Primary paediatric TH1 immunodeficiency with BCG osis

Similar documents
A CASE OF RECURRENT TUBERCULOSIS -LAVANYA DR. S. BALASUBRAMANIAN S UNIT SR. CONSULTANT KKCTH

Feature Articles. Mendelian Susceptibility to Mycobacterial Infection in Childhood: Genetic Defects of IL-12-dependent IFNγ-mediated Immunity

Disseminated BCG as a unique feature of an infant with severe combined immunodeficiency

Characteristics of Mycobacterium

Summary of Key Points WHO Position Paper on BCG Vaccine, February 2018

Communicable Disease Control Manual Chapter 4: Tuberculosis

SUPPLEMENTAL PATIENTS AND METHODS

CD4+ T Helper T Cells, and their Cytokines in Immune Defense and Disease

Problem 7 Unit 6 Clinical: Primary immunodeficiency

Diagnostic Value of Elisa Serological Tests in Childhood Tuberculosis

Chapter 24 The Immune System

When should a Primary Immunodeficiency be Suspected?

Primary Immunodeficiency

CHAPTER 3: DEFINITION OF TERMS

Immunodeficiency. By Dr. Gouse Mohiddin Shaik

Osteomyelitis Caused by Bacille Calmette-Gu (BCG) Vaccination: 2 Cases

Research Article Cytokines as Biomarkers in the Diagnosis of MDR TB Cases

Disseminated cutaneous BCG infection following BCG immunotherapy in patients with lepromatous leprosy

Medical Bacteriology- Lecture 10. Mycobacterium. Actinomycetes. Nocardia

Mycobacteria & Tuberculosis PROF.HANAN HABIB & PROF ALI SOMILY DEPRTMENT OF PATHOLOGY, MICROBIOLOGY UNIT COLLEGE OF MEDICINE

Question 1. Kupffer cells, microglial cells and osteoclasts are all examples of what type of immune system cell?

Respiratory System الفريق الطبي االكاديمي

number Done by Corrected by Doctor Mousa Al-Abbadi

Case Presentations in Primary Immune Deficiency Diseases. John W. Sleasman, M.D. St Petersburg, FL Mark Ballow, M.D. Buffalo NY & Sarasota, FL

COMMON VARIABLE IMMUNODEFICIENCY

Immunodeficiency and Skin (September 21, 2018) By (Arti Nanda, MD, DNBE [Kuwait])

Monitoring tuberculosis progression using MRI and stereology

Mycobacterium tuberculosis. Lecture (14) Dr.Baha, AL-Amiedi Ph. D.Microbiology

Complication of Bacillus Calmette-Guerin (BCG) Vaccine in HIV-infected Children

Helminth worm, Schistosomiasis Trypanosomes, sleeping sickness Pneumocystis carinii. Ringworm fungus HIV Influenza

WISKOTT-ALDRICH SYNDROME. An X-linked Primary Immunodeficiency

PROTOCOLS. Severe combined immunodeficiency. Principal investigators. Background. Dr. Louise Pelletier* Dr. Rosemarie Ramsingh

Peripheral mycobacterial lymphadenitis (TB, NTM and BCG)

Diagnosis of tuberculosis in children

Tuberculosis. By: Shefaa Q aqa

Medical Bacteriology- lecture 13. Mycobacterium Actinomycetes

Prof. Ibtesam Kamel Afifi Professor of Medical Microbiology & Immunology

HYPER IgM SYNDROME This booklet is intended for use by patients and their families and should not replace advice from a clinical immunologist.

Mendelian susceptibility to mycobacterial disease

Pathology of pulmonary tuberculosis. Dr: Salah Ahmed

Primary immunodeficiencies: when to worry about your child's immune system?

