Deposited on: 29 October 2009

Similar documents
Workman, A.J. and Kane, KA. and Rankin, A.C. (2008) Cellular bases for human atrial fibrillation. Heart Rhythm, 5 (6, Supplement). S1-S6.

Deposited on: 2 April 2009

Differences in cardiac atrial and ventricular ion channels

Gene annotation for heart rhythm. 1. Control of heart rate 2. Action Potential 3. Ion channels and transporters 4. Arrhythmia 5.

Jurnal Teknologi FREQUENCY ESTIMATION FOR ATRIAL FIBRILLATION FROM HUMAN STUDIES. Full Paper. Anita Ahmad *

Who Gets Atrial Fibrilla9on..?

Creating Order out of Chaos: New Research into Treatment of Atrial Fibrillation

Antifibrotic Therapy Delays Progression from Paroxysmal to Persistent Atrial Fibrillation

Targeting atrioventricular differences in ion channel properties for terminating acute atrial fibrillation in pigs

Aberrant sodium influx causes cardiomyopathy and atrial fibrillation in mice

Deposited on: 4 July 2011

EHRA/EUROPACE 2011 Madrid, Spain June

Shock-induced termination of cardiac arrhythmias

Rational Approach to Improving Cardiac Arrhythmia Therapy. Rational Approach to Improving Cardiac Arrhythmia Therapy

Shock-induced termination of cardiac arrhythmias

The Journal of Physiology

Balance between sodium and calcium currents underlying chronic atrial fibrillation termination: An in silico intersubject variability study

Ionchannels and channelopaties in the heart. Viktória Szőts

Deposited on: 9 April 2010

Atrial Fibrillation: Classification and Electrophysiology. Saverio Iacopino, MD, FACC, FESC

Where are the normal pacemaker and the backup pacemakers of the heart located?

The cardiac repolarization process is regulated by

Dominant Frequency Increase Rate Predicts Transition from Paroxysmal to Long-Term Persistent Atrial Fibrillation

Evolving pharmacologic antiarrhythmic treatment targets Ready for clinical practice?

FREQUENCY COHERENCE MAPPING OF CANINE ATRIAL FIBRILLATION: IMPLICATION FOR ANTI-ARRHYTHMIC DRUG-INDUCED TERMINATION

Chapter 12: Cardiovascular Physiology System Overview

Mission Statement for our Arrhythmia Care

Cardiac Arrhythmia Mapping!

» A new drug s trial

CARDIOINSIGHT TM NONINVASIVE 3D MAPPING SYSTEM CLINICAL EVIDENCE SUMMARY

Supraventricular Tachycardia (SVT)

Index. cardiology.theclinics.com. Note: Page numbers of article titles are in boldface type.

Basics of Structure/Function of Sodium and Potassium Channels Barry London, MD PhD

Characteristics of the atrial repolarization phase of the ECG in paroxysmal atrial fibrillation patients and controls

Controversies with regard to 'upstream therapy of atrial fibrillation

Catheter ablation of AF Where do we stand, where do we go?

German Shepherd (GS) Dogs affected with inherited

Catheter Ablation: Atrial fibrillation (AF) is the most common. Another Option for AF FAQ. Who performs ablation for treatment of AF?

ARRHYTHMIAS IN THE ICU

Dysrhythmias 11/7/2017. Disclosures. 3 reasons to evaluate and treat dysrhythmias. None. Eliminate symptoms and improve hemodynamics

Surgical Ablation of Atrial Fibrillation. Gregory D. Rushing, MD. Assistant Professor, Division of Cardiac Surgery

ARRHYTHMIAS IN THE ICU: DIAGNOSIS AND PRINCIPLES OF MANAGEMENT

Paroxysmal Supraventricular Tachycardia PSVT.

Targeting the late sodium channel: A new antiarrhythmic paradigm?

PART I. Disorders of the Heart Rhythm: Basic Principles

CARDIAC REMODELLING IN HYPERTROPHIC CARDIOMYOPATHY AND DIABESITY

Common Codes for ICD-10

Prof. Samir Morcos Rafla Alexandria Univ. Cardiology Dept.

State of the Art. Atrial Fibrillation: A Question of Dominance?

Wide QRS Tachycardia in a Dual Chamber Pacemaker Patient: What is the Mechanism?

Chapter 16: Arrhythmias and Conduction Disturbances

2017 HRS/EHRA/ECAS/APHRS/SOLAECE Expert Consensus Statement on Catheter and Surgical Ablation of Atrial Fibrillation

The Journal of Physiology

«Aσθενής με ασυμπτωματικό WPW και παροξυσμική κολπική μαρμαρυγή» Χάρης Κοσσυβάκης Επιμελητής A Καρδιολογικό Τμήμα Γ.Ν.Α. «Γ.

