation coefficient Introduction Diclofenac is commercially present as sodium and potassium salt in tablets for oral administration and as diethylamine for topical application. While extensive literature is available for sodium salt [1-3], little has been reported on the potassium salt [4]. Diclofenac potassium has excellent antipyretic, analgesic and anti-inflammatory properties. Diclofenac potassium is claimed to dissolve faster and hence absorbed faster than sodium salt. It is also indicated for the treatment of primary dysmenorrhea and mild to moderate pain [5]. Diclofenac potassium is classified as a class II drug as per the biopharmaceutical classification system (BCS) [5]. The poor dissolution rate of water-insoluble drugs is still a major problem confronting the pharmaceutical industry. Fini et al. [6] studied the dissolution efficiency of diclofenac salts prepared using alkaline metals hydroxide or organic aliphatic bases. In recent years, more emphasis has been placed on dissolution testing within the pharmaceutical industry and correspondingly, by regulatory authorities. As a result FDA, EMA and WHO [7-9] provide recommendations to compare dissolution profiles. A dissolution profile is defined as the measured fraction (or percentage) of the labelled amount of drug that is released from a dosage unit (tablet or capsule) at a number of predetermined time points when tested in a dissolution apparatus, such as the US Pharmacopeia (USP) I or II dissolution systems. The FDA suggest some acceptable approaches for establishing similarity of dissolution profiles, such as the modelindependent and model-dependent approaches, although any approach would be considered once it had been justified. Although immediate release solid dosage forms are routinely subjected to test such as content uniformity, weight, hardness, friability and disintegration, the test that is most often associated with the assessment of in vivo performance is the dissolution test. 1.1 (2014): 2-8.

3 Methods for comparing in vitro dissolution profiles can be classified into three main groups: ANOVA-based statistical methods, model-independent and model-dependent approaches. ANOVA-based methods do not rely on curve fitting procedures and the dissolution data are used in their native form or as a simple transform and the analysis is capable of showing differences between profiles in level and shape. The latter characteristic is especially important with respect to learning about differences in the dissolution mechanism. The characterization as model-dependent method or model-independent method depends on the values which are used to perform the calculation. A model-independent method uses the dissolution data in their native form. The model-dependent methods, however, are based on different mathematical functions, which describe the dissolution profile. Once a suitable function has been selected, the dissolution profiles are evaluated depending on the derived model parameters [10]. The aim of the present study was to evaluate and compare the dissolution profile of six commercial products containing Diclofenac potassium 50 mg. marketed in Argentina, based on their in vitro dissolution characteristics using USP Test, Apparatus 2 [11]. Each formulation was compared with the reference using model-independent methods: fit factors, mean dissolution time (MDT) and dissolution efficiency % (DE). Materials and Methods Reagents Analytical grade monobasic potassium phosphate (Anedra, Argentine) and sodium hydroxide (Mallinckrodt, USA) were used. Diclofenac potassium was purchased in Saporiti, Argentina, 99.9% calculated with reference to the dried substance, origin India. Materials In our study, six commercial tablets containing Diclofenac potassium 50mg were purchased from pharmacies in Buenos Aires (Argentina). All tests were performed within products expiration dates. Apparatus and procedure All dissolution studies were performed using USP37, Apparatus 2 in a Sotax AT7 (Sotax AG, Basel Switzerland), which is a manualsampling dissolution bath. The diclofenac potassium tablets test was performed at 50 ± 1 rpm. The dissolution medium simulated intestinal fluid (without enzyme) ph: 6.8, at 37 ± 0.5 C. The acceptance criterion set was Q = 75 in 60 min. Dissolution media volume was 900 ml. In all experiments, 5 ml sample aliquots were withdrawn at 10, 15, 20, 30, 45 and 60 min using micropipettes. The withdrawn amounts were adjusted in the calculations. All samples were filtered through filter paper (Whatman 91;10.0 µm). The filter paper used was properly validated using the standard solution and comparing with membrane filters. The amount dissolved was determined spectrophotometrically in a UV-VIS Spectrophotometer Cary 1E Varian (Victoria, Australia). The standard solution was prepared at the same concentration and in the same Medium. Twelve tablets or capsules of each preparation were studied to obtain statistically significant results. Comparative dissolution Model-independent methods Fit factors: A mathematical comparison was performed by applying f 1 and f 2. These fit factors directly compare the difference between the percent drug dissolved per unit time for a test and a reference formulation. 1.1 (2014): 2-8.