TB Intensive San Antonio, Texas December 1-3, 2010

Is it CVID? Not Necessarily HAIG TCHEUREKDJIAN, MD

Medical Virology Immunology. Dr. Sameer Naji, MB, BCh, PhD (UK) Head of Basic Medical Sciences Dept. Faculty of Medicine The Hashemite University

ACCME/Disclosures. Two Patients and a Caveat 4/13/2016. Patient #1: 13 y/o boy with IPEX syndrome; s/p BMT

Clinical Immunodeficiency. Dr Claire Bethune Consultant Immunologist

Diagnosis and Medical Management of Latent TB Infection

How the Immune System Works (and Fails) in 45 Minutes or Less. Disclosures. Learning Objectives 10/15/2014. Nothing to Disclose

Mild Megakaryocyte Atypia in a Patient with Presumed Germline GATA2 Mutation, and Active Mycobacterial Infection.

Human Genetics of Tuberculosis. Laurent Abel Laboratory of Human Genetics of Infectious Diseases University Paris Descartes/INSERM U980

BCG OSTEITIS. B. Varbanova 1, V. Vasileva 1, P. Minchev 2, R. Nedeva 1 and E. Dyankov 1 BCG. . Bacille-Calmette Guerin (BCG) BCG.

Innate Immunity: (I) Molecules & (II) Cells. Part II: Cells (aka the Sentinels)

Disclosures. Newborn Screening for Severe Combined Immune Deficiency Syndromes (SCIDS): Why; why now? Learning objectives.

NTM Lecture Series. Challenging Cases: Part 1. Property of Presenter

Approach to a child with recurrent infections. Dave le Roux 9 March 2012

The Lymphatic System and Body Defenses

Preface. Date: May 1, 2003 Vol.1/MX-2/05/03

Immunology and the middle ear Andrew Riordan

Tuberculosis Intensive

Tuberculosis Pathogenesis

TUBERCULOSIS. Famous victims in their intellectual prime: Chopin, Paganini, Thoreau, Keats, Elizabeth Browning, Brontës

Latent Tuberculosis Infections Controversies in Diagnosis and Management Update 2016

A Multicistronic DNA Vaccine Induces Significant Protection against Tuberculosis in Mice and Offers Flexibility in the Expressed Antigen Repertoire.

Vaccination of Immunocompromised (Focus on HIV + population) Benjamin Kagina

Severe Combined Immune Deficiency (SCID) A Guide for Parents Following a Diagnosis

Autoimmunity and Primary Immune Deficiency

The child under age 5 with inflammatory bowel disease

International Conference on Parasitology August 24-26, 2015 Philadelphia, Pennsylvania, USA

Tuberculosis Tools: A Clinical Update

Approaching Neutropenia in Children. SW Florida Osteopathic Medical Society: 39 th Annual Seminars in Family Practice

TB Intensive Houston, Texas. Childhood Tuberculosis Kim Connelly Smith. November 12, 2009

Frequency of Bacille Calmette-Guérin (BCG) and Mycobacterium tuberculosis in Tissue Biopsy Specimens of Children Vaccinated With BCG

Immunology Lecture 4. Clinical Relevance of the Immune System

1. Specificity: specific activity for each type of pathogens. Immunity is directed against a particular pathogen or foreign substance.

HAEMOPHAGOCYTIC LYMPHOHISTIOCYTOSIS HLH ADULTS & Young People

Immunological Aspects of Parasitic Diseases in Immunocompromised Individuals. Taniawati Supali. Department of Parasitology

Immune Deficiency Primary and Secondary. Dr Liz McDermott Immunology Department NUH

A. Incorrect! The duodenum drains to the superior mesenteric lymph nodes. B. Incorrect! The jejunum drains to the superior mesenteric lymph nodes.

Case Report Diagnostic Challenges of Tuberculous Lymphadenitis Using Polymerase Chain Reaction Analysis: A Case Study

3/25/2012. numerous micro-organismsorganisms

Form 2033 R3.0: Wiskott-Aldrich Syndrome Pre-HSCT Data

Enlarging TB Lymph Node Improving or Deteriorating? History. History. Physical examination. Distribution of lymph nodes

7. BCG Vaccination HSE/HPSC. Guidelines on the Prevention and Control of Tuberculosis in Ireland IUATLD criteria

PIDPID GLOSSARYID GLOSSARY

Unit 5 The Human Immune Response to Infection

FINE NEEDLE ASPIRATION (FNAC) AS A DIAGNOSTIC TOOL IN PAEDIATRIC LYMPHADENOPATHY.