Is cardioversion old hat? What is new in interventional treatment of AF symptoms?

The Regional Distribution and Correlation. Complex Fractionated Atrial Electrograms and Dominant Frequency in. during Atrial Fibrillation

Antiarrhythmic Drugs

NATIONAL INSTITUTE FOR CLINICAL EXCELLENCE SCOPE. Clinical guideline for the management of atrial fibrillation

Peri-Mitral Atrial Flutter with Partial Conduction Block between Left Atrium and Coronary Sinus

Electrophysiology 101: What Do Surgeons Need to Know. Richard B Schuessler PhD

Amiodarone Prescribing and Monitoring: Back to the Future

The action potential and the underlying ionic currents. Norbert Jost, PhD

Atrial Cardiomyopathy is it relevant?

Shervin Ziabakhsh Tabary., Asian Journal of Pharmaceutical Technology & Innovation, 02 (05); 2014; 01-08

Cardiac Arrhythmias. Cathy Percival, RN, FALU, FLMI VP, Medical Director AIG Life and Retirement Company

NIH Public Access Author Manuscript Pacing Clin Electrophysiol. Author manuscript; available in PMC 2014 October 01.

Introduction. Circulation

, I Kur. and I K1. remodel and mediate RAP-induced atrial electrical remodeling. Amiodarone alter potassium ion channel activity (I to , I K1

file://c:\documents and Settings\admin\My Documents\CV\92.htm

Catheter ablation of atrial fibrillation: Indications and tools for improvement of the success rate of the method. Konstantinos P.

Review Article Atrial Fibrillation after Cardiac Surgery: Where are we now?

HRV ventricular response during atrial fibrillation. Valentina Corino

Case 1 Left Atrial Tachycardia

Atrial fibrillation in the ICU

J Wave Syndromes. Osama Diab Lecturer of Cardiology Ain Shams University

Biatrial Stimulation and the Prevention of Atrial Fibrillation

Atrial-selective inhibition of sodium-channel current by Wenxin Keli is effective in suppressing atrial fibrillation

In Whom and When Should Atrial Fibrillation Ablation be Considered?

University of Groningen. Atrial electrical remodeling from barn to bedside Tieleman, Robert George

Atrial fibrillation (AF) is the most common sustained

Circulatory system of mammals

Long-Term Recurrence of Atrial Fibrillation After Mitral Valve Replacement and Left Atrial Ablation (Reasons and Mechanisms)

Catheter ablation for atrial fibrillation (AF) was focused

Atrial Fibrillation Etiologies and Treatment. Shawn Liu Learner Centered Learning Goal

Collin County Community College

Genetics of Sudden Cardiac Death. Geoffrey Pitt Ion Channel Research Unit Duke University. Disclosures: Grant funding from Medtronic.

Review. Three-Dimensional Impulse Propagation in Myocardium: Arrhythmogenic Mechanisms at the Tissue Level [Circ Res. 2013;112:

Cardiac Cycle. Each heartbeat is called a cardiac cycle. First the two atria contract at the same time.

How do arrhythmias occur?

Management strategies for atrial fibrillation Thursday, 20 October :27

The pill-in-the-pocket strategy for paroxysmal atrial fibrillation

Changes in the Atrial Substrate Alters the Spatiotemporal Organization and Characteristics of Atrial Fibrillation

Compendium. Cellular and Molecular Electrophysiology of Atrial Fibrillation Initiation, Maintenance, and Progression

Circulation: Arrhythmia and Electrophysiology CHALLENGE OF THE WEEK

Role of potassium currents in cardiac arrhythmias

Chapter 14. Agents used in Cardiac Arrhythmias

Intraoperative and Postoperative Arrhythmias: Diagnosis and Treatment

Declaration of conflict of interest. None to declare

Ionchannels and channelopaties in the heart

Transcription:

Workman, A.J. (2009) Mechanisms of postcardiac surgery atrial fibrillation: more pieces in a difficult puzzle. Heart Rhythm, 6 (10). pp. 1423-1424. ISSN 1547-5271 http://eprints.gla.ac.uk/7847/ Deposited on: 29 October 2009 Enlighten Research publications by members of the University of Glasgow http://eprints.gla.ac.uk