4 (1) Difference factor (2) Similarity factor Where n is the number of time points, R t is the dissolution value of the reference formulation at time t and T t is the dissolution value of the test formulation at time t. The similarity factor (f 2 ) is a logarithmic reciprocal square root transformation of the sum of squared error and is a measurement of the similarity in the percent (%) dissolution between the curves. Values of f 1 between 0 and 15 and values of f 2 between 50 and 100 are used to define equivalence of two dissolution profiles, which means an average difference of no more than 10% at the sample time points. Dissolution efficiency: This concept was proposed by Khan and Rhodes [12] in 1975 and is defined as follows: Where Q 100 is the percentage of dissolved product, DE is then the area under the dissolution curve between time points 0 and T expressed as a percentage of the curve at maximum dissolution, Q 100, over the same time period. Mean dissolution time: The mean dissolution time is calculated from the accumulative curves of dissolved product depending on the time [13]. Where t i is intermediate time of the intervals of time sampled, ΔQ i is the increase of the quantities of product dissolved in every interval of t considered and Q is the maximum of product dissolved. The results of DE and MDT of the different Brands of Diclofenac potassium tablets were compared with the reference using a twovariable t test as follows: Where X R and X T are means of the model parameters of the reference and test products, respectively, n R and n T are the number of measurements for the mean X R and X T, and S d is the weighted average standard deviation as shown below Where S R and S T are the standard deviations of model parameters for the reference and test products. If the calculated t values is less than the critical value of t (1- α/2, n R +n T -2), the two means X R and X T differ only randomly at risk level α. Results and Discussion Dissolution of drug from oral solid dosage forms is a necessary criterion for drug bioavailability (i.e., the drug must be solubilized in the aqueous environment of the gastrointestinal tract to be absorbed). For this reason, dissolution testing of solid oral drug products has emerged as one of the most important performance test for assuring product uniformity and batch to batch equivalence. Variations of the pharmacopeia limits indicate unacceptable products. 1.1 (2014): 2-8.

5 Brand Other Ingredients Appearance I Tricalciumphosphate, sodiumstarchglycolate, colloidalsilicondioxide, maizestarchmagnesiumstearate, Brown, circular povidone K-30, microcrystallinecellulose, cellacefate, diethylphthalate, titani- umdioxide, amaranth red aluminiunlake, tartrazinealuminiumlakeand talc II Lactose, cross-linked carboxymethylcellulose, silicon dioxide, magnesium stearate, sunset yellow aluminum lake, titanium dioxide, dextrose, lecithin, potassium aluminum silicate, microcrystalline Orange, circular, with indented line in center cellulose III Coprocessed lactose and microcrystalline cellulose, lactose monohydrate, sodium starch glycolate, Yellow, circular magnesium stearate, silicon