Tuberculosis Part 1. Some useful truths

SAFETY AND IMMUNOGENICITY OF BACILLUS CALMETTE-GUERIN VACCINE IN CHILDREN BORN TO HIV-1 INFECTED WOMEN

Acute miliary tuberculosis in a five-month-old boy

Severe Congenital Neutropenia in Iran

Chapter 26. Newborn Screening

TUBERCULOSIS IN HEALTHCARE SETTINGS Diana M. Nilsen, MD, FCCP Director of Medical Affairs, Bureau of Tuberculosis Control New York City Department of

Index. Note: Page numbers of article titles are in boldface type.

A Rare case of Tubercular Gingivitis Case Report

Let`s go for the diagnosis! Yazeed Toukan, MD Pediatric Pulmonary Institute, Ruth Rappaport Children`s Hospital July 2016

Unit title: The Immune Response System

The Immune System. A macrophage. ! Functions of the Immune System. ! Types of Immune Responses. ! Organization of the Immune System

TB & HIV CO-INFECTION IN CHILDREN. Reené Naidoo Paediatric Infectious Diseases Broadreach Healthcare 19 April 2012

Pediatric TB Lisa Armitige, MD, PhD September 28, 2011

Transcription:

Mohapatra et al. 36 CASE REPORT OPEN ACCESS Primary paediatric TH1 immunodeficiency with BCG osis Sitaram Mohapatra, Sudha Sethy, Pranati Mohanty, Ashoka Mohapatra, Sarita Pradhan ABSTRACT Introduction: In tuberculosis (TB) endemic regions BCG vaccine is administered at birth in an effort to protect against neonatal tuberculous meningitis. However, this live vaccine facilitates overwhelming systemic infections by otherwise innocuous organisms in infants with cellular primary immunodeficiencies. Case Report: Our case is a seven month old infant who developed abscess at BCG vaccination site followed by disseminated BCG osis and was diagnosed to have TH1 immunodeficiency. Conclusion: Dissemination following BCG vaccination warrants prompt investigation to diagnose primary immunodeficiency disorders in HIV seronegative individuals. Keywords: BCG itis, BCG osis, NTM, Immunodeficiency Sitaram Mohapatra 1, Sudha Sethy 1, Pranati Mohanty 1, Ashoka Mohapatra 2, Sarita Pradhan 1 Affiliations: 1 Department of Pathology, SCB Medical College, Cuttack, Odisha, India; 2 Department of Microbiology, SCB Medical College, Cuttack, Odisha, India. Corresponding Author: Dr. Sitaram Mahapatra, Associate Professor, Department of Pathology, S.C.B. Medical College, Cuttack-753007, Odisha, India; Email: drsudhasethy@gmail.com. Received: 22 September 2011 Accepted: 02 February 201 2 Published: 31 May 201 2 Mohapatra S, Sethy S, Mohanty P, Mohapatra A, Pradhan S. Primary paediatric TH1 immunodeficiency with BCG osis. International Journal of Case Reports and Images 2012;3(5):36 40. doi:10.5348/ijcri 2012 05 123 CR 8 INTRODUCTION Bacille Calmette Guerin (BCG) a live attenuated vaccine is routinely given to neonates in settings where tuberculosis is endemic [1]. Immunodeficient individuals are at high risk of developing BCG related complications like regional adenopathy i.e BCG itis or disseminated disease i.e BCG osis [2 4]. Primary immunodeficiencies are a diverse group of hereditary disorders leading to impaired immune response that creates high susceptibility to mycobacterial infections. Mycobacterium. tuberculosis, BCG and non tuberculous mycobacterium (NTM) may cause a severe disease in patients with primary immunodeficiencies [5]. One such case is reported here. CASE REPORT A seven month old female child presented with an abscess at BCG vaccination site along with generalized lymphadenopathy. She was vaccinated with BCG one month after birth and there was no history of contact with tuberculosis. Family history suggested that her elder female sibling had developed BCG abscess following vaccination who later succumbed to cardiac disease and pneumonia at the age of eight years. On examination the baby had normal developmental milestones, but was under weight. She had moderate pallor, generalized lymphadenopathy; the maximum