Mechanisms of post-cardiac surgery atrial fibrillation: more pieces in a difficult puzzle Antony J Workman, PhD. : A.J.Workman@clinmed.gla.ac.uk British Heart Foundation Glasgow Cardiovascular Research Centre, Division of Cardiovascular & Medical Sciences, Faculty of Medicine, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK Atrial fibrillation (AF) is common following cardiac surgery, affecting ~30% of patients. It is associated with increased morbidity and mortality. Various anti-arrhythmic drugs reduce the incidence of post-surgery AF, 1 but they also carry considerable potential for adverse effects. The development of safer and more effective treatments for this arrhythmia will require an improved understanding of its basic electrophysiological mechanisms. A variety of reentrant and non-reentrant arrhythmia mechanisms likely initiates and sustains AF. 2 Which of these predominate is unclear, and may depend on, e.g., underlying cardiac pathology, autonomic tone, and whether AF is paroxysmal or sustained. Atrial activation frequency characteristics have been studied during AF with spectral analysis using fast Fourier transformations. This technique provides clues as to the source of AF and its level of organisation. In patients with AF, the dominant frequency (DF) of activation was higher in the left atrium (LA) than right (RA), suggesting that the source of AF was located primarily in LA. 3 Studies in sheep suggested that such LA sources could be reentrant. This is because acetylcholine, which shortens action potential terminal repolarisation, effective refractory period (ERP) and, therefore, reentry wavelength, increased atrial DF and accelerated reentrant rotors. 4 The arrhythmia mechanisms involved in post-surgery AF are poorly understood, however, partly because of the considerable technical and ethical challenges of studying them in patients. A pressing question is whether the DF is higher in the LA than RA during post-surgery AF, and if so, what are the underlying electrophysiological and molecular mechanisms. Another important question is whether LA and RA electrophysiological or molecular characteristics which are present before surgery might predispose to the development of AF afterwards. Presurgery ECG P-wave characteristics independently predicted the development of post-surgery AF. 5 Patch clamp studies of human atrial myocytes suggested that this was unlikely to involve membrane ion currents that influence terminal repolarisation or ERP. 2,6,7 However, those studies were restricted to cells from RA, which is more readily available than LA during coronary artery bypass graft surgery. Furthermore, increased 1/4

atrial fibrosis, commonly associated with congestive heart failure (CHF) and ageing, affects LA DFs 8 and could predispose to post-surgery AF, but again studies are often restricted to RA. 9 In the present issue of Heart Rhythm, both of these questions have been tackled in an ambitious, technically challenging and well performed study by Swartz et al. 10 A total of 44 patients consented to providing LA and RA appendage tissues during cardiac surgery, for subsequent analysis of ion channel expression and histology. 27 of these patients consented also to having their LA and RA epicardial electrograms recorded in the event that AF should occur after surgery. Of those, 9 developed such arrhythmia, and electrograms could be recorded simultaneously in LA and RA within 15 min of AF initiation in 7 patients. Spectral analysis of these electrograms revealed that the DF was 37% higher in LA than RA. This suggested that the source of early post-surgery AF resides in the LA. Swartz et al went on to investigate potential molecular causes of this interatrial difference in DF. They found that in the total cohort of 44, mrna expression of the pore-forming α-subunits Kir 2.3 and Kir 3.4, which carry the inward rectifier K + currents I K1 and I KACh, respectively, was higher in LA than RA. Furthermore, expression of Kv1.5 and Cav1.2, which carry ultra-rapid delayed rectifier K + (I Kur ) and L-type Ca 2+ (I CaL ) currents, was lower in LA than RA. A statistical comparison between the atria was not made within separate post-surgery AF and sinus rhythm groups. However, the level of each transcript tended to differ between the atria by a similar degree in either patient group. Mathematical modelling studies have indicated that inward rectifier K + currents substantially influence the ERP, and that an increase in atrial I K1 shortens terminal repolarisation and stabilises reentry. 11 If the higher LA Kir 2.3 and Kir 3.4 were to translate to increased LA current densities, then these molecular data would be consistent with a causative mechanism of the higher DF in LA. The lower LA Cav1.2 and Kv1.5 may not influence the interatrial difference in DF, because pharmacological or simulated block of I 12 CaL or I 11 Kur had no effect on human atrial ERP or terminal repolarisation, respectively. Swartz et al also report that there were no significant differences in either LA or RA expression of any transcripts between patients with and without post-surgery AF. This is in line with earlier studies of RA I K1 and I KACh, 6 and of RA I K1, I CaL, I Kur and I 7 TO. Moreover, it adds substantially to our knowledge, because it is the first such study in human LA, and supports the view that post-surgery AF is not predicted by pre-surgery atrial ion currents. Swartz et al also found that the degree of fibrosis was 2-fold greater in LA than RA in patients who had postsurgery AF. Moreover, LA fibrosis was almost 3-fold greater in patients who developed post-surgery AF than in those who did not, whilst RA fibrosis was similar between these patient groups. This finding suggests 2/4