dioxide, talc, Poly(methacrylic acid-co-ethyl acrylate) 1:1, polyethilene glycol 6000, polysorbate 80, triethyl citrate, titanium dioxide, talc, iron (III) oxide yellow. IV Lactose, coprocessed lactose and microcrystalline cellulose, sodium starch glycolate, magnesium White, circular stearate, cellulose aceto phthalate, polyvinylpyrrolidone-vinyl acetate copolymer, polysorbate 80, titanium dioxide, diethyl phthalate V Lactose monohydrate, coprocessed lactose and microcrystalline cellulose, sodium croscarmellose, Light blue, circular magnesium stearate, hydroxypropyl methylcellulose, propylene glycol, titanium dioxide, talc, brilliant blue lake. VI Magnesium stearate, sodium starch glycolate, coprocessed lactose and microcrystalline cellulose, distilled water, hydroxypropyl methylcellulose, polyethilene glycol 6000, talc, iron (III) oxide brown, iron (III) oxide red, titanium dioxide Brown, circular Table 1: Formulation Compositions. Table 1 summarizes the characteristics of the six products. The products were purchased from pharmacies in Buenos Aires (Argentina). All tests were performed within products expiration dates, which were similar among brands. In this study we defined Brand I as the reference product. Time (min) Brand Mean% RSD Lower Limit Upper Limit I 56.3 26.0 29.9 81.3 II 55.4 11.3 53.8 65.1 III 12.6 21.1 10.6 16.4 10 IV 19.0 36.7 11.1 30.8 V 48.3 15.4 42.5 63.2 VI 50.8 18.1 34.5 62.1 I 90.3 8.8 83.0 102.8 II 79.0 10.1 77.0 89.1 15 III 23.6 18.0 19.4 30.5 IV 29.9 23.5 22.4 41.3 V 84.5 8.0 73.9 91.6 VI 67.4 14.0 51.6 80.2 I 96.8 3.1 93.6 100.5 II 93.9 11.2 80.3 101.8 20 III 46.7 13.4 39.8 56.2 IV 59.3 30.2 36.0 82.4 V 88.3 3.5 84.1 92.7

6 Time (min) Brand Mean% RSD Lower Limit Upper Limit VI 82.7 11.3 67.8 95.9 I 97.7 2.2 94.1 99.9 30 II 103.2 4.6 95.9 109.9 III 80.1 15.1 67.6 98.6 IV 82.6 14.2 64.8 96.3 V 95.4 2.0 92.8 98.1 VI 96.1 4.2 91.8 103.5 I 98.4 2.5 95.8 101.6 45 II 105.0 2.5 101.7 108.3 III 102.9 6.6 92.0 109.8 IV 101.0 4.1 95.0 106.9 V 102.3 4.5 98.2 110.6 VI 101.1 3.8 96.5 107.5 I 99.4 6.0 95.0 111.1 60 II 104.2 3.7 99.2 109.4 III 107.2 4.1 100.9 114.0 IV 104.5 4.4 99.7 113.2 V 102.5 1.7 100.4 104.9 VI 100.2 4.6 96.4 108.2 Table 2: Dissolution data and descriptive statistics of six brands of diclofenac potassium tablets. In the dissolution test for diclofenac potassium tablets described in the American Pharmacopeia (United States Pharmacopeia 37) no less than 80% (Q+5%) should be dissolved in 60 minutes. Table 2 summarizes the mean percent dissolved at each time point, the relative standard deviation (RSD), and the upper and lower limits. Brand M SD CV t ex I 84.4 4.2 5.0 II 82.6 2.7 3.2 0.2198 III 60.8 3.8 6.2 2.4326 IV 64.9 5.8 9.0 1.5781 V 80.4 0.8 1.0 0.5540 VI 79.3 4.4 5.5 0.4928 Table 3: Average (M), Standard Deviation (SD), Variation Coefficient (CV) and t experimental (t ex ) of Dissolution Efficiency % (ED). Brand M SD CV t ex I 13.6 2.6 19.0 II 14.6 1.8 12.5 0.1838 III 28.4 2.6 9.1 2.3422 IV 25.6 4.0 15.5 1.4694 V 16.0 0.5 2.9 0.5357 VI 16.8 2.7 16.1 0.4970 Table 4: Average (M), Standard Deviation (SD), Variation Coefficient (CV) and t experimental (t ex ) of Mean Dissolution Time (MDT).