Mohapatra et al. 37 size of lymphnode being two cm. She also had hepatosplenomegaly (liver five cm and spleen seven cm palpable below the costal margin). Chest was clear to auscultation. Haemogram revealed Hb 5.3 gm/dl, TLC 18,400/mm 3, DLC : neutrophils 60%, lymphocytes 36%, eosinophils 04%, basophil 0%, monocytes 0%. platelet count 2.2 10 6 /mm 3, C reactive protein (CRP) 55 mg/l. Mantoux test was negative. Chest X ray was normal. ELISA test for HIV was negative in the parents. CT scan of chest showed normal sized thymus. Aspiration cytology of the axillary lymph node revealed presence of large numbers of foamy histiocytes with negative imprints in the cytoplasm admixed with a paucicellular chronic inflammatory infiltrate dispersed in a necrotic background and raised the suspicion of a tubercular lesion. Ziehl Neelsen stain confirmed presence of acid fast bacilli (Figure 1). Further the cytoaspirate was sent for mycobacterial culture and a resected node was subjected to histopathology examination. Lymphnode histopathology revealed poorly formed granulomas, good number of foamy histiocytes, along with neutrophils (Figure 2) Ziehl Neelsen stain of tissue section revealed macrophages packed with AFB (acid fast bacilli) (Figure 3). Culture in Lowensten Jensen (LJ) medium showed growth of mycobacteria with flat, smooth, moist and white colonies in five weeks (Figure 4). The isolate was sent to a NABL (National accredited bacteriology laboratory) accredited referral laboratory for species identification and drugs susceptibility. This baby was treated with first line antitubercular drugs. The baby was kept under follow up. After three months she showed no response to antitubercular Figure 2: Lymphnode histomorphology showing poorly formed granuloma with foamy histocytes (H&E stain, x400). Figure 3: Lymphnode section showing macrophages packed with AFB (Z N stain, x400). Figure 1: Lymphnode cytoaspirate showing macrophages packed with AFB. (ZN stain, x400). drugs, no weight gain and persistent lymphadenopathy. Rather she developed prolonged diarrhea and measles, hence leading to suspicion of immunodeficiency.