that increased LA fibrosis may predispose to post-surgery AF, presumably by perturbing intermyocyte electrical coupling and conduction. It also highlights the importance of studying LA as well as RA where possible. 9 Finally, Swartz et al discovered that in the 7 patients whose AF DFs were measured, there was a significant correlation between LA DF and either LA fibrosis or LA collagen expression, such that increasing fibrosis was associated with decreasing DF. Such an inverse correlation may seem paradoxical, because the marked increase in LA and not RA fibrosis in patients with post-surgery AF was associated with a higher DF in LA than RA. However, it is not anomalous, because increased LA fibrosis due to CHF in sheep was associated with a reduced DF in the LA whilst the interatrial difference in DF was maintained. 8 Presumably, in the Swartz study, 10 the influence of a higher LA I K1 and I KACh to increase LA DF outweighed the influence of LA fibrosis to decrease it, but that would require further investigation. The Swartz study 10 answers some important questions about mechanisms of post-surgery AF. However, as with any good piece of scientific research, it also raises some useful questions. For example, why was fibrosis increased in LA but not RA in patients with post-surgery AF? This might relate to the higher incidence of valve surgery and severity of CHF. Left ventricular systolic dysfunction has been independently associated with human RA cellular electrophysiological changes, 13 although LA cells or fibrosis were not studied. Would LA fibrosis independently predict post-surgery AF in a cohort sufficiently large to adjust for clinical confounders? Is there a positive correlation between inward rectifier K + channel expression and DF? That would support the idea that the influence of I K1 and I KACh on DF outweighs that of fibrosis. Can we safely assume that the observed interatrial differences in ion channel α-subunit mrna levels would translate to differences in ion current magnitudes sufficient to affect ERP and DF? Whilst ion channel expression and function do not always correlate, an earlier report of a higher LA than RA I KACh and DF in sheep 4 supports the validity of this assumption in the Swartz study 10, at least for Kir3.4. Post-cardiac surgery AF seems to be caused mainly by the surgical procedure, and promoted by the influence of age and atrial fibrosis on atrial electrophysiology. The Swartz study 10 provides evidence to support the hypothesis that this arrhythmia has a source located in the LA, resulting from an interatrial difference in ion currents that affect ERP, and is facilitated by increased LA fibrosis. It therefore contributes substantially to our understanding of mechanisms of post-cardiac surgery AF, and thus improves our chances of finding better treatments to prevent this arrhythmia. 3/4

References 1. Mathew JP, Fontes ML, Tudor IC, et al. A multicenter risk index for atrial fibrillation after cardiac surgery. JAMA-J Am Med Assoc 2004;291:1720-1729. 2. Workman AJ, Kane KA, Rankin AC. Cellular bases for human atrial fibrillation. Heart Rhythm 2008;5:S1-S6. 3. Sanders P, Berenfeld O, Hocini M, et al. Spectral analysis identifies sites of high-frequency activity maintaining atrial fibrillation in humans. Circulation 2005;112:789-797. 4. Sarmast F, Kolli A, Zaitsev A, et al. Cholinergic atrial fibrillation: I K,ACh gradients determine unequal left/right atrial frequencies and rotor dynamics. Cardiovasc Res 2003;59:863-873. 5. Passman R, Beshai J, Pavri B, et al. Predicting post-coronary bypass surgery atrial arrhythmias from the preoperative electrocardiogram. Am Heart J 2001;142:806-810. 6. Dobrev D, Wettwer E, Kortner A, et al. Human inward rectifier potassium channels in chronic and postoperative atrial fibrillation. Cardiovasc Res 2002;54:397-404. 7. Workman AJ, Pau D, Redpath CJ, et al. Post-operative atrial fibrillation is influenced by beta-blocker therapy but not by pre-operative atrial cellular electrophysiology. J Cardiovasc Electrophysiol 2006;17:1230-1238. 8. Tanaka K, Zlochiver S, Vikstrom KL, et al. Spatial distribution of fibrosis governs fibrillation wave dynamics in the posterior left atrium during heart failure. Circ Res 2007;101:839-847. 9. Cosgrave J, Foley JB, Flavin R, et al. Preoperative atrial histological changes are not associated with postoperative atrial fibrillation. Cardiovasc Pathol 2006;15:213-217. 10. Swartz MF, Fink GW, Lutz CJ, et al. Left-versus-right atrial difference in dominant frequency, K + channel transcripts, and fibrosis in patients developing atrial fibrillation following cardiac surgery. Heart Rhythm 2009;x:x-x (In Press). 11. Pandit SV, Berenfeld O, Anumonwo JMB, et al. Ionic determinants of functional reentry in a 2-D model of human atrial cells during simulated chronic atrial fibrillation. Biophys J 2005;88:3806-3821. 12. Workman AJ, Kane KA, Rankin AC. The contribution of ionic currents to changes in refractoriness of human atrial myocytes associated with chronic atrial fibrillation. Cardiovasc Res 2001;52:226-235. 13. Workman AJ, Pau D, Redpath CJ, et al. Atrial cellular electrophysiological changes in patients with ventricular dysfunction may predispose to AF. Heart Rhythm 2009;6:445-451. 4/4