7 The DE and the MDT values are a useful way to reduce each curve to a single number, which may be related to the dissolution rate constant. The average, the standard deviation (SD), the variation coefficient (CV) and t ex of the DE data are presented in Table 3 and the MDT data are presented in Table 4. Test t with 95% confidence for 22 degrees of freedom was (t n-2, α: 0.05 ) = 2.0739. There is no significant difference among the reference product and Brands II, IV, V and VI for both determinations. Figure 1: Dissolution profiles of diclofenac potassium tablets. Fit factors are important quantitative methods that have been recommended by FDA, EMA and WHO guidelines for industry for comparison of dissolution profiles (Figure 1). Results obtained from the test using Brand I as the reference are shown in Table 5. The similarity factor f 2 is more sensitive in finding dissimilarity between dissolution curves than the difference factor f 1, and the values of fit factors are dependent on the number of sampling time point chosen. According to FDA f 1 values up to 15 and f 2 values greater than 50 should ensure equivalence of the dissolution curves, indicating an average difference of no more than 10% at the sample time points. Based on this guideline, only Brand II and V seem to show a dissolution curve similar with the reference. Brand Fit Factor f 1 f 2 I/II 6 58 I/III 35 18 I/IV 29 22 I/V 6 60 I/VI 9 45 Table 5: Fit Factors for the six brands of diclofenac potassium tablets based on the average of twelve tablets.

8 Conclusion This study found variations in the dissolution profiles of diclofenac potassium tablets commonly available in Argentina. The analyzed products presented very distinct dissolution profiles, showing that the dissolution test may be formulation dependent. All Brands fulfil the specifications of dissolution test of USP 37, Q = 75 in 60 min. There is no significant difference (p = 0.05) among the reference product and Brands II, IV, V and VI for DE and MDT. Using fit factors, only Brands I, II and V were similar. In conclusion, significant differences were seen between the in vitro dissolution profiles of diclofenac potassium tablets from various commercial preparations. Nevertheless, the potential impact of these results on the in vivo bioavailability would require further investigation. Bibliography 1. O Connor KM and O Corrigan. Comparison of the physicochemical properties of the N-(2-hydroxyethyl) pyrrolidine, diethylamine and sodium salt forms of diclofenac. International Journal of Pharmaceutics 222.2 (2001): 281-293. 2. Bartolomei M., et al. Physico-chemical characterisation and intrinsic dissolution studies of a new hydrate form of diclofenac sodium: comparison with anhydrous form. Journal of Pharmaceutical and Biomedical Analysis 40.5 (2006): 1105-1113. 3. Su SF., et al. In vitro and in vivo comparison of two diclofenac sodium sustained release oral formulations. International Journal of Pharmaceutics 260.1 (2003) 39-46. 4. Fini A., et al. Diclofenac salts. I. Fractal and thermal analysis of sodium and potassium diclofenac salts. Journal of Pharmaceutical Sciences 90.12 (2001): 2019-2057. 5. Chuasuwan B., et al. Biowaiver monographs for immediate release solid oral dosage forms: Diclofenac sodium and diclofenac potassium. Journal of Pharmaceutical Sciences 98.4 (2009): 1206-1219. 6. Fini A., et al. Factors governing the dissolution of diclofenac salts. European Journal of Pharmaceutical Sciences 4.4 (1996): 231-238. 7. FDA Center for Drug Evaluation and Research. Guidance for the industry: dissolution testing of immediate release solid oral dosage forms. Rockville, MD, 1997. 8. EMA Committee for Medicinal Products for Human Use (CHMP). Guideline on the investigation of bioequivalence. London, UK, 2010. 9. WHO Technical Report Series. Multisource (generic) pharmaceutical products: guidelines on registration requirements to establish interchangeability. 2006. No: 937. 10. Yuksel N., et al. Comparison of in vitro dissolution profiles and a rationale for wide dissolution profiles by ANOVA-based, model dependent and independent methods. International Journal of Pharmaceutics 209.1-2 (2000): 57-67. 11. The United States Pharmacopeia. 37 th ed. Rockville, MD, 2014. 2593-2594. 12. Khan KA and CT Rhodes. Effect of compaction pressure on the dissolution efficiency of direct compression systems. Pharma ceutica Acta Helvetiae 47.10 (1972): 594-607. 13. Aguilar Ros A., et al. Parámetros amodelísticos: comparación de perfiles. Biofarmacia y Farmacocinética, ejercicios y problemas resueltos. 1 st ed. Barcelona, España: Elsevier España S L, 2008. 3-4. Volume 1 Issue 1 December 2014 All rights are reserved by Luciana Petrone., et al.