Mohapatra et al. 38 DISCUSSION Figure 4: LJ medium showing flat, smooth, moist and white colonies of mycobacteria. The child was investigated for primary immunodeficiencies. Immunoglobulin profile revealed IgG 1723 mg/dl, IgA 129 mg/dl and Ig M 297 mg/dl, serum ADA was 25 U/L. Lymphocyte enumeration test revealed lymphocyte 47.01%, absolute T cell count 2840/µl, CD3+ T cells 50.24%, CD4+ T cells 71.63% and absolute CD4+ T cells 2064/µl, CD8+ T cells 23.47 %, absolute CD8+ T cells 676/µl. CD4+:CD8+ ratio was 1:3.05. Thus this panel of tests displayed a marked hypergammaglobulinemia, decreased absolute T cell count, CD3+ T cell count and absolute CD 4+ T cell count. Finally diagnosis of post vaccination BCG osis in primary T cell (TH1) immunodeficiency was made and bacterial isolate from culture was sent for drug sensitivity test. Specific T cell function tests or cytokine and CK receptor assay could not be done. The infant was continuing antituberculosis drug treatment. Nitro blue tetrazolium test was positive ruling out CGD (chronic granulomatous disease). The species was confirmed to be M. bovies (negative nitrate reductase activity and catalase positive) in a referral laboratory and drug sensitivity report revealed resistance to pyrazinamide. ATT was extended with modified regimen and the child is under follow up. BCG vaccines and environmental NTM are known to cause severe diseases in immunocompromised children. It is less well known that otherwise healthy children may also be affected. Unlike classic immunodeficiency they don t have other associated symptomatic infections apart from salmonellosis in less than half of them [6]. Our patient had no other associated infection except BCG osis. The prevalence of idiopathic disseminated BCG itis in France has been estimated to be at least 0.59 cases per million children vaccinated 6. While Chemli J et al. have reported a high frequency of severe adverse effects of BCG vaccination occuring in genetically immunodeficient children [7]. Immunological panel of our patient revealed hypergammaglobulinemia indicating hyper functioning B cells and thereby well functioning helper TH2 cells. There was persistence of AFB inside the macrophages as well as outside not responding to therapy. Thus there was a failure of activation of macrophages that is dependent on IFN γ released by TH1 cells. Therefore, in our case possible defect was with TH1 cells resulting in lack of IFN γ leading to inactivation of macrophages thereby facilitating persistence and multiplication of bacilli intracellularly. Further, lack of IFN γ exerts no inhibitory effect on TH2 cells resulting in unopposed TH2 activity. This results in hypergammaglobulinemia. Further evaluation could not be done due to noncooperation of the parents and ATT was extended with change of regimen. Susceptibility to intracellular pathogens may develop from a range of different acquired or inborn defects in macrophage activation by IFN γ [8]. Patients with inherited deficiency of interleukin (IL) 12/IL 23 IFN γ axis show increased susceptibility to invasive diseases caused by the intra macrophage pathogens such as Salmonellae and Mycobacteria. IL 12/IL 23/IFN γ axis consists of two complementary components, first an IL 12/IL 23 component and second an IFN γ component. Calman Mac Lennon et al. have reported in their study that mycobacterial disease occurred in 77% cases wish IL 12/IL 23 component deficiency and in 94% cases with IFN γ component deficiency [9]. Predisposition to mycobacterium is called mendelian susceptibility to poorly virulent mycobacteria such as BCG and NTM. It is thought to be due to impaired immunity, specifically altering host defenses against Mycobacteria. This syndrome is characterized by parental consanguinity, familial forms and an autosomal recessive pattern of inheritance. The rarity and heterogeneity of the syndrome make the diagnosis difficult. Different types of mutation have been detected in four genes (IFNGRI, IFNGR2, IL12B, IL12RB1) resulting in eight different disorders whose common pathogenic mechanism is impaired IFN γ mediated immunity. Severity of the clinical phenotype depends on IL 12 P40 the genotype. Complete IL 12 40, IL 12RB1 IL 12RB1 deficiency and partial IFN γ R1 and IFN γ R2 deficiencies generally lead to curable infections with antibiotics supplemented with IFN γ. Complete IFN γ

Mohapatra et al. 39 R1 and IFN γ R2 deficiencies predispose to overwhelming infections in early childhood which respond poorly to antibiotics and are ineffective to IFNγ treatment [5]. Bone marrow transplantation gives a possible hope while gene therapy is the treatment of choice. Rapid diagnosis of complete IFN γr deficiency is essential for the planning of clinical management by determining serum IFN γ level by ELISA. High IFN γ level suggests complete IFN γr deficiency, where as low or undetectable level indicates IL 12, IL 12 R, partial IFN γr deficiency or undetermined defects. IL 12 P40 deficiency can be diagnosed by ELISA, with low levels of IL 12 P40, IL 12 P70 and IFN γ secretion by stimulated peripheral blood mononuclear cells (PBMC) [6]. Acquired predisposition to mycobacterial disease due to autoantibodies to IFN γ has been reported by Beata Kampmann el al. [7]. In three patients they detected high titres of auto antibodies in three patients that specifically bind to IFN γ and inhibit its ability to activate macrophage function. All the cases had similar phenotype to that seen with mutation in the IFN γr path way and all presented with severe progressive NTM infection. In our case all possible causes, for secondary immune deficiency were excluded. Positive nitroblue tetrazolium test ruled out the possibility of CGD, which should be suspected in all cases of BCG osis [3, 10, 11]. Other primary T cell immunodeficiencies were excluded by absence of lymphocytosis, normal CD8+ T cell counts, increased IgG (ZAP 70 deficiency), eczema & thrombocytopenia (Wiskott Aldrich syndrome), complex congenital cardiac and cranio facial defects. (Di George Syndrome), and hepatitis, haemophagocytic syndrome and aplastic anemia (X linked lymphoproliferative disorder) [12]. Thus, with a similar history in the family primary immunodeficiency at the level of TH1 cell could be established. CONCLUSION Infection due to vaccination with BCG or non tuberculosis mycobacteria (NTM) may occur in patients with no hereditary or acquired immune deficiency. These idiopathic infections affect children or adults that are otherwise healthy thus make the diagnosis difficult. Clinicians should consider the possibility of defects at various levels of macrophage cell interaction and rapid diagnosis of complete IFN γr deficiency is essential for the planning of clinical management. Ideally all live bacterial vaccines should be avoided in such immunodeficient cases. Author Contributions Sitaram Mohapatra Substantial contributions to Sudha Sethy Substantial contributions to conception and design, Acquisition of data, Analysis and Pranati Mohanty Substantial contributions to Ashoka Mohapatra Substantial contributions to Sarita Pradhan Substantial contributions to Guarantor The corresponding author is the guarantor of submission. Conflict of Interest Authors declare no conflict of interest. Copyright Sitaram Mohapatra et al. 2012; This article is distributed under the terms of Creative Commons attribution 3.0 License which permits unrestricted use, distribution and reproduction in any means provided the original authors and original publisher are properly credited. (Please see /copyright policy.php for more information.) REFERENCES 1. Eduardo Guani Guerra. A male infant with recurrent opportunistic infections and fulminant BCG osis. Vignettes in Immunology. Rev Inst Nal Enf Resp Mex 2008;21:(2). 2. Bustamante J, Aksu G, Vogt G, et al. BCG osis and tuberculosis in a child with chronic granulonatous disease. J Allergy clin Immunol 2007 Jul;120(1):32 8. 3. Elizaveta Galkina. Immune Mediated Diseases from Theory to Therapy. Mycobacterial Infections in Primary Immunodeficient patients. springer New York 2007:75 81. 4. Mahanaz Sadeghi Shabestari, Nima Rezaei. Disseminated bacilli calmette Guerin in Iranion Children with severe combined immune deficiency. International Journal of Infectious Diseases 2009 Nov;13(6):e420 3. 5. Casanova JL. Mendelian susceptibility to mycobacterial disease. Orphanet Encyclopedia September 2003.

Mohapatra et al. 40 6. Chemli J, Barbouche MR, Missaoui N, et al. [Mycobacterial infections in children in central Tunisia. A study of 31 cases including 1 disseminated BCG osis]. Tunis Med 2006 Dec;84(12):777 81. 7. Kampmann B, Hemingway C, Stephens A, et al. Acquired predisposition to mycobacterial disease due to autoantibodies to IFN gamma. J Clin Invest 2005 September;115(9):2480 8. 8. MacLennan C, Fieschi C, Lammas DA, et al. Inter leukin (IL) 12 and IL 23 Are key cytokines for Immunity against Salmonella in Humans. The Journal of Infectious Diseases 2004;190:1755 7. 9. Hesseling AC, Rabie H, Marais BJ, et al. Bacille calmett Guerin Vaccine induced disease in HIVinfected and HIV uninfected children. Clin infect Dis 2006 Feb 15;42(4):548 8. 10. Urban C, Becker H, Mutz I, Fritsch G. [BCG infection in chronic granulomatous disease (author s transl)]. Klin Padiatr 1980 Jan;192(1):13 8. 11. Keller E. [Clinical Picture of a generalized BCG vaccination tuberculosis as an expression of a progressive septic granulomatosis (author s transl)]. Z Erkr Atmungsorgane 1976 Aug ;146(2):134 9. 12. Thomas A. Primary Immune Deficiencies presentation, Diagnosis, and Management The Pediatric Clinics of North America. W.B. Saunders 2000 Dec;(47):No.6